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We study the long-time behaviour of large systems of ordinary differential equations with
random data. Our main focus is a Hamiltonian system which describes a distinguished
particle attached to a large collection of heat bath particles by springs. In the limit where
the size of the heat bath tends to infinity, the trajectory of the distinguished particle can
be weakly approximated, on finite time intervals, by a Langevin stochastic differential

equation. We examine the long-term behaviour of these trajectories, both analytically
and numerically. We find ergodic behaviour manifest in both the long-time empirical
measures and in the resulting auto-correlation functions.
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1. Introduction

In many applications of molecular dynamics the desired information is low dimen-

sional, even when the governing model equations contain a large number of degrees

of freedom. An important example is the extraction of conformational dynamics

for biomolecules. Conformational dynamics may be stochastic in nature, even when

the underlying model is deterministic [1]. Since numerical methods are typically

needed to study the equations of motion [2], it is clearly important to be able to

evaluate them by their ability to extract the correct macroscopic information. This

applies both to straightforward time-stepping methods, and to more sophisticated

methods such as those proposed in [3, 4]. In this context the development of simple

model problems is important: the equations of motion for a bio-molecule exhibiting
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conformational dynamics are extremely complex and not always appropriate for

thorough investigation of algorithmic capability.

In [5] a variant of the Ford–Kac model of a heat bath [6] was used to study

standard time-stepping algorithms by their ability to correctly predict macroscopic

quantities. It is of interest to use similar models to study the more sophisticated al-

gorithms in [3, 4]. However, the set-up of the model problem in [5] is not appropriate

for the study of large-time dynamics because of a periodicity inherent in the con-

struction. The primary purpose of this paper is to propose and study a related class

of model problems which are suitable for the study of long-time dynamics. These

model problems have the form of deterministic differential equations with emergent

stochastic dynamics. Some of the models proposed here have already been used in

[7] to evaluate the algorithm in [3].

In Sec. 2 we introduce a Hamiltonian system which will be the primary focus of

our study; it has the form of a distinguished particle attached by springs to a large

number of heat bath particles. By eliminating the heat bath variables, an integro-

differential equation (IDE) is found for the distinguished particle. Section 3 contains

some basic analysis of Monte–Carlo approximations of integrals and stochastic pro-

cesses, enabling an understanding of the memory kernel and forcing which appear

in the IDE. In Sec. 4 we show that the distinguished particle in the Hamiltonian

system can be approximated by the solution of a Langevin SDE. All the approxi-

mation results in Secs. 3 and 4 are weak convergence results on finite time intervals.

Section 5 contains some analysis of the large-time behaviour of the Monte Carlo

approximation of an Ornstein–Uhlenbeck (OU) process introduced in Sec. 3. This

analysis forms the motivation for the numerical experiments in Sec. 6 which elu-

cidate the long-time behaviour of large Hamiltonian systems of ODEs introduced

in Sec. 2. The results show a close relationship between these ODEs and their

approximating SDEs, when comparisons are made for empirical measures and au-

tocovariance functions, and when the limiting SDE is ergodic.

The derivation of SDEs from ODEs has a long history [8, 9]. Because of the ex-

plicit nature of our problem this abstract machinery, which has been developed con-

siderably over the last few decades [10], is not required for the analysis undertaken

here; we make use of straightforward tools from weak convergence of probability

measures [11]. Our main contribution is to construct an explicit family of model

problems which are useful in the study of algorithms for macroscopic properties of

molecular systems. Through analysis and numerical experiments we establish the

properties of these model problems.

2. The Hamiltonian System

The model problem under investigation is a Hamiltonian system defined by the

Hamiltonian,

H(Qn, Pn, q, p) =
1

2
P 2
n + V (Qn) +

n∑
j=1

p2
j

2mj
+

n∑
j=1

kj

2
(qj −Qn)2 , (2.1)
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where Qn, Pn are the position and momentum of a distinguished particle of

unit mass in a potential field V (·). The vectors q = (q1, q2, . . . , qn) and p =

(p1, p2, . . . , pn) are the coordinates and momenta of n particles that are referred

to as “heat bath” particles. The jth heat bath particle has mass mj and interacts

with the distinguished particle via a linear spring with stiffness constant kj . If the

distinguished particle was held fixed it would be the anchor point of n independent

oscillators with frequencies ωj = (kj/mj)
1/2. This model is a variant of the well-

known Ford, Kac, Mazur model [12, 6] (see also [13, 14]). The subscript n in Qn, Pn
labels the size of the heat bath (it should not be confused with the subscript n in

(qn, pn) which refers to the nth heat bath particle); this subscript is introduced to

have a convenient notation when comparing systems of variable size.

Hamilton’s equations of motion are

Q̇n = Pn ,

Ṗn = −V ′(Qn) +
n∑
j=1

kj(qj −Qn) ,

q̇j = pj/mj ,

ṗj = −kj(qj −Qn) ,

(2.2)

supplemented with initial conditions Qn(0) = Q0, Pn(0) = P0, qj(0) = q0
j , and

pj(0) = p0
j . It is further assumed that the initial data for the heat bath particles are

randomly drawn from a Gibbs distribution with inverse temperature β. The Gibbs

measure is conditioned by the (non-random) initial dataQ0 and P0. For fixedQn, Pn
the Hamiltonian (2.1) is quadratic in q, p, and hence the corresponding measure is

Gaussian. It is easily verified that

q0
j = Q0 + (1/βkj)

1/2ξj ,

p0
j = (mj/β)1/2ηj ,

where ξj , ηj ∼ N (0, 1) are mutually independent sequences of i.i.d. random vari-

ables.

System (2.2) is a model problem for the situation when a particle interacts

with a system of many degrees of freedom (a heat bath) having a broad and dense

spectrum. In this context it is natural to choose the parameters kj and mj such

that, as n increases, the set of ωj covers an increasingly large range of frequencies

in an increasingly dense manner. A simple choice that satisfies this requirement is

to take the frequencies ωj random and uniformly distributed in [0, na],

ωj = naνj , νj i.i.d. , ν1 ∼ U [0, 1] ,

for some a ∈ (0, 1). Another alternative is to take the ωj non-random and equally

distributed in [0, na]. Both choices are considered below.

Initially we choose the spring constants kj as follows:

kj = f2(ωj) ∆ω , f2(ω) =
2α

πβ̃

1

α2 + ω2
, (2.3)
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with α, β̃ > 0 and ∆ω = na/n being the mean spectral density. The reason for this

choice and notation will become apparent in the next section, where generalizations

of 2.3 are also considered.

The probability space is induced by the three mutually independent sequences of

i.i.d. random variables νj , ξj and ηj . In several instances below, we derive properties

of the system that hold almost surely with respect to certain variables but are of

statistical nature with respect to the remaining variables. As a result, we need

distinct notations for integration over the ν, ξ and η components of the probability

space. For example, we will denote by Eν the expected values with respect to the

ν variables only, by Eξη the expected values with respect to ξ and η variables, and

by Eνξη the expected values with respect to the entire probability space; when no

confusion should arise we will use the shorter notation E. Similarly, Varν denotes

the variance with respect to the ν variables, Pν denotes probability with respect to

the ν variables and so on.

The variables qj ,pj in (2.2) can be integrated explicitly, giving rise to an in-

homogeneous integro-differential equation for the distinguished particle trajectory

Qn(t):

Q̈n(t) +

∫ t

0

Kn(t− s)Q̇n(s) ds+ V ′(Qn(t)) = Zn(t) , (2.4)

where

Kn(t) =

n∑
j=1

f2(ωj) cos(ωjt) ∆ω , (2.5)

Zn(t) = β−1/2
n∑
j=1

f(ωj) [ξj cos(ωjt) + ηj sin(ωjt)] (∆ω)1/2 . (2.6)

Equation (2.4) is a projection of the (2n + 2)-dimensional system (2.2) onto the

two-dimensional subspace (Qn, Pn). It describes the rate of change of (Qn, Pn) as

function of their present and past values. The history dependence is encapsulated

by the memory kernel Kn(t). The function Zn(t) is a forcing that depends, for

fixed νj , on the initial data ξj , ηj . It is a stationary zero-mean Gaussian process;

its autocovariance function satisfies the so-called fluctuation–dissipation relation

Eξη[Zn(t)Zn(s)] = β−1Kn(t− s) ;

this holds for every choice of frequencies. Equation (2.4) is an instance of the Mori–

Zwanzig projection formalism [15–18], and is also known as a generalized Langevin

equation.

3. Weak Convergence of the Forcing

In this section we study the n→∞ limit of the memory kernelKn(t) and the forcing

Zn(t); see Theorem 3.1 and Corollary 3.2. As part of this analysis we also investigate
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the convergence of the kernel Kn(t). Before undertaking a rigorous analysis we note

that Kn(t), given by (2.5) with f(ω) given by (2.3), can be viewed as a Monte–Carlo

approximation of the integral,

2α

πβ̃

∫ na

0

cos(ωt)

α2 + ω2
dω ,

and this integral tends to the Fourier cosine representation of β̃−1e−αt as n→∞.

Similarly, Zn(t), given by 2.6, can be viewed as a Monte–Carlo approximation of

the stochastic integral(
2α

πββ̃

)1/2 [ ∫ na

0

cos(ωt)

(α2 + ω2)1/2
dB1(ω) +

∫ na

0

sin(ωt)

(α2 + ω2)1/2
dB2(ω)

]
,

where B1(ω) and B2(ω) are independent Brownian motions. (Note that the Itô

and Stratonovich interpretations of this integral are the same.) In view of the form

of the spectral density it follows that, as n → ∞, this stochastic integral tends

to the stationary Ornstein–Uhlenbeck process U(t) with covariance (ββ̃)−1 e−αt

(e.g. Grimmett and Stirzaker [19], p. 407). Recall that U(t) solves the stochastic

differential equation

dU(t) = −αU(t) dt+ (2α/ββ̃)1/2dB(t) ,

U(0) ∼ (ββ̃)−1/2N (0, 1) ,
(3.1)

where B(t) is standard Brownian motion independent of U(0). These heuristic

arguments are made rigorous in the remaining part of this section. Throughout

this section it will be assumed that ωj = naνj , a ∈ (0, 1), and ∆ω = na/n, with

νj ∼ U [0, 1] and ξj , ηj ∼ N (0, 1) being three mutually independent sequences of

i.i.d. random variables. We also make occasional references to the straightforward

alternative of choosing the frequencies nonrandom and equally distributed in [0, na].

We start with two useful lemmas:

Lemma 3.1. Suppose that h is a bounded , positive, real-valued function with bound

c1, such that h(ω) ≤ c2 ω−1 for some c2 > 0. Let

Sn =

n∑
j=1

h(ωj) ∆ω . (3.2)

Then,

P
(

lim
n→∞

|Sn − EνSn| = 0
)

= 1 . (3.3)

Proof. It is sufficient to show that there exists an integer b such that the sequence

σn = Eν |Sn − EνSn|2b

is summable: then, by the Borel–Cantelli lemma (Billingsley [20], p. 59),

P
(
|Sn − EνSn|2b > ε i.o.

)
= 0
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for any ε > 0 (i.o. = infinitely often), which in turn implies (3.3).

We rewrite σn as follows:

σn = Eν

∣∣∣∣∣nan
n∑
j=1

[h(ωj)− Eνh(ωj)]

∣∣∣∣∣
2b

= n2b(a−1)
n∑

j1=1

. . .

n∑
j2b=1

Vj1,j2,...,j2b , (3.4)

where

Vj1,j2,...,j2b = Eν {[h(ωj1)− µn][h(ωj2)− µn] . . . [h(ωj2b)− µn]} (3.5)

are the centred joint moments of degree 2b of h(ωj), j = 1, 2, . . . , n, and µn =

Eνh(ω1). Note that our assumptions on h imply

µn ≤ n−a(c1 + c2 logna) . (3.6)

Since h(ωj) and h(ωi) are independent for i 6= j, then many of the joint moments

vanish; specifically, every Vj1,j2,...,j2b that contains an index which appears only

once vanishes. To estimate σn we regroup the 2b-tuple sum (3.4) by the number k

of distinct indices in (3.5); k assumes values from 1 to b because each index must

occur at least twice, otherwise (3.5) is zero. The number of terms corresponding to

a given k can be bounded by c3 n
k, where c3 > 0 is a constant that depends on

b, but not on n nor k (there are nk ways to “decode” a k-letter pattern with an

n-letter alphabet). Each of the Vj1,j2,...,j2b which corresponds to a given k is of the

form,

Vj1,j2,...,j2b =

(
1

na

∫ na

0

[h(ω)− µn]m1 dω

)
· · ·
(

1

na

∫ na

0

[h(ω)− µn]mk dω

)
,

where m1,m2, . . . ,mk ≥ 2 and m1 +m2 + · · ·+mk = 2b. Now,

1

na

∫ na

0

[h(ω)− µn]m dω =

m∑
`=0

(
m

`

)
(−µn)m−`

1

na

∫ na

0

h`(ω) dω .

The terms ` = 0, 1 sum up to (−m+1)(−µn)m, which by (3.6), tends to zero faster

than n−a because m ≥ 2. For ` = 2, 3, . . . ,m the integral over h` converges, by

our assumptions on h. Thus, there exists a constant M > 1 such that for all n

sufficiently large |
∫ na

0 [h(ω)− µn]m dω| ≤M , and

|Vj1,j2,...,j2b | ≤
(
M

na

)k
. (3.7)

Combining (3.4) and (3.7) we get, for n sufficiently large,

σn ≤ n2b(a−1)
b∑

k=1

c3n
k

(
M

na

)k
≤ b c3M bn2b(a−1)nb(1−a) ,

which is summable if we take b > 1/(1− a). This completes the proof.
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Lemma 3.2. Let g be a real-valued function on [0,∞). Assume that g is bounded ,

and that there exist constants c > 0 and λ > 1/2 such that g(ω) ≤ c/ωλ. Define

Rn(t) =

n∑
j=1

g2(ωj) cos(ωjt) ∆ω ,

R(t) =

∫ ∞
0

g2(ω) cos(ωt) dω .

(3.8)

Then, for any T ∈ (0,∞),

1. ν-almost surely, Rn(t) converges pointwise to R(t), t ∈ [0, T ];

2. Rn → R in L2(Ω, L2[0, T ]).

Proof. Let t ∈ [0, T ]. We start by showing that Rn(t) converges pointwise to R(t)

in the mean square. We write

Eν |Rn(t)−R(t)|2 = Eν |Rn(t)− EνRn(t)|2 + |R(t)− EνRn(t)|2. (3.9)

The first term on the right-hand side is the variance ofRn(t) which can be estimated

by

VarνRn(t) = n∆ω2 Varν [g2(ωj) cos(ωjt)] ≤
n2a

n

1

na

∫ na

0

g4(ω) dω ≤ C1 ∆ω , (3.10)

where the boundedness of the integral C1 =
∫∞

0
g4(ω) dω < ∞ follows from our

assumptions on g. To estimate the second term we note that the expected value of

Rn(t) is

EνRn(t) =

∫ na

0

g2(ω) cos(ωt) dω ,

thus

|R(t)− EνRn(t)| ≤
∫ ∞
na

g2(ω) dω ≤
∫ ∞
na

( c

ωλ

)2

dω =
c2

(2λ− 1)

1

na(2λ−1)
. (3.11)

Substituting (3.10) and (3.11) into (3.9) gives

Eν |Rn(t)−R(t)|2 ≤ C1

n1−a +
C2

n2a(2λ−1)
, (3.12)

where C2 = c4/(2λ− 1)2.

Equation (3.12) implies that Rn → R in L2(Ω, L2[0, T ]) as:

‖Rn −R‖2L2(Ω,L2[0,T ]) =

∫ T

0

Eν |Rn(t)−R(t)|2 dt ≤ TC1

n1−a +
TC2

n2a(2λ−1)
. (3.13)

Finally, EνRn(t) converges pointwise to R(t) by 3.11, whereas Lemma 3.1 with

h(ω) = g2(ω) cos(ωt) implies that Rn(t) − EνRn(t) decays to zero ν-almost surely.

We conclude that ν-almost surely Rn(t) converges pointwise to R(t).
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Comments. 1. The rate of convergence of Rn is expected to be optimally fast

if a is chosen to balance the two terms in 3.13, which suggests the choice of a =

[1 + 2(2λ− 1)]−1.

2. Convergence in L2(Ω, L2[0, T ]) implies convergence in L2(Ω, L1[0, T ]), which

in turn implies convergence in probability in L1[0, T ]. This weaker form of conver-

gence is sufficient for establishing the weak convergence of the trajectories Qn; see

Sec. 4.

3. For ωj deterministic and equally spaced, ωj = j∆ω, Rn(t) can be viewed as

an approximation to R(t) by quadrature. It is straightforward to show that in this

case Rn converges to R both pointwise and in L1[0, T ].

Verifying that f(ω) given by 2.3 satisfies the assumptions on g in Lemma 3.2

with λ = 1, we conclude:

Corollary 3.1. Let Kn(t) be given by (2.5), then

1. For any t on a finite, but arbitrary, time interval [0, T ], and ν-almost surely,

Kn(t) converges pointwise to

K(t) =
2α

πβ̃

∫ ∞
0

cos(ωt)

α2 + ω2
dω = β̃−1e−αt .

2. Kn → K in L2(Ω, L2[0, T ]).

The rate of convergence is expected to be optimal if we take a = 1/3.

The next theorem establishes the weak convergence of random series of the form

(2.6). The convergence of Zn(t) to the stationary Ornstein–Uhlenbeck process U(t)

follows as an immediate consequence. Weak convergence, here, is in the probability

space induced by the random variables ξj and ηj , and holds for almost every choice

of frequencies (ν-almost surely). Thus “⇒” denotes weak convergence with respect

to the sequences ξj , ηj (for a general reference on weak convergence see Billingsley

[11]).

Theorem 3.1. Let g(t) be a real-valued function satisfying the assumptions of

Lemma 3.2, with Rn(t) and R(t) given by (3.8). Define

Yn(t) =

n∑
j=1

g(ωj)[ξj cos(ωjt) + ηj sin(ωjt)](∆ω)1/2 . (3.14)

Then, ν-almost surely, Yn ⇒ Y in C[0, T ] where Y is the stationary Gaussian

process with mean zero and autocovariance function R(t).

Proof. The proof relies on the following theorem ([21], p. 450): Let Yn be a col-

lection of real-valued almost-surely continuous stochastic processes on [0, T ], such

that:
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1. The finite dimensional distributions of Yn weakly converge to those of an almost-

surely continuous process Y .

2. Tightness: there exist positive constant b, γ, M1 such that for all n

E|Yn(t+ u)− Yn(t)|b ≤M1|u|1+γ .

Then Yn ⇒ Y .

Let Y be the stationary Gaussian process with autocovariance function R(t).

By Kolmogorov’s continuity condition ([22], p. 53) applied to Gaussian processes,

Y has a continuous version if its autocovariance function is Hölder continuous; the

Hölder continuity of R(t) follows from the assumed rate of decay of g. To show

that the finite-dimensional distributions of Yn converge weakly to those of Y it is

sufficient to show that for any collection of times 0 ≤ t1 < t2 < · · · < tk ≤ T , the

joint probability density functions of (Yn(t1), . . . , Yn(tk)) converge pointwise to the

joint probability density function of (Y (t1), . . . , Y (tk)). For Gaussian processes this

is guaranteed by the pointwise convergence of Rn(t) to R(t), which was established

in Lemma 3.2.

It remains to show the tightness property. Let θ ∈ (0, 2λ− 1] ∩ (0, 2], and let b

be a sufficiently large integer such that bθ = 1 + γ for some γ > 0. Then

Eν |Yn(t+ u)− Yn(t)|2b = (2b− 1)!!
(
Eν |Yn(t+ u)− Yn(t)|2

)b
= 2b(2b− 1)!! [Rn(u)−Rn(0)]

b

= 22b(2b− 1)!!

 n∑
j=1

g2(ωj) sin2(1
2ωju) ∆ω

b

≤ 22b(2b− 1)!!

 n∑
j=1

g2(ωj)| 12ωju|
θ ∆ω

b

= 2b(2−θ)(2b− 1)!! |u|bθ
 n∑
j=1

g2(ωj)ω
θ
j ∆ω

b

≤ [2b(2−θ)(2b− 1)!!M b]|u|1+γ ,

where (2b − 1)!! = 1 · 3 · 5 · · · (2b − 1). In the passage from the first to the second

line we used the Gaussian property of Yn and its stationarity. The third line was

obtained by substituting the expression (3.8) for Rn. To obtain the fourth line we

used the inequality sin2(x) ≤ |x|θ, valid for any θ ≤ 2. Finally, ν-almost surely

there exist a positive constant M such that for any n

n∑
j=1

g2(ωj)ω
θ
j ∆ω ≤M .
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This follows from Lemma (3.1), with h(ω) = g2(ω)ωθ, which implies that the left

hand side converges ν-almost surely to
∫∞

0 g2(ω)ωθ dω, which, in turn, is finite by

our assumptions on g and θ. This completes the proof.

Since f(ω), given by (2.3), satisfies the assumptions on g in Theorem 3.1, and

that β−1K(t) = (ββ̃)−1e−αt is the autocovariance of the stationary OU process,

we conclude:

Corollary 3.2. Let Zn(t) be given by (2.6) and let U(t) be the stationary OU

process defined by (3.1). Then ν-almost surely Zn ⇒ U in C[0, T ].

Comments. 1. It is straightforward to show weak convergence of Zn to U in C[0, T ]

for the case of deterministic, equally spaced frequencies.

2. Yn(t) can be made to approximate delta-correlated white noise by taking

β̃ = α−1 in (2.3). This corresponds to a memory kernel K(t) = α e−αt; a limit to a

delta function in the sense of distributions is obtained by letting α→∞.

3. Theorem 3.1 can be easily extended to non-stationary processes. For example,

Yn(t) =

(
2

π

)1/2 n∑
j=1

ξj

ωj
sin(ωjt) (∆ω)1/2

can be shown, by similar techniques, to weakly approximate standard Brownian

motion in C[0, T ].

4. Convergence of Qn and the Limiting SDE

In this section we show that the L1[0, T ] convergence ofKn to K (in probability) and

the weak convergence of Zn to U in C[0, T ] implies the weak convergence in C2[0, T ]

of the distinguished particle trajectory Qn to a limiting process Q. Furthermore we

derive an SDE whose trajectories have the same distribution as Q. Recall that here

weak convergence is in the probability space induced by the variables ξj , ηj .

Theorem 4.1. Let Qn(t) be the solution to the randomly-driven IDE (2.4), with

Kn(t) and Zn(t) given by (2.3), (2.5) and (2.6). Assume that V ′(·) is globally Lip-

schitz. Then ν-almost surely Qn converges weakly in C2[0, T ] to the solution Q of

the stochastic IDE

Q̈(t) +

∫ t

0

K(t− s)Q̇(s) ds+ V ′(Q(t)) = U(t) , Q(0) = Q0, Q̇(0) = P0 , (4.1)

where U(t) is the OU process (3.1) and K(t) = β̃−1e−αt.

Moreover , Q solving (4.1) is equivalent to Q solving the SDE

dQ = P dt , Q(0) = Q0 ,

dP = [R− V ′(Q)] dt , P (0) = P0 ,

dR = (−αR− β̃−1P ) dt+ (2α/ββ̃)1/2 dB , R(0) ∼ (ββ̃)−1/2N (0, 1),

(4.2)

where B(t) is standard Brownian motion.
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Proof. Corollaries 3.1 and 3.2 imply that ν-almost surely

Kn → K in probability in L1[0, T ] , Zn ⇒ U in C[0, T ] .

Theorem 4.4 in Billingsley [11] shows that

(Kn, Zn)⇒ (K,U) in L1[0, T ]× C[0, T ] .

Thus the required result follows if we can prove that the mapping (K,U) 7→ Q

defined by

Q̈(t) +

∫ t

0

K(t− s)Q̇(s) ds+ V ′(Q(t)) = U(t) (4.3)

is a continuous mapping from L1[0, T ] × C[0, T ] to C2[0, T ] (weak convergence is

preserved under continuous mappings). Integrating the convolution term by parts,

introducing a new kernel K(t) =
∫ t

0
K(s) ds, Eq. (4.3) becomes

Q̈(t) +

∫ t

0

K(t− s)Q̈(s) ds+ V ′(Q(t)) = U(t)− P0K(t) , (4.4)

which is a nonlinear equation of Volterra type for Q̈(t) with continuous kernel K(t)

and continuous forcing U(t) − P0K(t). Since V ′(·) is globally Lipschitz a straight-

forward Picard argument gives the existence and uniqueness of Q̈ ∈ C[0, T ] solving

(4.4), or equivalently, the existence and uniqueness of Q ∈ C2[0, T ] solving (4.1).

The continuity of Q̈ on K ∈ L1[0, T ] and U − P0K ∈ C[0, T ] is a standard result

(see, for example, [24, 25] and Sec. 12 in [26]).

The equivalence between the stochastic differential system (4.2) and the stochas-

tic integro-differential equation (4.1) follows from a straightforward integration of

the first. Here, again, the Itô and Stratonovich interpretations are equivalent.

Comments. 1. The set-up here is very similar to that used by Nakazawa [14] who

also considers approximating an integro-differential stochastic equation via the same

Hamiltonian system. The results there are comparable, though the techniques used

to obtain them are different.

2. Variants of this model have also been studied in [5, 26–28]. There the forcing

functions were approximations to distribution-valued processes, such as white noise,

in which case the limiting solution is less regular than in the present case, and Qn
converges in C1[0, T ].

3. In the present model a problem with nonlocal memory can be turned into a

Markov process by the introduction of one extra variable R(t). In the context of

constructing deterministic model problems with emergent stochastic behaviour this

fact is of practical importance: problems whose memory can be described by only

a few additional variables constitute an important class where effective dimension

reduction can be achieved.

4. For general memory kernels K(t) it is not possible to convert the integro-

differential equation into a Markovian system by the introduction of a finite number



October 29, 2002 18:54 WSPC/168-SD 00057

12 R. Kupferman et al.

of extra variables. Nevertheless, in many problems of interest, the memory kernel

can be well approximated by a finite number of decay modes, each corresponding to

a characteristic relaxation time of the system. (For an example of such construction

in the context of polymeric fluids see [29], p. 262). For a memory kernel of the form

K(t) =

r∑
i=1

aie
−αit ,

the integro-differential equation (4.1) can be converted into a Markovian system by

the introduction of r extra variables.

Setting β̃ = (αγ)−1 and letting α→∞ shows that (Q,P ) solving (4.2) converges

to (Q,P ) solving the standard Langevin equation without memory:

dQ = P dt , Q(0) = Q0 ,

dP = −[γP + V ′(Q)] dt+ (2γ/β)1/2 dB , P (0) = P0 .

Recall that in this limit the memory kernel approaches a delta function which is

why the memory variable R drops out. Analysis justifying this limiting procedure

may be found in [31] for weak convergence and [30] for strong convergence.

5. Long-Term Behaviour

In this section we study analytically the long-term behaviour of the processes (3.14)

described in Sec. 3; in the next section the validity of our results are extended

to the solution of the integro-differential equation (2.4) by means of numerical

experiments.

To illustrate the problem under consideration, consider again the stationary OU

process defined as the solution to the SDE

dU(t) = −αU(t) dt+ (2α/β)1/2 dB(t) , U(0) ∼ β−1/2N (0, 1) ,

where B(t) is standard Brownian motion; here and below we take β̃ = 1. In Sec. 3

it was shown that U(t) was weakly approximated on any finite time interval by the

following sum

Un(t) =

(
2α

πβ

)1/2 n∑
j=1

ξj cos(ωjt) + ηj sin(ωjt)

(α2 + ω2
j )1/2

(∆ω)1/2 , (5.1)

with ωj , ξj , ηj and ∆ω defined as in Sec. 3. It is well known that U(t), t ∈ [0,∞) is

an ergodic process that has a Gaussian distribution for its invariant measure (see

[32], p. 121). Specifically, for any bounded, continuous function h

h(U(t)) ≡ lim
T→∞

1

T

∫ T

0

h(U(t)) dt = E[h(ζ)] , ζ ∼ β−1/2N (0, 1) (5.2)

on almost every trajectory; the overline is a short-hand notation for long time

averages.
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This result can be extended to more general functions of the stochastic process

U , specifically functions that depend on U at more than one point of time. Let

h : Rr → R be a bounded continuous function. Let {sp}rp=1 be a sequence in [0,∞).

Then it is known that

h(U(s1 + t), U(s2 + t), . . . , U(sr + t))

≡ lim
T→∞

1

T

∫ T

0

h(U(s1 + t), U(s2 + t), . . . , U(sr + t)) dt = E[h(ζ)] , (5.3)

on almost every trajectory, where ζ is a mean-zero Gaussian vector in Rr with

covariance given by

E[ζpζq] = β−1/2e−α|sq−sp| .

The latter expression is the autocovariance for the OU process sampled at times sq
and sp.

We can now ask whether the approximate process Un(t) satisfies properties

analogous to (5.2), (5.3). For both univariate and multivariate h, it will be shown

below that:

1. The T →∞ limit of time averages exists for the approximate process Un(t), for

any n.

2. This limit converges to that of the OU process as n→∞.

We will establish such ergodic properties for a more general family of stochastic

processes. Our methods rely on the explicit trigonometric form of (3.14). In the next

section, we extend our observations to the integro-differential equation of Sec. 2 by

means of numerical experiments.

It is worth emphasizing that these results do not follow from the analyses of

previous sections. Here we consider the behaviour of a single realization over long

time intervals whilst previous results concern statistical properties with respect to

a large set of realizations and are confined to fixed time intervals. In particular,

previous sections do not give convergence uniformly in [0,∞). Thus, for any given

n, the results of previous sections give no guarantee that the sample paths will

resemble those of the limiting process for large times.

We investigate the family of random processes (3.14):

Yn(t) =

n∑
j=1

g(ωj) [ξj cos(ωjt) + ηj sin(ωjt)] (∆ω)1/2 ,

where g satisfies the assumptions of Lemma 3.2. We have shown that Yn converges

weakly in C[0, T ] to the stationary zero-mean Gaussian process Y with autocovari-

ance

E[Y (t)Y (s)] =

∫ ∞
0

g2(ω) cos[ω(t− s)] dω .
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The weak convergence is in the probability space induced by the ξ and η variables,

and holds ν-almost surely, i.e. for almost every collection of frequencies.

Let h : Rr → R be a bounded, continuous, real-valued function, and let s1, . . . , sr
be a sequence in [0,∞). The univariate case can be obtained by setting r = 1 and

s1 = 0. Our first theorem establishes, for every n ≥ 1, the almost-sure existence

of the long-time average of h(Yn(s1 + t), . . . , Yn(sr + t)). We denote this long time

average by h({Yn(sp + t)}rp=1). The result relies on the following classical result due

to Weyl [33] (see [34], p. 286):

Lemma 5.1. Let H : Tn 7→ R be a continuous function defined on the n-

dimensional torus. Let {ωj}nj=1 be a set of independent numbers, in the sense that∑n
j=1 kjωj = 0 for integer kj implies kj ≡ 0. Finally, let θj(t) = ωjtmod 2π. Then

H(θ1(t), . . . , θn(t)) =
1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

H(ϕ1, . . . , ϕn) dϕ1 . . . , dϕn .

Theorem 5.1. T 5.1 Let Yn(t) be defined by (3.14) where g satisfies the assump-

tions of Lemma 3.2. Let h be continuous. Let {sp}rp=1 be a strictly increasing se-

quence in [0,∞). Then {ν, ξ, η}-almost surely:

h({Yn(sp + t)}rp=1)

=
1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

h

{ n∑
j=1

g(ωj)(ξj cos(ωjsp + ϕj) + ηj sin(ωjsp + ϕj))(∆ω)1/2

}r
p=1


dϕ1 . . . dϕn . (5.4)

Proof. The ωj are ν-almost surely independent of the properties of Lebesgue mea-

sure. Since cos(ωj(sp + t)) and sin(ωj(sp + t)) are functions of θj(t) = ωjtmod 2π,

(5.4 is an immediate consequence of Lemma 5.1 with

H(ϕ1, . . . , ϕn)

= h

{ n∑
j=1

g(ωj)(ξj cos(ωjsp + ϕj) + ηj sin(ωjsp + ϕj))(∆ω)1/2

}r
p=1

 . (5.5)

We now rewrite Eq. (5.4) in a slightly different form, appropriate for the subse-

quent analysis. Let the variables νj , ξj , and ηj be defined as before, and introduce,

in addition, the i.i.d. auxiliary random variables ϕj ∼ U [0, 2π]. Then, define the

vector Xn = (Xn,1, . . . , Xn,r) ∈ Rr by

Xn,p =

n∑
j=1

g(ωj)(ξj cos(ωjsp + ϕj) + ηj sin(ωjsp + ϕj)) (∆ω)1/2 . (5.6)
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Equation (5.4) may be written as follows:

h({Yn(sp + t)}rp=1) = Eϕh (Xn) , (5.7)

where Eϕ denotes averaging with respect to the ϕ variables only. We retain the

notations Eν , Eξη, etc., for averaging with respect to the ν, ξ and η variables.

The next theorem asserts that {ν, ξ, η}-almost surely, Xn converges weakly (in

the probability space induced by the ϕ variables) to a Gaussian random vector. Note

the difference with Theorem 3.1 where weak convergence occurs in the probability

space induced by the variables ξ and η.

Theorem 5.2. Let Xn be defined by (5.6). Then {ν, ξ, η}-almost surely Xn con-

verges weakly, as n → ∞, to a Gaussian random vector , ζ ∈ Rr, with mean zero

and covariance

E[ζpζq] =

∫ ∞
0

g2(ω) cos[ω(sp − sq)] dω . (5.8)

Proof. The random vectors (5.6) are of the form:

Xn =

n∑
j=1

x
(n)
j , (5.9)

where the vectors x
(n)
j have components x

(n)
j,p defined by

x
(n)
j,p = g(ωj) [ξj cos(ωjsp + ϕj) + ηj sin(ωjsp + ϕj)] (∆ω)1/2 . (5.10)

Thus the x
(n)
j are are mutually independent random vectors. Contrary to

Lemma 3.2, here we consider the ξ and η variables as fixed (in addition to the

ν that were the only fixed variables in Lemma 3.2), and weak convergence is sought

in the probability space induced by the auxiliary variables ϕj . Thus, in the current

setup, (5.9) is a sum of non-Gaussian vectors, and we therefore resort to the central

limit theorem.

Specifically, we use the multivariate Lindeberg–Feller theorem (see [35]):

Theorem. (Lindeberg-Feller) For n = 1, 2, . . . , let z
(n)
j , j = 1, 2, . . . , n be indepen-

dent real-valued random vectors with Ez(n)
j = 0, and let Zn =

∑n
j=1 z

(n)
j . Let Σ be

an r×r matrix. For a vector X, denote its Euclidean norm by |X | and its transpose

by XT. Suppose that

1. lim
n→∞

EZnZT
n = lim

n→∞

n∑
j=1

Ez(n)
j z

(n)T
j = Σ .

2. For all ε > 0

lim
n→∞

n∑
j=1

E(|z(n)
j |2; |z(n)

j | > ε) = 0 ,

where E(x;A) denotes the integral of x over the set A.
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Then , Zn converges weakly to a Gaussian random vector with mean zero and co-

variance Σ.

It remains to verify that the two conditions of the Lindeberg–Feller theorem

are satisfied for z
(n)
j = x

(n)
j , with Σp,q given by the right-hand side of (5.8). These

conditions need to be fulfilled {ν, ξ, η}-almost surely, while integration as referred

to in the Lindeberg–Feller theorem is only over the ϕ variables. This verification is

carried out in Lemmas 5.2 and 5.3 below.

Lemma 5.2. Let Xn be given by (5.9) with x
(n)
j given by (5.10). Then {ν, ξ, η}-

almost surely

lim
n→∞

EϕXn,pXn,q =

∫ ∞
0

g2(ω) cos[ω(sp − sq)] dω ,

for p, q = 1, . . . , r.

Proof. Integrating explicitly over the ϕj we get

EϕXn,pXn,q =

n∑
j=1

Eϕx(n)
j,p x

(n)
j,q

=

n∑
j=1

g2(ωj)

(
1

2
ξ2
j cos[ωj(sp − sq)] +

1

2
η2
j cos[ωj(sp − sq)]

)
∆ω .

We then make the following three observations:

1. The expected value (with respect to ν, ξ and η) of EϕXn,pXn,q is

Eνξη (EϕXn,pXn,q) =

∫ na

0

g2(ω) cos[ω(sp − sq)] dω ,

which converges, as n→∞, to
∫∞

0 g2(ω) cos[ω(sp − sp)] dω.

2. The variance (with respect to ν, ξ and η) of EϕXn,pXn,q tends, as n → ∞, to

zero:

Varνξη (EϕXn,pXn,q) = nVarνξηEϕx(n)
1,px

(n)
1,q

≤ nEνξη
(
Eϕx(n)

1,px
(n)
1,q

)2

≤ nEν
(
g4(ω1)

)
Eξη

(
1

2
ξ2
1 +

1

2
η2

1

)2

(∆ω)2

= n

(
1

na

∫ na

0

g4(ω) dω

)
1

4
(3 + 2 + 3) (∆ω)2

≤ C ∆ω → 0 ,

where we have used the mutual independence of the random variables ν, ξ and η,

and the boundedness of the integral of g4(ω), which follows from our assumptions

on g.
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3. EϕXn,pXn,q−Eνξη(EϕXn,pXn,q) tends {ν, ξ, η}-almost surely to zero. The proof

is similar to the proof of Lemma 3.1. It is sufficient to find an integer b such that

σn = Eνξη|EϕXn,pXn,q − EνξηEϕXn,pXn,q|2b

is summable, which we write as

σn = Eνξη

∣∣∣∣∣na2n

n∑
j=1

{
g2(ωj)

[
ξ2 cos[ωj(sp − sq)] + η2 cos[ωj(sp − sq)]

]
− µn

} ∣∣∣∣∣
2b

,

where

µn = Eνξη
{
g2(ωj)

[
ξ2 cos[ωj(sp − sq)] + η2 cos[ωj(sp − sq)]

]}
.

The rest of the proof follows arguments very similar to those in Lemma 3.1 and

so we omit the details.

Thus EϕXn,pXn,q converges almost surely, and the limit has a vanishing vari-

ance, from which we conclude that EϕXn,pXn,q converges almost surely to its mean

value, which in turn converges to
∫∞

0 g2(ω) cos(ω(sp − sq)) dω.

Lemma 5.3. Let Xn be given by (5.9) with x
(n)
j given by (5.10). Then {ν, ξ, η}-

almost surely

lim
n→∞

n∑
j=1

Eϕ
(
|x(n)
j |2; |x(n)

j | > ε
)

= 0

for all ε > 0.

Proof. Let g be bounded by the constant M . Then,

|x(n)
j |2 =

r∑
p=1

g2(ωj)(ξj cos(ωjsp + ϕj) + ηj sin(ωjsp + ϕ))2∆ω

≤ rM2∆ω(|ξj |+ |ηj |)2

and

Eϕ(|x(n)
j |2; |x(n)

j | > ε) ≤ rM2∆ω(|ξj |+ |ηj |)2Pϕ
(
r1/2M(|ξj |+ |ηj |)(∆ω)1/2 > ε

)
,

and the last expression, which is the probability of an event independent of the

variables ϕ, is simply the indicator function

χ{r1/2M(|ξj |+ |ηj |)(∆ω)1/2 > ε} .

Thus,

Eϕ(|x(n)
j |2; |x(n)

j | > ε) ≤ zj ,

where

zj = rM2∆ω(|ξj |+ |ηj |)2 χ{r1/2M(|ξj |+ |ηj |)(∆ω)1/2 > ε} .
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It is sufficient to show that
∑n
j=1 zj tends to zero {ξ, η}-almost surely, and this

is guaranteed if it decays sufficiently fast in the mean square. Indeed, using the

independence of zj ,

Eξη

∣∣∣∣∣
n∑
j=1

zj

∣∣∣∣∣
2

= Eξη

∣∣∣∣∣
n∑
j=1

(zj − Eξηzj) + nEξηzj

∣∣∣∣∣
2

≤ nEξη|z1|2 + n2 (Eξηz1)2

= n r2M4(∆ω)2Eξη([|ξ1|+ |η1|]4; |ξ1|+ |η1| > ε/r1/2M(∆ω)1/2)

+n2 r2M4(∆ω)2{([|ξ1|+ |η1|]2; |ξ1|+ |η1| > ε/r1/2M(∆ω)1/2)}2 .
By noting that |ξ1|+ |η1| has an exponentially decaying tail, we can estimate

Eξη
(
[|ξ1|+ |η1|]2p; |ξ1|+ |η1| > C

)
≤ Eξη

(
[ξ2

1 + η2
1 ]p; ξ2

1 + η2
1 > C2/2

)
=

∫ ∞
C/
√

2

s2p+1e−s
2/2 ds

= 2pΓ(1 + p, C2/4) ,

where Γ(n, x) is the incomplete Γ-function. Thus,

Eξη

∣∣∣∣∣
n∑
j=1

zj

∣∣∣∣∣
2

≤ 4nr2M4(∆ω)2

[
Γ

(
3,

ε2

4rM2∆ω

)
+ nΓ2

(
2,

ε2

4rM2∆ω

)]
,

which tends to zero exponentially fast as n→∞.

The ergodic property of the long term empirical averages of h(Yn({sp}rp=1)), as

n→∞, is a direct consequence of Theorems 5.1 and 5.2:

Corollary 5.1. Let Yn(t) and h be defined as in Theorem 5.1. Then {ν, ξ, η}-almost

surely:

lim
n→∞

h({Yn(sp + t)}rp=1) = Eh(ζ) ,

where ζ is a Gaussian random vector with mean zero and covariance

Eζpζq =

∫ ∞
0

g2(ω) cos[ω(sp − sq)] dw .

Proof. This follows from (5.7) and from the fact that {ν, ξ, η}-almost surely the

random vectors Xn converge weakly to ζ, hence

lim
n→∞

Eϕh(Xn) = Eh(ζ) .

Comments. 1. Applying our theorems to the particular case of the OU process,

we have shown the following: for Un(t) given by (5.1), for all bounded continuous

functions h : Rr → R, and all sequences {sp}rp=1, the long-time average

h({Un(sp + t)}rp=1) = lim
T→∞

1

T

∫ T

0

h(Un(s1 + t), . . . , Un(sr + t)) dt
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exists. Furthermore it tends to E[h(ζ)] as n → ∞, where ζ is a Gaussian random

vector with mean zero and covariance given by

Eζpζq =

∫ ∞
0

g2(ω) cos[ω(sp − sq)] dw

=
2α

πβ

∫ ∞
0

cos[ω(sp − sq)]
α2 + ω2

dω

= β−1e−α|sp−sq | . (5.11)

That is, the long-time average of bounded continuous functions of the approximate

process Un(t) are, for large n, close to those obtained with U(t), the stationary

Gaussian process with covariance β−1 exp(−α|sp − sq|).
For the case of univariate h and s1 = 0, we obtain that

lim
n→∞

h(Un(t)) = Eh(ξ) ,

where ξ ∼ β−1N (0, 1). This tells us that for large n, the empirical distribution

function for Un(t) will approximate that of U(t).

2. Though the above corollary only directly applies to bounded continuous func-

tions h, the result holds true in some other interesting cases.

If we define h : R2 → R by h(x1, x2) = x1x2, then the long-term empirical

autocovariances of the process Un(t) can be expressed as

h(Un(0), Un(s)) = lim
T→∞

1

T

∫ T

0

h(Un(t))h(Un(s+ t)) dt .

As h is an unbounded functions, Corollary 5.1 does not apply directly, however

the basic result can be extended to cover this case as well. Since h is continu-

ous, Lemma 5.1 shows that the long-time limit exists for each n and is equal to

EϕXn,1Xn,2, where Xn is defined by (5.6). Lemma 5.2 shows that as n → ∞ this

quantity converges to ∫ ∞
0

g2(ω) cos(ωs) dω = β−1e−α|s| ,

which is the autocovariance of the OU process. So the empirical autocovariance of

Un(t) converges pointwise to that of U(t) as n→∞.

Another application of our results is to the case of empirical transition prob-

abilities. Let A and B be subintervals of R such that A has positive length. The

empirical transition probability of the process Un from A to B is given by

lim
T→∞

1

T

∫ T

0

χ{Un(t) ∈ A,Un(t+ s) ∈ B} dt

limT→∞
1

T

∫ T
0 χ{Un(t) ∈ A} dt

.

This can be shown to converge, as n→∞, to the transition probability for the OU

process to go from A to B in time s. See [23] for details.
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3. Although Corollary 5.1 applies to averages in continuous time, it can be ex-

tended to discrete time-averages. In the context of the approximation of the OU

process, this implies weak convergence of empirical measures of (3.14) to the invari-

ant measure of the limiting SDE. In the next section we study this question in the

Hamiltonian context: for the process Qn(t) in Sec. 4 we study the relationship be-

tween its empirical measure and the invariant measure of the SDE it approximates.

4. The question of studying long-term behaviour of processes which are weakly

approximated by SDEs over finite time intervals was initiated in [36]. The subject

has subsequently been systematized and developed further in [10]. In future work

we will study the application of these more general techniques to substantiate the

numerical experiments of the next section. Our analysis in this section has relied

heavily on the trigonometric form of (5.6).

5. For skew-product maps which, when projected onto the fibre, approximate

SDEs on a finite time interval, a numerical study of long-time dynamics of the skew-

product, and comparisons with the approximating SDE, is undertaken by Beck et

al. [37].

6. Numerical Experiments

In this section we describe some numerical experiments which investigate the long-

term statistics induced by ordinary differential equations with random initial data.

We compute empirical time averages for single trajectories of the process and com-

pare them with the equilibrium ensemble average associated with the approximating

stochastic differential system. We do this in the cases where the SDE is known to

be ergodic.

Recall that our weak approximation results of Secs. 3 and 4 hold only on finite

time intervals; they do not automatically imply anything for long-term behaviour.

The analysis in Sec. 5 does concern long-term behaviour, but provides rigorous

results only for a limited range of problems. Thus, the numerical experiments con-

siderably extend our understanding.

We will present the results from two sets of experiments. The first is of the forc-

ing process Zn(t), defined by (2.6), which weakly approximates the OU process. We

have established the convergence of long-term averages of this process to those of

the OU process in the previous section. However, we will show the results of exper-

iments with this process for illustration. The second set of experiments concerns

the fully coupled Hamiltonian system (2.2). Here we do not have any results for

long-time statistics, so the experiments can provide useful insight.

6.1. The Ornstein–Uhlenbeck process

In Sec. 5 we showed that the empirical measures of finite-dimensional distributions

of the approximate OU process (2.6) converge to those of the limiting OU process.

Here we illustrate this numerically. We compare the long-term statistics induced

by the OU process U(t), defined by (3.1), and the (weakly) approximating process
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Zn(t), defined by (2.6). We use fixed parameters α = 1 and β = 2. Unless explicitly

stated otherwise, we take a = 1/3, thus maximizing the bound on the rate of

convergence according to Theorem 3.1 (see Corollary 3.1).

First we consider the empirical (univariate) distribution of the process Zn. We

choose an n, and then randomly generate appropriately distributed νj , ξj , ηj for j =

1, . . . , n. Then, rather than generating the sample path induced by these variables,

we construct the empirical distribution directly. Equation (5.7) shows that the

empirical distribution of Zn is the same as that of the random variable

Xn =
n∑
j=1

g(ωj)(ξj cosϕj + ηj sinϕj)(∆ω)1/2 .

So to sample from the distribution for fixed νj , ξj , ηj , we simply randomly gen-

erate i.i.d. ϕj , j = 1, . . . , n each uniformly distributed on [0, 2π] and then compute

the resultant Xn. By sampling sufficiently many Xn and storing them in a his-

togram, we will be able to generate a close approximation to the empirical measure

of Zn. In Fig. 1 we plot the empirical measures for five different realizations of Zn,

for n = 500 and for n = 5000. For comparison, we also plot the empirical density

for the limiting OU process.

We perform similar calculations for the empirical autocovariance functions of

Zn. We can compute explicitly

Zn(t)Zn(t+ s) =
1

2π
∆ω

n∑
j=1

(η2
j + ξ2

j )
cos(ωjs)

1 + ω2
j

. (6.1)

In Fig. 2 we plot the empirical autocovariances for five different realizations of Zn,

for n = 500 and n = 5000. For comparison, we have plotted the autocovariance for

the OU process, exp(−s)/2.

Figures 1 and 2 show the close relationship between the large-time properties

of the OU process and its approximation; they also show how this relationship
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Fig. 1. Solid lines: empirical distribution of OU process. Dashed lines: empirical distribution
obtained from five realizations of the approximate OU process with n = 500 and n = 5000.
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n=500, a=1/3, T=infinity
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0

0.5

n=5000, a=1/3, T=infinity

Fig. 2. Solid lines: autocovariance of OU process. Dashed lines: empirical autocovariances ob-
tained from five realizations of the approximate OU process with n = 500 and n = 5000.
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−0.2

0
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0.4

0.6
a=1/3

Fig. 3. Solid line: autocovariance of OU process. Dashed line: empirical autocovariance obtained
from approximate OU process with n = 500.

improves as n increases. As proven earlier, for any fixed s, the autocovariance

function at s converges to that of the OU process as n → ∞. However, if we fix n

and consider autocovariance over longer periods of time, we do not see the same

decay to zero as we do for the OU process. Figure 3 shows the empirical covariance

function for one realization of Zn(t), with n = 500, over the time interval [0, 100].

The autocovariance appears to oscillate indefinitely. Indeed, this is to be expected

from the expression for the autocovariance (6.1). It is a quasiperiodic function with

respect to s, and will thus not decay to zero, but in fact return arbitrarily close to

its maximum value infinitely often. This, in turn, is due to the quasiperiodic nature

of the approximate process, Zn(t), which is the sum of finitely many sinusoids.

Finally, Fig. 4 shows the sensitivity of the convergence rate on the parameter a.

Both graphs show the empirical autocovariance for increasingly many oscillators.

Figure 4(a) is for the optimal value a = 1/3 whereas Fig. 4(b) is for a = 1/2. Clearly

the choice a = 1/3 yields closer approximation of the limiting statistics for each n.

This is what we would anticipate in view of Corollary 3.1.
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Fig. 4. Comparison between the equilibrium autocovariance function of U(t) and the empirical
functions for a single path of Zn(t) for n = 10000, n = 5000, and n = 2500. (a) is for a = 1/3,
which is expected to yield an optimal convergence rate, whereas (b) is for a = 1/2.

6.2. The Hamiltonian system

We now turn to study the Hamiltonian system (2.2). We use fixed parameters α = 1,

β = 2, β̃ = 1 and a = 1/3. Unless stated otherwise we use a sampling/averaging

time of T = 50000 to calculate empirical measures/autocovariance functions. We

test the long-term behaviour of the system for three different potentials V (·),

V ′(Q) = Q , (6.2)

V ′(Q) = Q3 −Q , (6.3)

V ′(Q) = Q(1−Q2)(1.98−Q)(2.02 +Q) , (6.4)

which correspond to single-, double- and triple-well potentials, respectively. For

these potentials the Langevin SDE which approximates the motion of the distin-

guished particle is ergodic [38].

Figure 5 shows the empirical distribution and autocovariance function for the

single-well case, for n = 500 and n = 5000 oscillators; the sampling time is T =

50000. Similarly to the approximate OU process, we see a significant deviation of

the empirical distribution from the asymptotic equilibrium distribution when the

number of oscillators is too small. The autocovariance function decays initially, but

then exhibits a seemingly quasi-periodic behaviour, which persists irrespectively

of the averaging time. This is similar to what is proven for the approximate OU

process.

Similar data are presented in Fig. 6 for the double-well potential, again using

sampling time T = 50000. It is interesting to note that even for a number of oscil-

lators as small as n = 500, there is a very good agreement between the empirical

distribution and the equilibrium distribution. On the other hand, there is no ap-

parent improvement as the number of oscillators is increased to n = 5000 (for fixed
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Fig. 5. Empirical distribution (left, open circles) and empirical autocovariance (right) for the
Hamiltonian system 2.2 for a single-well, quadratic potential (6.2). The solid line in the left graphs
is the equilibrium distribution. All figures correspond to a sampling time T = 50000. The top row
corresponds to a calculation with n = 500 heat bath particles; the bottom row corresponds to
n = 5000 heat bath particles.

averaging time). The autocovariance function exhibits much smoother behaviour

than in the single-well case, and the persistent quasi-periodic behaviour is weaker,

the larger the number of oscillators. This smoother behaviour in the autocovari-

ance is presumably caused by the extra mixing introduced by nonlinearity, and in

particular by trajectory separation near the saddle point in the Langevin equation.

Finally we discuss the triple-well case shown in Fig. 7, where a sampling time

of T = 50000 is again used. For n = 500, oscillators the empirical distribution

agrees remarkably well with the equilibrium curve. This agreement deteriorates as

we increase the number of oscillators. The reason for this surprising fact may be

understood by considering the autocovariance function which decays very slowly,

reflecting the very long time that the distinguished particle spends in each of the

two outermost wells.
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Fig. 6. Same as Fig. 5 but for V (·) given by the double-well potential (6.3).
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Fig. 7. Same as Fig. 5 but for V (·) given by the triple-well potential (6.4).
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More insight is gained by examining in Fig. 8 the long-term behaviour of a single

path Q(t) of the limiting SDE (4.2). This graph shows that the particle remains in

each of the main potential wells during characteristic times of the order of many

hundreds of time units. Thus, an averaging time of T = 50000, as was used above,

may not be sufficient for obtaining equilibrium values. The empirical distribution

and autocovariance function for the limiting SDE are shown in Figs. 9 and 10

for averaging times of T = 10000 and T = 50000. In both cases there is a large

discrepancy with the equilibrium curve. Interestingly, then, it appears that the large

ODE systems with random data equilibrate considerably faster than the SDE itself

when n is not too large. However, we expect that as n→∞ the equilibration time

will approach that of the SDE.
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Fig. 8. A sample path Q(t) solving the stochastic differential system (4.2) for the triple-well
potential (6.4).
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Fig. 9. Open circles: empirical distribution for a single trajectory Q(t) is the stochastic system
(4.2) for a sampling time of T = 10000 (left) and T = 50000 (right). Solid line: the equilibrium
Boltzmann measure.



October 29, 2002 18:54 WSPC/168-SD 00057

28 R. Kupferman et al.

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

1

1.5

2

2.5

3

Autocorrelation

Limiting SDE, T=10000

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

1

1.5

2

2.5

3

Autocorrelation

Limiting SDE, T=50000

Fig. 10. Empirical autocovariance function for a single trajectory Q(t) is the stochastic system
(4.2) for a sampling time of T = 10000 (left) and T = 50000 (right).

6.3. Summary of long-time behaviour

The primary conclusion of these numerical results is that the long-time behaviour

of certain large systems of ordinary differential equations with random data can be

understood in terms of ergodic SDEs which approximate projections of the ODEs

into low dimensional subspaces. This is manifest in the behaviour of both empirical

distributions and autocovariance functions.

However, the observation does need to be qualified somewhat. There is a del-

icate interplay between the sampling time and the size of n. Our analytical and

numerical results show that, for a fixed n, the empirical autocovariance functions

for our processes do not decay to zero in the long-time limit, but contain persis-

tent oscillations. For the case of the approximate OU process, this is due to the

sample trajectories being quasiperiodic. We conjecture that we observe the same

for the Hamiltonian system because it inherits some of the recurrence properties

of its quasiperiodic forcing. (The model problem in [39] suffers considerably less

from this problem, presumably because of the strong nonlinear effects present in

that model.) Furthermore the equilibration times of the large Hamiltonian system

can differ substantially from those of the corresponding SDE, even for quite large

values of n; this is manifest in the triple-well problem where the correlation time

for the SDE is particularly large.

Nonetheless the numerical experiments with the large Hamiltonian system sug-

gest attempting to prove generalizations of theorems analogous to those proven

in Sec. 5 for the approximate OU process. Different techniques, however, will be

required.
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