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1. Introduction

This paper is concerned with evolution equations of the form

dy

dt
= yP(a − y), y(x,0) = y0(x), (1)

where y(·, t) is an unknown and a(·) is a given real-valued function, both defined on a measure
space (Ω,μ) with finite mass (μ(Ω) < ∞). The operator P is an orthogonal projection on the
Hilbert space L2 = L2(Ω,μ). We will use the standard notations (·,·) for the inner product
in L2, and ‖ · ‖p for the Lp = Lp(Ω,μ) norms. We denote by L∞,+ the cone of strictly positive
functions in L∞ = L∞(Ω,μ):

L∞,+ =
{
u ∈ L∞: ess inf

x∈Ω
u(x) > 0

}
.

Eq. (1) is subject to the following assumptions:

Assumption 1.

(i) The operator P : L2 → L2 is an orthogonal projection, satisfying P(L∞) ⊂ L∞. Its null
space, N (P), is one-dimensional, spanned by an essentially positive function n ∈ L∞,+,
which we take to be normalized, (n,n) = 1.

(ii) The function a(x) ∈ L∞. Without loss of generality, we can assume that

P(a) = a.

The system (1) is a toy model inspired by models of viscoelastic fluids. Specifically, the
Oldroyd-B model for incompressible viscoelastic fluids in the creeping flow regime consists
of a Stokes system,

−∇p + νs�u + Gdiv(σ − a) = 0, divu = 0, (2)

coupled to the Maxwell constitutive equation [1]

∂σ

∂t
+ (u · ∇)σ = (∇u)T σ + σ (∇u) + 1

λ
(σ − I ). (3)

Here u(x, t) is the velocity field, p(x, t) is the pressure, νs is the solvent viscosity, and G is
the elastic modulus. The matrix-valued function σ (x, t) is the so-called conformation tensor,
a quantity associated with the microscopic structure of the polymers, which is closely related
to the stress-tensor; it is a symmetric positive-definite tensor field. The tensor field a = a(x) is
an external forcing (without loss of generality a vector-valued force field can be written as the
divergence of some tensor field). Finally, λ is the elastic relaxation time.

The system (2), (3) poses both analytical and numerical challenges. As explained in [3], it is
of interest to obtain better insight into the nonlinear feedback mechanism between the velocity
field u and the conformation tensor σ . To this end, we replace the system (2), (3), by a closely
related toy model in which the advection and relaxation of the conformation tensor have been
discarded. (Note that advection term does not increase the L∞ norm, but may well cause the
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increase of higher order Sobolev norms. Yet, it was shown in [2] that global in time existence
hinges precisely on the finiteness of the L∞ norm, which motivates the omission of the advection
term which is therefore not directly responsible for potential blowups.) This yields a model of
the form

∂σ

∂t
= (∇u)T σ + σ (∇u), (4)

coupled to the Stokes system (2).
The Stokes system induced a linear mapping (σ − a) 	→ ∇u, which can be explicitly written

by means of a Green function,

∇u(x) =
∫
Ω

GΩ(x, y) · div
(
σ (y) − a(y)

)
dy ≡ −P(σ − a)(x),

where Ω is the domain (which may be bounded on not) and GΩ is the corresponding Stokes
kernel (i.e., the Green function of the Stokes elliptic system). It can easily be shown that the
linear mapping P is, in fact, an orthogonal projection (see [3]). Thus, (4) takes the form

∂σ

∂t
= [

P(a − σ )
]T

σ + σP(a − σ ). (5)

The system (1) is a one-dimensional scalar toy model, that mimics the dynamics (5).
Eq. (1) can also be viewed as an infinite-dimensional generalization of a Lotka–Volterra sys-

tem [4]. In Section 2 we prove that (1) defines a global (in time) semi-flow on the cone of positive
functions L∞,+ (Theorem 2.2 in Section 2). We then proceed to analyze the long-time behavior
of this system. It is clear that every function y satisfying P(y) = P(a) is an equilibrium solution
of (1), and these are the only equilibria in L∞,+. Our main theorem asserts that the equilibrium
set

M := {
y ∈ L∞,+: P(y) = a

}
is the global attractor for all initial data y0 ∈ L∞,+ (Theorem 3.1 in Section 3). The convergence
of y(·, t) to the manifold M, as t → ∞, is in the L2-norm. The theorem does not guarantee uni-
form convergence, nor does it guarantee that y(·, t) converges to a specific equilibrium in M. For
this to happen, additional assumptions are made; various situations are considered in Section 4.
We conclude this paper with a discussion about open questions and various generalizations.

2. Global existence

We start by establishing the well-posedness of Eq. (1) under Assumption 1. The first step is
to show existence and uniqueness of solutions for short times:

Theorem 2.1 (Local-in-time existence and uniqueness). Let y0 ∈ L∞ be given. Then there
exist times T1, T2 > 0, depending on y0 only, such that (1) has a unique solution y ∈
C1((−T1, T2);L∞).
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Proof. Note first that due to Assumption 1 the operator P has the explicit form

P(z) = z − (z, n)n.

It is a bounded linear operator L∞ → L∞ since∥∥P(z)
∥∥∞ �

(
1 + μ(Ω)‖n‖2∞

)‖z‖∞.

We rewrite (1) as

dy

dt
= ya − yP(y) ≡ F(y).

The short-time existence and uniqueness of solutions follows from Picard’s theorem over Banach
spaces, provided that F is a locally Lipschitz continuous mapping L∞ → L∞. This is indeed the
case as P is a bounded operator, hence it is locally Lipschitz, and the product of locally Lipschitz
functions is again locally Lipschitz. �

We then show that solutions that are initially positive remain so at all times:

Proposition 2.1 (Positivity). Let y ∈ C1((−T1, T2);L∞) be a solution of (1), with initial condi-
tion y0 ∈ L∞,+. Then y(x, t) remains positive, i.e., ess infx∈Ω y(x, t) > 0, for all t ∈ (−T1, T2).
In other words, the cone L∞,+ is an invariant set for the dynamics.

Proof. The positivity follows readily from the fact that the unique solution of (1) solves the
integral equation

y(·, t) = y0 exp

( t∫
0

P
(
a − y(·, s))ds

)
. � (6)

The next step is to show that the solution with initial data in L∞,+, as long as it exists, is
bounded, uniformly in time, in L∞, by a constant that only depends on the initial data. The proof
relies on the fact that the dynamics (1) subject to Assumption 1 preserve the natural order among
functions. To simplify notations, we define Q := I − P to be the orthogonal complement of the
projection P , namely, Qy = (n, y)n.

Lemma 2.1. Let y ∈ L∞ be a non-negative function, y � 0. Then,

ess inf
Ω

Qy(·) � 0,

with equality if and only if y = 0.

Proof. The non-negativity of y and the positivity of n imply that

ess inf
Ω

Qy(·) = (n, y) · ess inf
Ω

n(·) � 0.

Since ess infn(x) > 0 equality occurs if and only if (n, y) = 0, i.e., if and only if y = 0. �
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Proposition 2.2 (Comparison principle). Let y, z ∈ C1([0, T );L∞,+) be two solutions of (1)
with initial data y0, z0 ∈ L∞,+. If y0 � z0 a.e. in Ω then

y(·, t) � z(·, t) (7)

a.e. in Ω for all 0 � t < T .

Proof. Let t0 be the supremum of all values of t � 0 for which the statement holds, i.e., y(x, t) �
z(x, t) a.e. in Ω for all 0 � t � t0 (it is possible that t0 = 0). If t0 = ∞, there is nothing to prove.
If t0 < ∞, then by definition

y(·, t0) � z(·, t0). (8)

It follows, by Lemma 2.1 that

C := ess inf
Ω

Q
(
y(·, t0) − z(·, t0)

)
> 0.

We now define the following sets

Ω+ :=
{
x ∈ Ω: y(x, t0) − z(x, t0) >

C

2

}
,

Ω− :=
{
x ∈ Ω: y(x, t0) − z(x, t0) � C

2

}
.

By the continuity of the mappings t 	→ y(·, t) and t 	→ z(·, t) from [0, T ) to L∞, there exists a
time interval δ1 > 0 such that

y(x, t) > z(x, t) for all t ∈ [t0, t0 + δ1), for a.e. x ∈ Ω+. (9)

We then turn our attention to the set Ω−, where

ess sup
Ω−

P
(
y(·, t0) − z(·, t0)

)
� ess sup

Ω−

[
y(·, t0) − z(·, t0)

]

− ess inf
Ω−

Q
(
y(·, t0) − z(·, t0)

)
� C

2
− C. (10)

By the differentiability of the mappings t 	→ logy(·, t) and t 	→ log z(·, t) from [0, T ) to L∞,
there exists for every ε > 0 a time interval δ2 > 0, such that for all t ∈ [t0, t0 + δ2),

∥∥logy(·, t) − logy(·, t0) − (t − t0)P
(
a − y(·, t0)

)∥∥∞ < ε(t − t0),∥∥log z(·, t) − log z(·, t0) − (t − t0)P
(
a − z(·, t0)

)∥∥∞ < ε(t − t0).

Thus, for t ∈ [t0, t0 + δ2),
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log
y(·, t)
z(·, t) � log

y(·, t0)
z(·, t0) − (t − t0)P

(
y(·, t0) − z(·, t0)

) − 2ε(t − t0)

� −(t − t0)P
(
y(·, t0) − z(·, t0)

) − 2ε(t − t0),

where the last inequality results from (8). Choosing ε = C/8 and using (10) we have that for
t ∈ [t0, t0 + δ2),

inf
Ω−

log
y(·, t)
z(·, t) � C

4
(t − t0) � 0. (11)

Taking δ = min(δ1, δ2) and combining (9) and (11) we obtain that

y(·, t) � z(·, t) for all t ∈ [t0, t0 + δ).

Thus, (7) holds for all t ∈ [t0, t0 + δ) in contradiction with the definition of t0, which concludes
the proof. �

The comparison principle guarantees the boundedness of y(·, t):
Proposition 2.3 (Boundedness in L∞). Let y ∈ C1([0, T );L∞,+) be a solution of (1) with initial
data y0. Then there exists a constant K > 0, given by (13) and depending on the initial data, such
that

sup
0�t<T

y(·, t) � a + Kn(x). (12)

Proof. Since ess infΩ n(x) > 0, then there exists, given y0, a constant K > 0 such that

z(x) ≡ a(x) + Kn(x) � y0(x) a.e. in Ω.

Specifically, we can choose

K = ess sup
x∈Ω

y0(x) − a(x)

n(x)
. (13)

The function z is an equilibrium solution of (1), and by the previous proposition y(·, t) � z for
all 0 � t < T . �
Theorem 2.2 (Global existence). Let y0 ∈ L∞,+ be given. Then (1) has a unique solution
y ∈ C1([0,∞);L∞,+).

Proof. This is a direct consequence of the short-time existence and uniqueness (Theorem 2.1)
and the bound (12) for initial data y0 ∈ L∞,+. By the continuation theorem for autonomous
ODEs, if T < ∞ and [0, T ) is the maximal time of existence of the solution y, then

lim sup
t↗T −

∥∥y(·, t)∥∥∞ = ∞.

Since the norm ‖y(·, t)‖∞ is continuous in time, this violates the bound (12), hence the maximal
existence time is infinite. �
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3. Asymptotic convergence of y(·, t) to M

Having established the global existence and boundedness of solutions to (1), we proceed to
study the long-term behavior of these dynamics. As in the previous section, it is always assumed
that system (1) satisfies Assumption 1. The first proposition establishes the existence of an inte-
gral of motion:

Proposition 3.1. The functional Γ : L∞,+ → R defined by

Γ (z) :=
∫
Ω

n(x) log z(x) dμ(x),

is an integral of motion, that is, if y ∈ C1(R+;L∞,+) is a solution of (1), then

Γ
(
y(·, t)) = Γ (y0)

for all t � 0.

Proof. Differentiating we get

d

dt
Γ

(
y(·, t)) =

∫
Ω

n(x)

d
dt

y(x, t)

y(x, t)
dμ(x) = (

n,P
(
a − y(·, t))) = 0,

where the last equality follows from the symmetry of P and the fact that n ∈ N (P). �
The next two propositions reveal the “dissipative” nature of (1) through the construction of

two Lyapunov functionals. Note that by considering the equilibrium, ỹ(x) = a(x) + γ n(x) for
sufficiently large γ , we have

ess inf
Ω

ỹ(·) > 0 and P(ỹ) = a.

Proposition 3.2. Let y ∈ C1(R+;L∞,+) be a solution of (1) with ỹ(x) defined as above. Then
the “entropy” functional

Va

[
y(·, t)] :=

∫
Ω

ỹ(x)

[
y(x, t)

ỹ(x)
− log

y(x, t)

ỹ(x)

]
dμ(x)

is positive and non-increasing in time.

Proof. The positivity of Va follows from the fact that z− log(z) � 1 for z > 0, and the positivity
of y(x, t) and ỹ(x). Differentiating along trajectories we get

d

dt
Va

[
y(·, t)] =

∫
Ω

yt (x, t)

y(x, t)

[
y(x, t) − ỹ(x)

]
dμ(x) = (

y(·, t) − ỹ,P
(
a − y(·, t)))

= (
P

(
y(·, t) − ỹ

)
,P

(
a − y(·, t))) = −∥∥P

(
a − y(·, t))∥∥2

2 � 0,

where we have used the fact that P is an orthogonal projection and P(ỹ) = a. �
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Proposition 3.3. Let y ∈ C1(R+;L∞,+) be a solution of (1). Then the “energy” functional

Vb

[
y(·, t)] := ∥∥P

(
y(·, t) − a

)∥∥2
2

is non-increasing in time.

Proof. By explicit differentiation along trajectories we get

d

dt
Vb

[
y(·, t)] = 2

(
P

(
y(·, t) − a

)
,P

(
y(·, t)P(

a − y(·, t))))
= −2

(
P

(
y(·, t) − a

)
, y(·, t)P(

y(·, t) − a
))

= −2
∥∥y1/2(·, t)P(

y(·, t) − a
)∥∥2

2 � 0,

where we have used the properties of P and the positivity of y. �
The identification of the two Lyapunov functionals yields immediately the asymptotic conver-

gence of y(·, t) to the equilibrium manifold M.

Theorem 3.1. Let y ∈ C1(R+;L∞,+) be a solution of (1). Then

lim
t→∞P

(
y(·, t)) = a in L2.

Proof. We need to prove that

(
distL2

(
y(·, t),M

))2 = ∥∥P
(
y(·, t) − a

)∥∥2
2 = Vb

(
y(·, t))

tends to zero as t → ∞. Since the functionals Va,Vb are both non-negative, bounded from above
(Proposition 2.3) and non-increasing in time, both must converge to limits as t → ∞. Since,
furthermore,

d

dt
Va

[
y(·, t)] = −Vb

[
y(·, t)],

the limit of Vb must be zero. �
Example. Assume μ(Ω) = 1 and let P be the orthogonal projection in L2 to the space of con-
stants, i.e.,

(Pf )(x) = f (x) −
∫
Ω

f (x′) dμ(x′),

and a ∈ L∞ satisfies ∫
Ω

a(x)dμ(x) = 0.
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The system (1) takes the form

∂

∂t
y(x, t) = y(x, t)

(
a(x) +

∫
Ω

y(x′, t) dμ(x′) − y(x, t)

)
, (14)

with initial condition y(·,0) = y0 ∈ L∞,+. Theorem 2.2 asserts the existence of a global solution
y ∈ C1(R+;L∞,+). By Proposition 2.3 there exists a constant K > 0 such that

sup
t�0

y(·, t) � a + K.

Finally, by Theorem 3.1,

lim
t→∞

(
y(·, t) −

∫
Ω

y(x′, t) dμ(x′)
)

= a in L2.

4. Asymptotic convergence of y(·, t)

We now inquire under what conditions does y(·, t) converge, as t → ∞, to a specific equilib-
rium in M. Note that the L2-convergence of y(·, t) can be decomposed into

lim
t→∞y(·, t) = lim

t→∞P
(
y(·, t)) + lim

t→∞Q
(
y(·, t)),

where

Q
(
y(·, t)) = (

n,y(·, t))n.

We have just proved that the first term on the right-hand side converges to a. It remains to verify
under what conditions

β(t) := (
y(·, t), n)

(15)

converges as t → ∞.
Since, on the one hand, M consists of functions of the form a(x) + αn(x), for some α ∈ R,

and on the other hand, by Proposition 3.1 the functional Γ (y(·, t)) is conserved, the existence of
a limiting solution in M requires the following assumption:

Assumption 2. There exists some y∗ ∈ M such that∫
Ω

n(x) logy0(x) dμ(x) =
∫
Ω

n(x) logy∗(x) dμ(x). (16)

Assumption 2 is a restriction on the initial conditions y0. It assumes the existence of a constant
α which solves the equation∫

Ω

n(x) log
[
a(x) + αn(x)

]
dμ(x) =

∫
Ω

n(x) logy0(x) dμ(x), (17)

under the constraint that ess infΩ [a(x) + αn(x)] > 0.
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If we define the set C ⊂ R by

C =
{
ξ ∈ R: ess inf

x∈Ω

[
a(x) + ξn(x)

]
> 0

}
(18)

and Φ : C → R by

Φ(ξ) =
∫
Ω

n(x) log
[
a(x) + ξn(x)

]
dμ(x), (19)

then Assumption 2 is equivalent to the statement

∫
Ω

n(x) logy0(x) dμ(x) ∈ Φ(C).

Note that C is in fact an unbounded interval, for ξ ∈ C implies that ξ1 ∈ C for all ξ1 > ξ .
The next proposition shows that such an α, if it exists, is unique.

Proposition 4.1. Given an initial data y0 ∈ L∞,+, the function y∗ satisfying Assumption 2, if it
exists, is unique.

Proof. Uniqueness follows at once from the fact that

d

dα
Φ(α) =

∫
Ω

n2(x)

a(x) + αn(x)
dμ(x) > 0

for all α ∈ C. �
Example. Consider again the example from the previous section. For concreteness set Ω = [0,1],
with μ the Lebesgue measure and a(x) = sin 2πx. Then, since n ≡ 1, the equilibria in M consist
of functions of the form

sin 2πx + α,

where α > 1, i.e., C = (1,∞). For α ∈ C,

Φ(α) =
1∫

0

log
[
sin 2πx + α

]
dx > − log 2.

It follows that Assumption 2 is satisfied if and only if

1∫
0

logy0(x) dx > − log 2.
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The following proposition asserts that the convergence of y(·, t) is guaranteed if the solution
remains bounded away from the boundaries of the cone of positive solutions L∞,+.

Proposition 4.2. If

lim inf
t→∞ ess inf

x∈Ω
y(x, t) > 0 (20)

then Assumption 2 is satisfied. Moreover,

lim
t→∞β(t) = α,

where β(t) is given by (15) and α is the (unique) solution to (17). Thus, y(·, t) → y∗ in L2,
where y∗ = a + αn.

Proof. Take any sequence of times tm that is increasing to infinity. Since y(·, t) is uniformly
bounded in L∞ (Proposition 2.3), then β(t) is bounded, and there exists a subsequence tmk

such
that β(tmk

) converges to a limit γ , hence

lim
k→∞Q

(
y(·, tmk

)
) = γ n in L∞.

Theorem 3.1 implies that

lim
k→∞

[
y(·, tmk

) − Q
(
y(·, tmk

)
) − a

] = 0 in L2,

from which follows that

lim
k→∞y(x, tmk

) = a(x) + γ n(x)

in L2, and so it has a sub-subsequence y(·, tmkj
) which converges a.e. in Ω . Note that (20)

implies that a.e. a(x) + γ n(x) > 0. This implies that

lim
j→∞n(x) logy(x, tmkj

) = n(x) log
[
a(x) + γ n(x)

]

a.e. Moreover, from (20) and the fact that y(·, t) is uniformly bounded we also have

sup
t�0

∥∥logy(·, t)∥∥∞ < ∞.

Using Lebesgue’s dominated convergence theorem we conclude that

lim
j→∞

∫
Ω

n(x) logy(x, tmkj
) dμ(x) =

∫
Ω

n(x) log
[
a(x) + γ n(x)

]
dμ(x).
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By Proposition 3.1 we have for all m,

∫
Ω

n(x) logy(x, tm) dμ(x) =
∫
Ω

n(x) logy0(x) dμ(x),

therefore ∫
Ω

n(x) log
[
a(x) + γ n(x)

]
dμ(x) =

∫
Ω

n(x) logy0(x) dμ(x).

Thus, Assumption 2 is satisfied and it follows, by the uniqueness of y∗, hence the uniqueness
of α in (17), that γ = α. We have shown that every sequence β(tm) has a subsequence β(tmkj

)

which converges to α. It follows from an elementary theorem of calculus that β(t) tends to α as
t → ∞. This completes the proof. �

Note the immediate corollary:

Corollary 4.1. If Assumption 2 does not hold then

lim inf
t→∞ ess inf

x∈Ω
y(x, t) = 0.

Condition (20) is a sufficient condition for y(·, t) to asymptotically converge to an element
of M. The problem is that it is a property of the solution, and it is not clear a priori when does
it hold. In the remaining part of this section we establish two situations for which (20) holds. In
the first case y0 has to be sufficiently large in the following sense:

Proposition 4.3. If there exists a constant K such that

y0(x) > a(x) + Kn(x) > 0 a.e. in Ω,

then condition (20) holds.

Proof. This is an immediate consequence of the fact that a + Kn is a stationary solution of (1),
and the comparison principle (Proposition 2.2). �

The second situation that can be analyzed is when a and n are simple functions, i.e., they have
the form

a(x) =
m∑

i=1

aiχΩi
(x), n(x) =

m∑
i=1

niχΩi
(x),

where Ω1, . . . ,Ωm is a measurable disjoint partition of Ω .

Proposition 4.4. If a and n are simple functions then (20) holds.
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Comment. The implication of this proposition is that (20) holds for any finite-dimensional ap-
proximation of (1). In particular, the solutions to discrete approximations of (1) with positive
initial data always tend to equilibrium solutions as t → ∞.

Proof of Proposition 4.4. We first prove the proposition for the particular case in which
y0(x) = c > 0 (a constant function). Note that if y0 and n are simple functions with respect
to the partition (Ωi), then the right-hand side of (1) is also a simple function, in which case
y(x, t) is a simple function, constant on each of the sets Ωi , for all t > 0. We denote by yi(t) the
restriction of y(x, t) to the set Ωi .

Let M be a bound on |y(x, t)| (such a bound is guaranteed to exist by Proposition 2.3). Then
for all t � 0,

∫
Ω

n(x) logy(x, t) dμ(x) =
m∑

i=1

μ(Ωi)ni logyi(t)

� logM

∫
Ω

n(x)dμ(x) +
(

min
1�i�m

niμ(Ωi)
)

log
(

inf
x∈Ω

y(x, t)
)
.

On the other hand, by Proposition 3.1∫
Ω

n(x) logy(x, t) dμ(x) =
∫
Ω

n(x) logy0(x) dμ(x) = log c

∫
Ω

n(x)dμ(x),

hence

inf
Ω

y(·, t) � exp

[
(log c − logM)

∫
Ω

n(x)dμ(x)

min1�i�m[niμ(Ωi)]
]

> 0.

This completes the proof in the case of constant initial conditions. The general case follows at
once from the comparison principle, as any solution with initial data y0 ∈ L∞,+ can be bounded
from below by the solution for constant initial data c = ess infΩ y0(x). �
5. Discussion

We studied a class of quadratic evolution equations, inspired by models of viscoelastic fluids.
Motivated by the physical model, we considered initial data in the cone of positive functions. We
showed that the cone of positive L∞ functions is an invariant set, and that solutions in this set
exist for all times. As t → ∞ the solutions tend, in the L2-norm, to the equilibrium manifold M.
The convergence of solutions to specific equilibria in M could, however, only be proved under
additional assumptions.

The following points remain open: (i) Do solutions always tend to a specific equilibrium if
Assumption 2 is satisfied? We were unable to prove it, nor to find a counter example. (ii) Do
solutions converge, as t → ∞, in situations where Assumption 2 does not hold? While, in such
case, the solution cannot converge to an equilibrium in M (Corollary 4.1), it can, in principle,
converge to an equilibrium on the boundary of the cone,

L∞,+ = {
y ∈ L∞: y(x) � 0

}
.
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(iii) Does the solution converge to M in any Lp-norm, for p > 2, and in particular, for
p = ∞?

Another question is whether our results remain valid when the kernel of the projection P has
dimension greater than one. The comparison principle (Proposition 2.2) no longer holds in this
case, and as a result, we no longer have a bound on the L∞ norm, nor do we have a global
existence theorem. Assuming, however, that a solution does exist for all times, it is easy to see
that Proposition 3.3 still holds, i.e., the “energy” functional Vb is a Lyapunov functional. To
prove that the “entropy” functional Va is also a Lyapunov functional, we need to have a positive
function ỹ such that P(ỹ) = a. If such a function exists then Proposition 3.2 remains valid, and
P(y) tends to a in the L2-norm (Theorem 3.1).

System (1) can be generalized in many different ways, for example, with y being a matrix-
valued function and products reinterpreted as matrix products; this is indeed the appropriate
setting in the viscoelastic context [3]. Another generalization of (1) is when P is a general non-
negative operator (not necessarily a projection), i.e., (y,P(y)) � 0 for all y ∈ L2. We believe that
such a system still exhibits global-in-time existence for positive initial data, as well as asymptotic
convergence.
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