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a b s t r a c t

Brownian simulation methods have become a popular approach in computational rheology with the
introduction of the CONNFFESSIT algorithm and the method of Brownian configuration fields in the 1990s.
Jourdain et al. [B. Jourdain, C.L. Bris, T. Lelievre, On a variance reduction technique for micro–macro simula-
tions of polymeric fluids, J. Non-Newton. Fluid Mech. 122 (2004) 91–106] pointed out that both methods
can be viewed as variants that differ in the spatial correlation of the noise, which can be viewed as a
computational parameter for statistical error minimization. We formulate an optimization problem of
variance minimization with respect to the choice of noise correlation. Our analysis takes place in an
infinite-dimensional function space. We solve the optimization problem analytically for the shear flow of
a Hookean dumbbell model at steady state. Interestingly, we find that spatially uncorrelated noise, i.e.,
CONNFFESSIT minimizes the statistical error, although the precise meaning of this statement can only be
interpreted as a limit of finite-dimensional approximations.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Brownian simulation methods were introduced in computa-
tional rheology in the early 1990s with the CONNFFESSIT method
of Öttinger and co-workers [2], which is based on a mixed
micro–macro formulation of the governing equations. The idea was
to simulate an ensemble of particles (which represent the polymers
in some coarse-grained sense), and to evaluate the stress tensor
by averaging over contributions from particles in the vicinity of
the point of interest. The use of Brownian simulations in compu-
tational rheology has been broadened later with the introduction
of the method of Brownian configuration fields (BCF) [3], where
instead of tracking individual “polymers”, the local conformation of
the polymers is represented by a finite collection of spatially con-
tinuous “conformation fields”. These fields satisfy stochastic partial
differential equations driven by mutually independent, spatially
uniform Brownian noise. The stress is obtained by a suitable aver-
aging over this finite collection of configuration fields. It has later
been pointed out [1] that the CONNFFESSIT and the BCF methods
can be viewed as variants of a larger family of stochastic approx-
imation methods: they differ in that the first uses a Lagrangian
formulation whereas the second uses a Eulerian formulation; more
importantly, they differ in the spatial correlation of the Brownian
noise. In fact, these two methods correspond to the extreme choices
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of spatially uniform noise (BCF) versus spatially uncorrelated noise
(CONNFFESSIT). This observation has led to a more general formu-
lation of stochastic simulations that are driven by Brownian noise
with arbitrary spatial correlation. This correlation does not affect
the “consistency” of the method, however it affects the variance of
the solution, hence the statistical error.

A notable difference between CONNFFESSIT and BCF is that the
latter yields solutions that are significantly smoother in space; this
is not surprising, given the structure of the noise. This has at first
led to a speculation that BCF is a “variance reduced” variant of CON-
NFFESSIT [4]. It was later realized, however, that smoothness does
not necessarily imply a small variance. In fact, while in certain situ-
ations BCF yields velocity fields with a variance significantly lower
than that obtained from CONNFFESSIT, the variance of the stress
is much larger with BCF. Thus, the measure of variance reduction
depends on how the statistical errors in the stress and in the velocity
are weighted.

The question of how to use the freedom in the spatial corre-
lation of the noise in order to minimize the statistical error was
first addressed by Jourdain et al. in [1]. The optimization problem
was formulated on a discrete level, for a specific finite element dis-
cretization. As an application, the optimal noise for a simple shear
flow of a Hookean dumbbell fluid was computed. In [5] this question
was addressed in a continuous framework, leading to an infinite-
dimensional optimization problem, which was analyzed and solved
in systems for which closed-form constitutive equations can be
derived.

In this paper we first review the main results stated in [5]. Our
presentation of the infinite-dimensional optimization problem is

0377-0257/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
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less technical than in [5]. In particular, we show how to apply it
within the viscoelastic context. We calculate analytically the opti-
mal noise correlation for the planar shear flow in the continuous
setting. Interestingly, we find that the optimal choice is that of spa-
tially uncorrelated noise, i.e., CONNFFESSIT. Ironically, we also show
that BCF is the worst possible choice in terms of stress variance,
thus totally rebutting the speculation in [4]. Even though the planar
shear flow problem is simple, and somewhat degenerate compared
to typical systems of interest, its solution is instructive, showing
in particular the competition between variance minimization of
velocity and stress.

The structure of this paper is as follows: In Section 2 we present
the class of problems under consideration, namely, micro–macro
models of incompressible polymeric fluids. In Sections 3 and 4 we
formulate the variance minimization problem for Brownian simula-
tion methods. In Section 5 we explain how the infinite-dimensional
optimization problem can be approximated by sequences of finite-
dimensional semi-definite programming problems. In Section 6 we
study in detail the variance minimization problem for planar shear
flow of a Hookean dumbbell fluid. A discussion follows in Section
7.

2. Coupled Stokes–Fokker-Planck systems

The equations that govern the flow of an incompressible fluid in
the creeping flow regime are the Stokes system

−∇p+ �s�u + div � + f = 0,
div u = 0,

(2.1)

where u = u(x, t) is the flow field, generally a three-dimensional
vector field in a domain� ⊆ R3, p = p(x, t) is the pressure, �s is the
viscosity, and f = f (x, t) is an external force field. The tensor field
� = �(x, t) is the polymeric extra-stress. In models that are derived
from kinetic considerations, the stress field � is a local average over
an ensemble of polymeric conformations. In a simple dumbbell
model, for example, the conformation of a polymer is character-
ized by an end-to-end vector q. If (q, x, t) denotes the probability
density function (pdf) of finding a polymer in location x and time t
in a conformation q, then the stress is an ensemble average of the
form

�(x, t) =
∫
R3

[q ⊗ F(q)] (q, x, t) dq, (2.2)

where F(q) is the force exerted by a polymer in conformation q. The
pdf  is governed by a Smoluchowski equation [6],

∂ 

∂t
+ (u · ∇) = −∇q · {[(∇u)Tq − F(q)] } + 1

2
�q , (2.3)

where ∇ denotes the gradient with respect to the spatial variable
x, and ∇q, �q denote the gradient and the Laplacian with respect
to the conformation variable q. The coupled Stokes–Smoluchowski
system (2.1)–(2.3) has to be supplemented by suitable initial and
boundary conditions.

An observation that has been, to some extent, at the heart of the
BCF method is that the deterministic Smoluchowski equation (2.3),
which is derived from a random kinetic model, can be represented
by a stochastic formulation. The somewhat non-trivial aspect of
this alternative representation is that it involves stochastic partial
differential equations (SPDEs) [7], which are much more technically
involved than stochastic ordinary differential equations (SDEs).

Specifically, we introduce a function-valued stochastic process
q(x, t). For every time t, q(x, t) is a random function of the spatial
coordinates; we require this function to belong to the set of square
integrable function L2. The stochastic process q(x, t) is governed by

the SPDE

dq

dt
+ (u · ∇)q = (∇u)Tq − F(q) + dW

dt
, (2.4)

where W (x, t) is a three-dimensional L2-valued Brownian motion,
standard in the sense that for every x,

E[dW (x, t) ⊗ dW (x, t)] = I dt, (2.5)

where I is the identity matrix.
It can be shown (see [5] for details) that the Smoluchowski equa-

tion (2.3) governs the pdf that q(x, t) = q. In this stochastic setting
the stress is expressed as an expectation

�(x, t) = E[q(x, t) ⊗ F(q(x, t))], (2.6)

where the averaging is with respect to both the Brownian motion
and the initial data, q0(x) = q(x,0). Thus, the deterministic system
(2.1)–(2.3) is replaced by the stochastic system (2.1), (2.4), (2.6).

Comments:

(1) A standard reference to the theory of function-valued stochastic
processes and SPDEs is the book by Da Prato and Zabczyk [7].

(2) The transition between the deterministic and stochastic sys-
tems is relatively straightforward. In principle it requires the
use of an infinite-dimensional version of Itô’s formula, although
in practice, one may use the standard Itô formula at any fixed
value of space variable [5].

(3) The restriction (2.5) that the Brownian motion be standard is
a point-wise condition, and does not uniquely determine the
distribution of W (x, t). A function-valued Brownian motion is
characterized by a spatial auto-correlation function,

c(x,y) dt = E[dW (x, t) ⊗ dW (y, t)]. (2.7)

The SPDE literature usually uses instead the notion of a cor-
relation operator, but there is a simple equivalence between
correlation operators and correlation functions. The remarkable
fact is that the replacement of the deterministic system by the
stochastic system holds for any choice of correlation function,
provided that it satisfies (2.5), i.e., that c(x, x) = I. That is, the
constraints only involve the diagonal entries of the correlation
function. This freedom in the choice of spatial correlation was
first pointed out in [1].

(4) The non-uniqueness in the choice of spatial correlation can also
be explained as follows: an SPDE of the form (2.4) induces an
evolution on distributions in function space (e.g., it determines
the probability that the function q(·, t), at fixed time t, resides in
any measurable set of functions). In contrast, the pdf  (q, x, t)
is, for every x and t, a distribution over a real-valued random
variable. The distribution  is a marginal of the distribution in
function space. The freedom in the choice of spatial correlation
results from the fact that marginals do not uniquely determine
multivariate distributions.

3. Brownian simulation methods

A practical approach for solving the stochastic system (2.1), (2.4),
(2.6) is by Brownian simulations. The SPDE (2.4) for q(x, t) is sim-
ulated by a collection of n realizations, Q i(x, t), i = 1, . . . , n, which
are driven by i.i.d Brownian motions W i(x, t). The processes Q i(x, t)
approximate n independent realizations of q(x, t). The stress, which
is an expectation over all such trajectories, is approximated by an
empirical mean over the random fields Q i(x, t). The solutions u(x, t)
and �(x, t) are accordingly approximated by stochastic processes
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U(x, t) and T(x, t). The resulting stochastic scheme is

−∇P + �s�U + div T + f = 0,
div U = 0,

T = 1
n

n∑
i=1

Q i ⊗ F(Q i),

dQ i

dt
+ (U · ∇)Q i = (∇U)TQ i − F(Q i) + dW i

dt
,

(3.1)

where W i(x, t), i = 1, . . . , n are i.i.d Brownian motions with spa-
tial correlation function c(x,y), and Q i(·,0) are i.i.d with the same
distribution as q0.

As explained above, the consistency of the method is unaffected
by the spatial correlation, c(x,y). An additional freedom is the dis-
tribution of the initial state q0, which should be consistent with the
initial stress data,

E[q0(x) ⊗ F(q0(x))] = �(x,0). (3.2)

Here again, the restriction is on a marginal of the distribution of the
initial state in the space of L2-functions.

Different choices of correlation functions result in differ-
ent Brownian simulation schemes. A spatially uniform Brownian
motion, c(x,y) ≡ I, corresponds to the BCF method. The CONNFFES-
SIT method corresponds to a spatially uncorrelated (standard)
Brownian motion. As pointed out in [5], such Brownian motion
does not exist, in the sense that there does not exist an L2 cor-
relation function that corresponds to spatially uncorrelated noise.
The CONNFFESSIT method can be defined as a limit of a sequence
of correlation functions, ck(x, y), that converges to zero in L2 as k→
∞. Such sequence can be, for example, a sequence of piecewise-
constant functions equal to zero everywhere except on a sequence
of decreasing patches that include the diagonal, in which ck(x,y) =
I. It should be emphasized that spatially uncorrelated noise (ı-
correlated) can be rigorously defined as an instance of so-called
cylindrical Wiener processes [7]. Such a process is however non-
standard.

We emphasize that we only address here the approximation
of the probability space by a finite number of realizations. The
PDE–SPDE system (3.1) also requires spatial and temporal dis-
cretizations. In particular, choices of Eulerian versus Lagrangian
approximations lead to very different simulation methods.

The statistical error of the approximation scheme is defined as
n times the sum of variances,

e(t) = nE[‖�u − E(�u)‖2
2 + ‖�� − E(��)‖2

2], (3.3)

where �u(x, t) = U(x, t) − u(x, t) and ��(x, t) = T(x, t) − �(x, t),
and ‖ · ‖2 denotes the L2-norm; for a matrix-valued function M(x),

‖M‖2
2 =
∫
�

Tr[M(x)TM(x)] dx.

The reason we multiply the variance by n is to have a measure of the
statistical error that converges to a constant as n→ ∞. The choice
of statistical error is not unique. In particular, one may assign dif-
ferent weights to the stress and velocity variances. In particular,
our presentation is made in dimensionless quantities. In a dimen-
sional setting, the statistical errors associated with the velocity and
the stress should be made comparable either by defining them as
quantities of same dimensions, or, as dimensionless quantities, e.g.,
relative errors. The initial confusion about the reduction of variance
by the BCF method is due precisely to the fact that BCF reduces
the velocity variance on the account of an increase in the stress
variance.

To rigorously define an optimization problem of statistical error
minimization, one needs to identify the set of feasible correla-

tion functions for which the Brownian simulations are defined, and
obtain an explicit expression for the right-hand side of (3.3) in terms
of the correlation function c(x,y), which is taken from the feasible
set (more generally, one can also consider different choices of initial
data distributions [5]). This is done in the next section.

4. The optimization problem

The main difficulties in expressing the statistical error (3.3) in
terms of the spatial correlation function are: (i) the governing equa-
tions for the statistical error cannot be brought to closed-form; (ii)
the n realizations Q i are not independent, hence the variance of the
difference T − � is not a summation over single-field contributions.
To get more insight into the structure of the problem, we examine
a particular example that is tractable, namely, the Hookean dumb-
bell model, where the force exerted by the polymers is linear in the
end-to-end vector, F(q) = kq. In this case, a closed-form PDE can be
derived for the stress by multiplying the Smoluchowski equation
(2.3) by q ⊗ kq and integrating over the configuration q,

∂�

∂t
+ (u · ∇)� = B(u,�) − 2k� + kI, (4.1)

where B(u,�) = (∇u)T� + �(∇u). The initial conditions for (4.1) are
determined by the initial conditions for the Smoluchowski equa-
tion. Applying Itô’s formula to the stochastic approximation of the
stress, T , and substituting the equations for Q i results in an SPDE,

dT

dt
+ (U · ∇)T = B(U,T) − 2kT + kI + 2k

n

n∑
i=1

Q i ⊗
dW i

dt
, (4.2)

with initial conditions determined by (2.4). Eq. (4.2) differs from
(4.1) by a multiplicative noise term.

Since we expect the statistical error to be dominated by the vari-
ance, i.e., to scale like 1/

√
n, we introduce the normalized errors,

ıu(x, t) = √
n(U(x, t) − u(x, t)),

ı�(x, t) = √
n(T(x, t) − �(x, t)).

The evolution of ıu is governed by the Stokes system,

−∇p+ �s�ıu + div ı� = 0,
div ıu = 0.

(4.3)

Subtracting (4.1) from (4.2) and multiplying by
√
n yields an evolu-

tion equation for ı� ,

dı�
dt

+ (u · ∇)ı� + (ıu · ∇)� = B(u, ı�) + B(ıu,�) − 2kı�

+ 2k√
n

n∑
i=1

Q i ⊗
dW i

dt
+ 1√

n
(ıu · ∇)ı� + 1√

n
B(ıu, ı�). (4.4)

The equations for Q i take the form

dQ i

dt
+ (u · ∇)Q i = (∇u)TQ i − kQ i +

dW i

dt
+ 1√

n
(ıu · ∇)Q i

+ 1√
n

(∇ıu)TQ i. (4.5)

For large n, the O(1/
√
n) terms can be neglected, so that to leading

order,

dı�
dt

+ (u · ∇)ı� + (ıu · ∇)�

= B(u, ı�) + B(ıu,�) − 2kı� + 2k√
n

n∑
i=1

Q i ⊗
dW i

dt
, (4.6)
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and

dQ i

dt
+ (u · ∇)Q i = ((∇u)T − k)Q i +

dW i

dt
. (4.7)

If the exact solutions u and � are given, then the coupled system
(4.3), (4.6), (4.7), which governs the evolution of the normalized
errors, is a closed system for Q i, ıu and ı� .

Note that after the truncation of the O(1/
√
n)terms, the Q i(x, t)

that are governed by (4.7) are independent; the weak coupling
induced by the non-truncated dynamics (4.5) only affects higher
order corrections. Furthermore, we observe that (4.6) is a non-
homogenous linear equation for ı� , where the inhomogeneous
term is a sum of independent noise terms. Since we are only inter-
ested in estimating the variance of ı� , we can replace the sum of
independent noise terms by a single noise term that has the same
first and second moments. Re-introducing q(x, t) satisfying (2.4),
we may therefore perform the substitution

2k√
n

n∑
i=1

Q i ⊗
dW i

dt
→ 2kq ⊗ dW

dt
. (4.8)

The analysis of Eqs. (2.4), (4.3) and (4.6) with the substitution (4.8),
is somewhat cumbersome due to the multi-component nature of
the problem. To simplify the derivations, we focus in the remain-
ing of this section on the stress variations, ı�(x, t), using the fact
that the velocity variations, ıu(x, t), are expressible, through the
Stokes system (4.3) as a linear function of the stress variations. We
will revert to a separate analysis of velocity and stress variations
in Section 6 where we solve the planar shear flow for a Hookean
dumbbell model.

Thus, we rewrite the error dynamics in the more abstract (but
compact) form,

dı�
dt

= Aı� + 2kq ⊗ dW

dt
,

dq

dt
= Bq + dW

dt
,

(4.9)

where A and B are linear (differential) operators, and the initial
conditions are ı�(x,0) and q(x,0) = q0(x). The statistical error is

e(t) = E‖ı� − E(ı�)‖2
2, (4.10)

where the omission of the n-factor follows from the scaling of ı� .
System (4.9) is linear, hence the solution can be expressed in

terms of the solution operators (or propagators) eAt and eBt . Specif-
ically, q(x, t) is given by

q(x, t) = eBtq0(x) +
∫ t

0

eB(t−s) dW (x, s),

whereas ı�(x, t) is given by

ı�(x, t) = eAtı�(x,0) + 2k

∫ t

0

eA(t−s)(q(x, s) ⊗ dW (x, s)).

It should be emphasized that the notation eB(t−s) dW (x, s), for
example, means that the spatial operator eB(t−s) operates on the
Brownian increment dW (·, s), and then evaluated at the point x.

In many situations of interest, the operators A and B are dissipa-
tive. Then the terms eBtq0(x) and eAtı�(x,0) tend to zero as t → ∞,
and for large t the solution takes the form

ı�(x, t) = 2k

∫ t

0

∫ s

0

eA(t−s)(eB(s−r)dW (x, r) ⊗ dW (x, s)).

Indeed, the long-time statistical error is independent of the initial
data in dissipative systems.

At this point, it is useful to represent the propagators eAt and eBt

by linear (possibly generalized) kernels, namely, for every matrix-
valued function M(x) and vector-valued function f (x),

(eAtM)ij(x) =
∫
�

aijkl(x,y, t)Mkl(y) dy, i, j = 1,2,3,

(eBtf )i(x) =
∫
�

bik(x,y, t)fk(y) dy, i = 1,2,3,

where we use the Einstein convention that repeated indices imply
a summation. Then, the stress variation takes the form

[ı�(x, t)]ij = 2k

∫ t

0

∫ s

0

∫ ∫
�

aijkl(x,y, t − s)bkm(y, z, s− r)

×dWl(y, s) dWm(z, r) dy dz.

Squaring, taking expectations using the fact that

E[dWi(x, t1) dWj(y, t2)] = ı(t1 − t2)cij(x,y) dt,

then integrating over x and summing over i, j, we obtain an
expression for the mean statistical error, which is quadratic in the
correlation function c,

e(t) =
∫ ∫ ∫ ∫

�

mlqmn(y,y′, z, z′, t)clq(y,y′)

× cmn(z, z′) dy dy′ dz dz′, (4.11)

where

mlqmn(y,y′, z, z′, t)

= 4k2
∑
i,j

∫ t

0

∫ s

0

∫
�

aijkl(x,y, t − s)aijpq(x,y′, t − s)bkm

× (y, z, s− r)bpn(y′, z′, s− r) dx dr ds.

To rigorously define the optimization problem, we need to identify
the set of admissible spatial correlation functions c(x,y). This is
established by the following statement [5]:

An L2 function c(x,y) is a spatial correlation function of a random
L2 function if and only if there exists an L2 function r(x,y) such that

c(x,y) =
∫
r(x, z)r(y, z) dz (4.12)

for almost every x,y.
In other words, the set of correlation functions c(x,y) can be

indexed by the set of “square roots” r(x,y). Thus, the set of admis-
sible correlation functions c(x,y) is

C = {c(x,y) =
∫
r(x, z) ⊗ r(y, z) dz : r ∈ L2, c(x, x) = I}.

The optimization problem is

Find c ∈ C such that e(t), given by (4.11), is minimal. (4.13)

Comments:

(1) An alternative description of the spatial correlation of the ran-
dom function W (x, t) is by the correlation operator C , defined
by its action on vector-valued functions,

[C(f )(x)]i =
∫
cij(x,y)fj(y) dy, i = 1,2,3.

The statistical error then takes the more compact form

e(t) = Tr[M(t)(C ⊗ C)], (4.14)
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where M(t) is an operators acting on L2 ⊗ L2 defined by

[M(t)(f ⊗ g)(x,y)]ij=
∫ ∫

�

mijkl(x,y, x′,y′, t)f k(x
′)g l(y

′)dx′dy′.

(2) Condition (4.12) which defines the feasible set for which the
Brownian simulations are defined, is equivalent to the require-
ment that the correlation operator C is symmetric positive
semi-definite and has finite trace. This condition is necessary
for the right-hand side of (4.14) to remain finite [7].

(3) The above optimization problem does not necessarily have a
minimizer because the set of admissible correlation functions
is neither closed nor bounded. In such case, we need to look for
sequences ck(x,y) of correlations functions such that the cor-
responding sequence of errors ek(t) converges to the infimum,

einf(t) = inf{e(t) : c ∈ CW }. (4.15)

It is only in this context that CONNFFESSIT, for example, can
be claimed to be optimal: the sequence of Brownian correla-
tions, ck(x,y), approaches a function that is zero everywhere,
except for the diagonal where it must equal one. This function is
equivalent (in L2) to zero, which is not an admissible correlation
function.

(4) The statistical error can be similarly developed in cases where
A and B are not dissipative, resulting in a sum of two terms,

e(t) = e1(t) + e2(t),

where e2(t) is given by (4.11) and e1(t) depends on the distri-
bution of q0(x).

5. Finite-dimensional approximation

The optimization problem (4.13) cannot be solved analytically,
except for very simple examples (see [5]). In general, it must be
solved approximately. This can be done by discretizing the domain
�and restricting the set of admissible correlation functions to func-
tions that are piecewise constant with respect to the discretization.
A general convergence theorem was proved in [5] asserting that as
we refine the discretization, the sequence of optimizers yields a
sequence of mean statistical errors that converges to the optimal
statistical error einf.

We demonstrate the procedure for the case where � is a
bounded one-dimensional interval [a, b] and likewise, q and W are
scalar fields. Using an N-point mesh,

xk = a+ (b− a)k − (1/2)
N

, k = 1, . . . , N,

we approximate the integral (4.11)(without the indices, since we
consider a one-dimensional system) by quadrature,

e(t) = 1
N4

N∑
l,q,m,n=1

m(xl, xq, xm, xn, t)c(xl, xq)c(xm, xn).

Defining the N-by-N and N2-by- N2 matrices, C andM(t),

Clq = 1
N
c(xl, xq), and MlN+m,qN+n(t) = 1

N2
m(t, xl, xq, xm, xn),

the statistical error takes the form,

e(t) = Tr[M(t)(C ⊗ C)], (5.1)

where ⊗ denotes the Kronecker product for matrices. The matrix
C is a symmetric positive semi-definite (spd) matrix, satisfying a

constraint which follows from (2.5),

Cii =
1
N
. (5.2)

The infinite-dimensional optimization problem (4.13) is therefore
approximated by the finite-dimensional minimization problem:

Find an spd matrixC satisfying (5.2) that minimizes (5.1). (5.3)

As stated above, the sequence of minimal errors converges to the
lower bound of the error einf as N → ∞. This does not imply,
however, the convergence of the sequence of finite-dimensional
optimizers.

The standard approach for solving finite-dimensional opti-
mization problems of this form is by semi-definite programming
algorithms [8]. These algorithms apply to convex optimization
problems defined on the cone of symmetric positive semi-definite
matrices, subject to affine constraints.

6. Planar shear flow of Hookean dumbbells

In this section we analyze the Hookean dumbbell model for the
planar shear flow considered by Jourdain et al. in [1]. In this model,
the momentum and mass conservation equations reduce to a scalar
heat equation,

∂u

∂t
= ∂2u

∂x2
+ ∂�

∂x
, (6.1)

where u(x, t) is the axial component of the velocity and �(x, t) is
the shear component of the conformation tensor, which is given by
an expectation

�(x, t) = E[q(x, t)r(t)], (6.2)

where the function-valued and real-valued stochastic processes
q(x, t) and r(t) satisfy a mixed SPDE–SDE system,

dq
dt

= ∂u

∂x
r − q

2
+ dW

dt
,

dr
dt

= − r
2

+ dV
dt
.

(6.3)

Here W(x, t) and V(t) are independent function-valued and real-
valued Brownian motions, and we denote by c(x, y) the spatial
correlation function of W. Note that c(x, y) is now real-valued
rather than matrix-valued. The domain is x∈ [0,1]. The boundary
conditions are u(0, t) = 1 and u(1, t) = 0. There are no boundary
conditions for q(x, t); see Fig. 1 for a sketch of the geometry.

Introducing an auxiliary real-valued function s(t) = E[r2(t)],
which is a normal component of the conformation tensor, we obtain

Fig. 1. Geometry of planar shear flow.
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a closed-form system for �(x, t), s(t),

∂�

∂t
= −� + ∂u

∂x
s,

ds
dt

= −s+ 1.
(6.4)

The “macroscopic” system (6.1), (6.4) governs the evolution of the
shear flow. For long times, the solution tends to the steady-state

u(x) = 1 − x, �(x) = −1, s = 1.

The Brownian simulation scheme for the coupled system (6.1)–(6.3)
is

dU
dt

= ∂2U

∂x2
+ ∂T

∂x
,

T(x, t) = 1
n

n∑
i=1

Qi(x, t)Ri(t),
(6.5)

where the sequences of stochastic processes Qi(x, t), Ri(t) are
approximations to independent realizations of the processes q(x, t)
and r(t); they are governed by

dQi
dt

= ∂U

∂x
Ri −

Qi
2

+ dWi

dt
,

dRi
dt

= −Ri
2

+ dVi
dt
, i = 1, . . . , n,

(6.6)

whereWi(x, t) and Vi(t) are sets of mutually independent function-
valued and real-valued Brownian motions, such that the spatial
correlation function of each Wi(x, t) is c(x, y). The boundary con-
ditions are U(0, t) = 1, U(1, t) = 0. Since we are going to focus on
long-time behavior, we may well assume that the deterministic
system (6.1), (6.4) is initialized at steady state,

u(x,0) = 1 − x, �(x,0) = −1, s(0) = 1.

For the linearization to be a reasonable approximation for short
time as well, we initialize the stochastic system (6.5), (6.6) such
that

U(x,0) = 1 − x, E[Qi(x,0)Ri] = −1, E[R2
i (0)] = 1.

These choices are immaterial for the study of long-time behavior.
System (6.5)–(6.6) has a slightly different form than system (3.1).

We therefore adapt the error analysis to the present case. We intro-
duce the random function,

S(t) = 1
n

n∑
i=1

R2
i (t),

which is the stochastic approximation to s(t). The pair T(x, t), S(t)
is governed by the (non-closed) stochastic system

dT
dt

= −T + ∂U

∂x
S + 1

n

n∑
i=1

Ri
dWi

dt
+ 1
n

n∑
i=1

Qi
dVi
dt
,

dS
dt

= −S + 1 + 2
n

n∑
i=1

Ri
dVi
dt
.

As in Section 4 we define normalized errors,

ıu(x, t) = √
n(U(x, t) − u(x, t)),

ı�(x, t) = √
n (T(x, t) − �(x, t)),

ıs(t) = √
n (S(t) − s(t)).

The linearized equations for the normalized errors are

dıu
dt

= ∂2ıu
∂x2

+ ∂ı�
∂x

,

dı�
dt

= s ∂ıu
∂x

− ı� + ∂u

∂x
ıs + 1√

n

n∑
i=1

Ri
dWi

dt
+ 1√

n

n∑
i=1

Qi
dVi
dt

,

dıs
dt

= −ıs + 2√
n

n∑
i=1

Ri
dVi
dt
,

(6.7)

and the linearized equations for Qi(x, t) and Ri(t) are

dQi
dt

= ∂u

∂x
Ri −

Qi
2

+ dWi

dt
,

dRi
dt

= −Ri
2

+ dVi
dt
, i = 1, . . . , n.

(6.8)

As in Section 4 we observe that the Qi(x, t), Ri(t) governed by (6.8)
are independent, hence, applying the same considerations as in
(4.8), the system (6.7) can be written in the form

dıu
dt

= ∂2ıu
∂x2

+ ∂ı�
∂x

,

dı�
dt

= s ∂ıu
∂x

− ı� + ∂u

∂x
ıs + r dW

dt
+ qdV

dt
,

dıs
dt

= −ıs + 2r
dV
dt
,

(6.9)

where q(x, t) and r(t) are given by (6.3).
Often, one would like to evaluate the statistical errors in the

velocity and in the shear-stress separately,

eu(t) = E‖ıu(·, t)‖2
2, e�(t) = E‖ı�(·, t)‖2

2. (6.10)

Since s(t) was introduced as an auxiliary variable we do not account
for the error associated with its approximation. The total statisti-
cal error is arbitrarily defined by setting equal weights for the two
contributions,

e(t) = eu(t) + e�(t). (6.11)

System (6.9) is an inhomogeneous linear system, whose solution is(
ıu(x, t)
ı�(x, t)
ıs(t)

)
= eAt

(
ıu(x,0)
ı�(x,0)
ıs(0)

)

+
∫ t

0

eA(t−t′)

(
0

r(t′) dW(x, t′) + q(x, t′) dV(t′)
2r(t′) dV(t′)

)
,

(6.12)

where

A =

⎛
⎜⎜⎜⎜⎝
∂2

∂x2

∂

∂x
0

∂

∂x
−1 −1

0 0 −1

⎞
⎟⎟⎟⎟⎠ (6.13)

is an operator on the Hilbert space L2[0,1] × L2[0,1] × R. The
second derivative is endowed with vanishing Dirichlet boundary
conditions. The operator A is dissipative hence the first term, which
depends on the initial data can be neglected for long times. Further-
more, it is easy to verify that

eAt =

⎛
⎜⎝
B11(t) B12(t) 0

B21(t) B22(t) −te−t

0 0 e−t

⎞
⎟⎠ ,
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where

(
B11(t) B12(t)

B21(t) B22(t)

)
= exp

⎧⎪⎨
⎪⎩
⎛
⎜⎝
∂2

∂x2

∂

∂x

∂

∂x
−1

t

⎞
⎟⎠
⎫⎪⎬
⎪⎭ .

Denoting the (possibly singular) kernels of the Bij(t) by bij(x, y, t),
the long-time dependence of the normalized errors ıu, ı� is

ıu(x, t) =
∫ t

0

∫ 1

0

b12(x, y, t − t′) dn(y, t′) dy,

ı�(x, t)=
∫ t

0

∫ 1

0

b22(x, y, t − t′) dn(y, t′) dy

−
∫ t

0

(t − t′)e−(t−t′) dm(t′),

(6.14)

where

dn(x, t) = r(t) dW(x, t) + q(x, t) dV(t), dm(t) = 2r(t) dV(t).

Squaring the normalized errors and averaging we obtain

E[ıu(x, t)]2

=
∫ t

0

∫ ∫ 1

0

b12(x, y, t−t′)b12(x, z, t−t′)E[dn(y, t′) dn(z, t′)] dydz,

E[ı�(x, t)]
2

=
∫ t

0

∫ ∫ 1

0

b22(x, y, t − t′)b22(x, z, t − t′)E[dn(y, t′) dn(z, t′)] dydz

−2

∫ t

0

∫ 1

0

b22(x, y, t − t′)(t − t′)e−(t−t′)
E[dn(y, t′) dm(t′)] dy

+
∫ t

0

(t − t′)2e−2(t−t′)
E[dm(t′) dm(t′)].

(6.15)

The independence of W(x, t) and V(t), and the spatial correlation
function ofW(x, y) imply

E[dW(y, t) dW(z, t)] = c(y, z) dt,

E[dW(y, t) dV(t)] = 0,

E[dV(t) dV(t)] = dt,

(6.16)

from which we obtain

E[dn(y, t) dn(z, t)] = (E[r(t)2]c(y, z) + E[q(y, t)q(z, t)]) dt,

E[dn(y, t) dm(t)] = 2E[q(y, t)r(t)] dt,

E[dm(t) dm(t)] = 4E[r2(t)] dt.

The correlation functions of r(t) and q(x, t) are obtained by inte-
grating the stochastic system (6.3)

r(t) = r(0)e−t/2 +
∫ t

0

e−(t−t′)/2 dV(t′),

q(x, t)=q(x,0) e−t/2 +
∫ t

0

e−(t−t′)/2dW(x, t′) −
∫ t

0

e−(t−t′)/2r(t′) dt′.

At steady state

E[r(t)2] = 1, E[r(t)q(x, t)] = −1, E[q(x, t)q(y, t)] = c(x, y) + 2.

Substituting these correlations into (6.15) and integrating over x,
we obtain as t → ∞,

eu = 2

∫ ∞

0

∫ ∫ ∫ 1

0

b12(x, y, t)b12(x, z, t)(1 + c(y, z)) dt dxdydz,

e�=2

∫ ∞

0

∫ ∫ ∫ 1

0

b22(x, y, t)b22(x, z, t)(1 + c(y, z)) dt dxdydz

+4

∫ ∞

0

∫ ∫ 1

0

b22(x, y, t)te−t dt dxdy

+4

∫ ∞

0

∫ 1

0

t2e−2t dt dx.

(6.17)

Note that these mean statistical errors can be partitioned into terms
that depend on the correlation c(x, y) and terms that do not depend
on the correlation. The latter, of course, do not affect the optimiza-
tion problem. Also, the statistical error is an affine function of the
correlation function rather than quadratic, as obtained in Section
4. Hence, an optimal correlation (if exists) is guaranteed to be on
the boundary of the domain C.

The three-dimensional linear space of constant functions is
invariant under the operator A, and the restriction of eAt to con-
stant functions can be calculated analytically. It is easy to see that
in this case B12(t) = 0 and B22(t) = e−t , from which we deduce that

∫ 1

0

b12(x, y, t) dy = 0 and

∫ 1

0

b22(x, y, t) dy = e−t .

Thus the terms in (6.17) that do not depend on the correlation
function can be calculated, yielding

eu=2

∫ ∞

0

∫ ∫ ∫ 1

0

b12(x, y, t)b12(x, z, t)c(y, z) dt dxdydz,

e�=3 + 2

∫ ∞

0

∫ ∫ ∫ 1

0

b22(x, y, t)b22(x, z, t)c(y, z) dt dxdydz.

(6.18)

Eq. (6.18) can be further developed by formally expanding the ker-
nel functions b12(x, y, t) and b22(x, y, t) in trigonometric series of
the form

b12(x, y, t) =
∞∑
k=1

B12(k, t)ek(x)fk(y),

b22(x, y, t) =
∞∑
k=0

B22(k, t)ek(x)ek(y),

(6.19)

where

ek(x) =
√

2 sin k�x, k > 0,

fk(x) =
√

2 cos k�x, k > 0, f0(x) = 1.

The coefficients B12(k, t) and B22(k, t) are entries of the matrix-
valued function

B(k, t) = exp

{(
−k2 −k
k −1

)
t

}
. (6.20)

It can be verified that for large k,

B12(k, t) ∼ k−1 and B22(k, t) ∼ e−2t + O(k−2),

which implies that
∑∞

k=1B12(k, t)ek(x)fk(y) is convergent in L2,
while the series

∑∞
k=0B22(k, t)fk(x)fk(y) is convergent in the sense

of distributions. Substituting (6.19) and (6.20) into (6.18), inverting
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the order of the temporal and spatial integrations, and using the
fact that∫ ∞

0

B2
12(k, t) dt = 1

4�2k2(1 + �2k2)
,

∫ ∞

0

B2
22(k, t) dt = 2 + �2k2

4 + 4�2k2
,

we obtain the final expressions

eu = 2
∞∑
k=1

ck
4�2k2(1 + �2k2)

,

e� = 3
1
2

+ 2
∞∑
k=0

ck
4 + 4�2k2

,

(6.21)

where

ck =
∫ ∫ 1

0

fk(y)fk(z)c(y, z) dydz.

These expressions can now be used to derive the errors eu and e�
for a variety of correlation functions c(x, y):

(1) The choice of spatially uniform correlation function, c(x, y) = 1,
i.e., the BCF method, gives c0 = 1 and ck = 0 for k > 0, in which
case we obtain

eu = 0, e� = 4.

This result is in agreement with [1] where BCF was found to
yield a vanishing statistical error in the velocity field.

(2) For any choice of correlation function of the form c(x, y) =
cos�k(x − y), k > 0, the corresponding statistical errors are

eu = 2
4�2k2(1 + �2k2)

, e� = 3
1
2

+ 2
4 + 4�2k2

.

(3) CONNFFESSIT corresponds to a limit of correlation functions
c(x, y) that converge to zero in the off-diagonal entries while
remaining equal to one on the diagonal, thus converge to zero
in L2. The corresponding statistical errors are therefore

eu = 0, e� = 3
1
2
.

The fact that eu = 0 is in agreement with [1], where it was shown
that for uncorrelated noise the variance of the velocity is of the
order of the mesh size.

Comments:

(1) The characterization (4.12) implies that for every choice of cor-
relation function c(x, y) and for every k

ck =
∫ 1

0

(∫ 1

0

fk(y)r(x, y) dy

)2

dx,

where r(x, y) is the “square root” of c(x, y). Thus, 0 ≤ ck ≤
1. Clearly, both sums in (6.21) are minimized when taking
c(x, y) → 0, hence the CONNFFESSIT method is optimal.

(2) Bessel’s inequality implies that

∞∑
k=1

ck ≤
∫ ∫ 1

0

r2(x, y) dy = 1.

Thus, eu is maximized by taking c1 = 1 and ck = 0 for every
k /= 1. The corresponding correlation function is c(x, y) =
cos�(x − y). Similarly, e� is maximized by taking c0 = 1 and
ck = 0 for every k > 0. Thus, the variance of the stress is maxi-
mized by the BCF method.

7. Discussion

We formulated an optimization problem in infinite-dimension
for variance minimization in Brownian simulation methods.
The optimization problem can be written in explicit form for
micro–macro model for which closure into a macroscopic model
is possible, although we believe that the resulting analysis pro-
vides insight into more general cases as well. Even for closable
systems, the optimization problem can be solved analytically only
in relatively simple cases. In practice, one has to approximate
its solution by solving convex optimization problems in finite-
dimension. We proved in [5] that the optimal variance can indeed
be approached by the solution of finite-dimensional problems. Our
analysis is based on a formal asymptotic expansion that uses an
a priori estimate about the smallness of the statistical errors as
N → ∞.

We then solved analytically the optimization problem for the
shear flow of a Hookean dumbbell model at steady state. Surpris-
ingly perhaps, we find uncorrelated noise to be optimal. This result
holds no matter how the variances in the velocity and the stress are
weighted, as long as both have positive weights. The optimality of
CONNFFESSIT is interesting, first because of the original speculation
whereby BCF is a “noise-reduced” variant of CONNFFESSIT. Also,
Jourdain et al. [1] found, in the context of a finite-dimensional dis-
cretization, that the optimal correlation has an oscillatory pattern.
There is no contradiction between the two results, as the optimal-
ity of uncorrelated noise can only be interpreted as a limit. Had
Jourdain et al. considered a sequence of mesh-refined solution,
they would have seen that the off-diagonal terms of the optimal
correlation function tend to zero. We emphasize that in practice,
i.e., in a finite-dimensional setting, the optimal correlation may
differ significantly from the optimal correlation in the continuum
limit. For example, both BCF and CONNFFESSIT result in a vanish-
ing statistical error for the velocity, whereas this is not the case in
finite-dimensional settings.

A natural question is whether CONNFFESSIT remains optimal
also in more general cases. We do not know the answer, and in par-
ticular, it may well be that the smoothness of the solutions of BCF
becomes advantageous in strongly non-linear systems. Note that
the linear shear flow problem leads to a variance that is an affine
function of the noise correlation. In such case, the optimizer is guar-
anteed to reside on the boundary of the set of feasible correlations,
C. In non-linear cases, the variance is at least quadratic in the corre-
lation function, so that the optimizer may well reside in the interior
of C.

Finally, we note that the differences between CONNFFESSIT
and BCF for the shear flow problem are very mild; the variance
changes by only 12%. It is unclear at this point whether differ-
ences may become much more pronounced in other models and
geometries.
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