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Abstract

We have solved the equations of transient shear flow for a model of a liquid crystalline polymer that contains a
long-range interaction term in the nematic potential. The model exhibits a rich set of dynamics when the structure
and momentum equations are coupled, including a periodic vorticity ‘burst’ near the shearing surface and very large
gradients in velocity at discrete planes. Textures that are independent of the macroscopic scale were not observed.
© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Liquid crystalline polymers are inherently anisotropic. At rest, concentrated solutions and melts exhibit
orientational texture, in which there is a local preferred orientation that extends over distances of order
micrometers, but the sample is isotropic on a macroscopic scale; the texture is related to local orientational
defects and is sometimes described as consisting of ‘domains’. The texture evolves with shear and seems
to vanish at high shear rates, but a texture always returns when the flow stresses have relaxed. Existing
theories of anisotropic liquids predict the evolution of orientational structure in shear flow (some recent
results, with references to the prior literature, can be found in [1] and [2]); the calculated textures are
unlike those seen in liquid crystalline polymers, however, where the length scale of the texture appears
to be independent of the macroscopic scale of the experimental equipment.
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It is generally believed that long-range interactions (elastic coupling) must be included in the nematic
potential to generate a constitutive theory of liquid crystalline polymers that can accommodate defect
textures. The first such proposal seems to be by Marrucci and Greco [3]. Rey and Tsuji [4] have recently
reported results for a ‘complete’ theory that includes long-range elastic interactions, and they show the
evolution of defects in a quiescent system during the isotropic-nematic phase transition and the suppression
of defect nucleation by shear. Their transient solution for shear flow was carried out without coupling
between the orientation and momentum equations.

We report here on a fully-coupled transient simulation of shear flow for a model liquid that includes a
long-range term in the potential, following Marrucci and Greco [3]. Quadratic closure is used to obtain
a constitutive equation in closed form, and the finite aspect ratio of the underlying molecular rigid rod is
retained in the formulation.

2. The model

Our model builds upon the original Doi theory [5,6], whose starting point is a Smoluchowski equation
for the orientational distribution of molecules,

∂ψ

∂t
= ∇∇∇u ·DR

(
∇∇∇uψ + ψ

kBT
∇∇∇uϕ

)
− ∇∇∇u · (u̇uuψ)− ∇∇∇ · (vvvψ), (1)

whereψ(uuu,RRR, t) is the probability of finding a molecular rod in an orientationuuu at a positionRRR at time
t . It is assumed that the molecules are rigid and uniaxial so that the molecular orientation is completely
specified by the unit vectoruuu. The right-hand side of Eq. (1) represents the various forces that act upon
a molecule: Brownian forces, represented by the first term, act to randomize the orientation with a char-
acteristic rotational diffusion coefficientDR, which, in general, depends on the orientational distribution
ψ . A mean-field potentialϕ accounts for interactions between molecules, as well as external interactions,
such as magnetic or electric fields, withkB the Boltzmann constant andT the absolute temperature.
Macroscopic flow affects the distribution through the rate of change of the molecular orientationu̇uu, while
the third term accounts for the advection of the fluid by the macroscopic velocity field,vvv. Translational
diffusion was neglected here; such omission would be drastic if translational diffusion were the only
spatial coupling in the model, but this is not the case if elastic coupling is taken into account. Two types of
derivatives appear in (1): the orientational gradient,∇∇∇u = ∂/(∂uuu), and the spatial gradient,∇∇∇ = ∂/(∂RRR).

If the molecule is modeled as a rigid ellipsoid, the rate of change of its orientation is given by [7]

u̇uu = ωωω · uuu+ λ(DDD · uuu−DDD : uuuuuuuuu), (2)

where products of vectors such asuuuuuu denote dyadic products,ωωω andDDD are the vorticity and the rate-of-
deformation tensors, respectively,

ωωω = 1
2(∇∇∇vvv† − ∇∇∇vvv), (3)

DDD = 1
2(∇∇∇vvv† + ∇∇∇vvv), (4)

and the parameterλ is related to the molecular aspect ratio. For an infinite aspect ratio molecule,λ → 1,
in which case Eq. (2) reduces to the original expression proposed by Doi [5]. The finite-aspect ratio
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description has appeared previously in studies of fiber suspensions (e.g., [8]), as well as in the work of
Kuzuu and Doi [9,10].

The difficulty with microscopic models such as Eq. (1) is the high dimensionality of the governing
equation, which makes it very hard to solve, even for the relatively simple case of spatially homoge-
neous solutions. Thus, the model requires substantial simplification before it is amenable to a tractable
formulation.

A first common approximation is the replacement of the rotational diffusion coefficientDR by a constant
D̄R that is independent of the local structure. Next, one derives an equation for the structure tensorSSS by
multiplying Eq. (1) by the tensor(uuuuuu−(1/d)δδδ)and integrating over all possible orientations [5,6] to obtain

∂SSS

∂t
= −2dD̄RSSS − D̄R

kBT
[〈uuu(∇∇∇uϕ)〉] + 〈(∇∇∇uϕ)uuu〉)+ 1

d
(κκκ + κκκ†)+ κκκ · SSS + SSS · κκκ

−2κκκ : 〈uuuuuuuuuuuu〉 − vvv · ∇∇∇SSS, (5)

with

κκκ = ωωω + λDDD. (6)

d is the dimension of space.
In the present paper external fields are ignored, and we focus on the inter-molecular potential. Marrucci

and Greco [3] proposed a mean-field potential of the following form:

ϕ = −2UkBT
{
SSS + 1

24[R2∇2SSS + L2(uuuuuu : ∇∇∇∇∇∇)]SSS}
: uuuuuu. (7)

The first term is the classical Maier–Saupe potential, the second arises from a spatially dependent poten-
tial between molecules with a characteristic interaction distanceR, and the third represents a spatially
dependent potential related to the length of the molecule,L. We will assume that the spatial interaction
distance,R, is much larger than the molecular length,L, and neglect the inhomogeneous terms associated
with the shape of the molecule; this is equivalent to taking the three Frank elastic constants to be equal.
The parameterU is the nematic strength, or a dimensionless molecular concentration.

Substituting the potential (7) into the kinetic Eq. (5) gives rise to higher order moments, which must be
approximated in order to close the system of equations. For both the interaction potential and flow terms,
we use the quadratic closure approximation, namely

κκκ : 〈uuuuuuuuuuuu〉 = κκκ : 〈uuuuuu〉〈uuuuuu〉, SSS : 〈uuuuuuuuuuuu〉 = SSS : 〈uuuuuu〉〈uuuuuu〉, (∇2SSS) : 〈uuuuuuuuuuuu〉 = (∇2SSS) : 〈uuuuuu〉〈uuuuuu〉.
(8)

Eq. (5) reduces then to a closed form, which we group following Doi [5]:(
∂

∂t
+ vvv · ∇∇∇

)
SSS = FFF(SSS)+GGG(SSS). (9)

The first term,FFF(SSS), represents the inter-molecular kinetics, which are subdivided into homogeneous
and non-homogeneous terms,

FFF(SSS) = FFF h(SSS)+FFF nh(SSS), (10)

with

FFF h(SSS) = −2D̄RSSS + 6D̄RU
[
SSS · SSS + 1

d
SSS − (SSS : SSS)SSS − 1

d
(SSS : SSS)δδδ

]
, (11)
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and

FFF nh(SSS) = D̄RU

8
R2

{
(∇2SSS) · SSS + SSS · (∇2SSS)+ 2

d
(∇2SSS)− 2[(∇2SSS) : SSS]

(
SSS + 1

d
δδδ

)}
. (12)

The second term,GGG(SSS), represents the molecular advection terms:

GGG(SSS) = 1
d
(κκκ + κκκ†)+ SSS · κκκ† + κκκ · SSS − 2(κκκ : SSS)

(
SSS + 1

d
δδδ
)
. (13)

Under macroscopic flow, the evolution Eq. (9) couples to the Cauchy momentum equation through the
stress tensor. Accounting for the effects of the molecular aspect ratio and the spatially inhomogeneous
interaction potential, via the virtual work approach used by Doi [5,6], results in the following expression
for the elastic stressτττ e:

τττ e = −ckBT

2D̄R
λFFF(SSS)+ ckBTU

16
R2[(∇2SSS) · SSS − SSS · (∇2SSS)]. (14)

In addition, the solvent contributes a viscous stress:

τττ v = ηsDDD, (15)

whereηs is the viscosity. (There is an additional stress term due to hydrodynamic drag caused by rod–rod
friction which we neglect [11].) To within an isotropic pressure term, the stress tensor is given by the sum
of the elastic and viscous components:

τττ = τττ e + τττ v. (16)

Eqs. (9)–(15) specify our constitutive model. Several points should be noticed: (i) Even though the
literature has associated the quadratic closure approximation with a loss of periodic solutions, it can be
shown that the incorporation of a finite aspect ratio with quadratic closure maintains periodic solutions
such as tumbling, wagging, log-rolling, and kayaking [11]. (ii) One of the homogeneous models proposed
by Feng and co-workers [2] differs from our homogeneous component by a factor ofλ for the elastic stress
tensor. (iii) Note that spatial inhomogeneities break the symmetry of the stress tensor (14), implying that
torques generated within the material can propagate. The asymmetry of the stress tensor is also present
in the Leslie-Ericksen [12–15] theory when Frank elasticity is included.

In the present paper, which focuses on fundamental implications of spatial inhomogeneities, we simplify
the model even further by (i) considering a planar structure tensor (d = 2), and (ii) considering a
symmetric shear flow between two parallel plates, assuming that variations take place only in the direction
perpendicular to the channel axis. The plates are moving opposite to each other with speeds±V and are
separated by a gap distanceH .

We next rewrite the equations in dimensionless form. We measure velocities in units of wall speedV ,
lengths in units of channel widthH , and stresses in units ofc kBT . This is the correct scaling for the
stress if one is interested in the limit of low Reynolds numbers where the fluid density should not play
any role. The geometry of the system in dimensionless units is shown in Fig. 1, while the dimensionless
equations are given by(

∂

∂t
+ vvv · ∇∇∇

)
SSS = FFF(SSS)+GGG(SSS), (17)
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Fig. 1. Schematic illustration of the flow geometry. The channel axis is parallel to thex-axis, with the channel walls coinciding
with the planesy = 0, 1; the top and the bottom walls move at speeds+1 and−1, respectively.

FFF(SSS) = FFF h(SSS)+FFF nh(SSS), (18)

FFF h(SSS) = 4

De

[(
1 − 3

4
U

)
SSS − 3

2
USSS · SSS + 3

2
U(SSS : SSS)

(
SSS + 1

2
δδδ

)]
, (19)

FFF nh(SSS) = 1

Er

{
(∇2SSS) · SSS + SSS · (∇2SSS)+ ∇2SSS − 2[(∇2SSS) : SSS]

(
SSS + 1

2
δδδ

)}
, (20)

GGG(SSS) = 1

2
(κκκ + κκκ†)+ SSS · κκκ† + κκκ · SSS − 2(κκκ : SSS)

(
SSS + 1

2
δδδ

)
, (21)

Re

(
∂

∂t
+ vvv · ∇∇∇

)
vvv = −∇∇∇p + ∇∇∇ · τττ , (22)

τττ = −1

2
λDeFFF(SSS)+ 1

2

De

Er
[(∇2SSS) · SSS − SSS · (∇2SSS)] + νsDDD, (23)

where all quantities have been rescaled appropriately. The equations contain six dimensionless para-
meters.

The parametersU andλ have already been defined, and represent the dimensionless molecular con-
centration and the molecular aspect ratio, respectively. The Deborah number,

De = V

D̄RH
, (24)

is the ratio between the molecular time scale,D̄−1
R , and the mean inverse shear rate,H/V . The Ericksen

number,

Er = 8VH

UD̄RR2
= 8

U

(
H

R

)2

De, (25)

characterizes the strength of the short range nematic potential relative to the long range Marrucci–Greco
elastic potential. The parameter

νs = ηs(V/H)

ckBT
(26)
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is the ratio between the solvent viscosity,ηs, and the characteristic polymeric viscosity; the latter is the
ratio between the characteristic stress,c kBT , and the shear rate,V/H . Finally, the Reynolds number,

Re= ρV 2

ckBT
(27)

is as usual the ratio between the inertial stress,ρ V 2, and the other sources of stress, which are of the
order ofc kBT .

Boundary conditions must be prescribed to specify the model completely. For the velocity field, no-slip
conditions are assumed, so that the dimensionless velocity equals−1 and+1 at the walls, which coincide
with the planesy = 0 andy = 1, respectively. For the structure tensor we assume that the director is
aligned with the walls (anchoring walls), with the magnitude ofSSS equal to the equilibrium value obtained
for the homogeneous case, namely,

SSS(y = 0,1) =
(
Seq 0
0 −Seq

)
, (28)

where

Seq = 1

2

√
1 − 4

3U
. (29)

3. Computational procedure

Eqs. (17)–(23) were solved numerically using a second-order finite-difference scheme. We notice that
the structure tensor,SSS, is driven by the shear rate, which is the first derivative of the shear velocity,vvv,
whereas the shear velocity is driven by first derivatives of the stress, which is itself a function of the
structure tensor. This suggests the use of a hybrid discretization, where the structure tensor and the shear
velocity are discretized on two meshes that are mutually displaced (staggered) by half a mesh size; an
illustration of the computational mesh is shown in Fig. 2. The two meshes are defined such that the end
points of the mesh used by the velocity field lie on the boundaries, and their values are prescribed by the
no-slip boundary conditions.

Fig. 2. The computational mesh.
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The numerical scheme is constructed using a second-order spatial discretization of the equations of
motion, along with a fourth-order Runge–Kutta time integration scheme. The time steps were selected
adaptively to satisfy a prescribed error tolerance criterion. The boundary conditions for the structure
tensor were imposed by using an appropriate stencil to evaluate the spatial derivatives ofSSS at the end
points.

Most computations were performed usingN = 100 mesh points. In some cases, it proved necessary
to obtain a better resolution near the channel walls. Rather than refining the mesh uniformly throughout
the channel, we generated a variable distribution of mesh points by reparameterizing they-coordinate by
introducing a computational coordinate,α, with

y(α) = 1

2

[
1 + tanhδ(α − (1/2))

tanh(δ/2)

]
, (30)

whereδ is an adjustable parameter of the mapping. We then used a regularly spaced mesh on theα axis,
and calculated the spatial derivatives with respect toy by using the transformation rules:

∂

∂y
=

(
∂y

∂α

)−1
∂

∂α
,

∂2

∂y2
=

(
∂y

∂α

)−2
[
∂2

∂α2
−

(
∂y

∂α

)−1
∂2y

∂α2

∂

∂α

]
(31)

Such a mapping allows control of the distribution of points in the [−1,1] interval, while retaining the
second-order accuracy of the spatial discretization.

4. Results and discussion

4.1. Choice of parameters

The model introduced in Section 2 includes six parameters:U ,λ, De, Er, Re, andνs.U is a dimensionless
molecular concentration. We are interested in concentrated solutions, which are typically at least three to
four times more concentrated than the critical concentration at the nematic-isotropic transitionU = (4/3),
so we used values in the rangeU = 6 − 10.

The parameterλ represents the molecular aspect ratio. We choose to work with a fixed value ofλ = 0.8,
which corresponds to an aspect ratio of 3, in order to obtain relatively short tumbling periods. An aspect
ratio of 10 is probably more reasonable, which would correspond toλ = 0.98. We verified that larger
values ofλ caused a slight shift in the onset of the tumbling regime and increased the tumbling period
without affecting any of the results qualitatively.

Typical shear rates in experiments are of the order of 1 s−1 or less. The diffusion coefficient̄DR, on the
other hand, is not precisely defined. We took De to be in the range 0.1 to 10.

The phenomenological parameterR is estimated to be of the order of microns, which is a typical size
of a domain in a polydomain morphology. ThusH/R will be large, typically 103 or more. The Ericksen
number is therefore larger than the Deborah number by at least a factor of 106. Such large values of Er lead
to very fine spatial structures which require very finely resolved computations. To limit the computational
costs we restricted ourselves to smaller values of Er that are still large compared to the Deborah number,
corresponding toH/R in the range of 10 to 100.
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Fig. 3. Evolution of the structure tensor componentsSxx (solid line) andSxy (dashed line) for the homogeneous point-model in
the tumbling regime; the parameters areU = 10 and De= 1.

Re was taken equal to 1, which is large relative to the usual value in experiments, but smaller values
resulted in little change in behavior while slowing the computations greatly.νs should be small for
concentrated solutions and melts, and it was set to zero for all computations reported here.

4.2. Homogeneous solutions

We start by studying homogeneous solutions, which are solutions of the ‘point-model’,

dSSS

dt
= FFF h(SSS)+GGG(SSS), (32)

where the shear rate is constant and is equal in our parameterization to(∂vx/∂y) = 2. Eq. (32) constitutes
a set of two ordinary differential equations for the independent variablesSxx andSxy (the 2× 2 tensorSSS
is symmetric and traceless).

The nematic-isotropic transition occurs at a critical value ofU = 4/3. For values ofU slightly above
the transition, the solutions to Eq. (32) reach a steady-state which is independent of the initial conditions.
Although the nematic state has a continuous degeneracy, this symmetry is broken by the shear terms,
resulting in a unique steady solution.

For sufficiently large values ofU , the system reaches a limit cycle in which the director rotates; this
limit cycle is referred to in the literature as the tumbling state. A typical tumbling solution is shown in
Fig. 3. In Fig. 4a we show the evolution of the orientation of the director for the same solution; note
that the discontinuity of the curve is an artifact of the orientation being defined by an angle in the range
(−π, π ]; the rotation of the director is continuous.

For sufficiently large values of the Deborah number an intermediate range ofU exists, between the
steady and the tumbling regimes, where a different limit cycle is attained, in which the director oscillates
rather than rotates; this solution is known as ‘wagging.’ An example of a wagging solution is shown in
Fig. 4b.

Finally, we present in Fig. 5 a phase diagram that shows the transition lines in the De–U plane between
the three types of solutions. Note that a tumbling transition occurs at a finite value ofU even as the
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Fig. 4. Evolution of the orientation of the director,θ = (1/2)tan−1(Sxy/Sxx), for the homogeneous model. (a) Tumbling for
U = 10 and De= 1. (b) Wagging forU = 6 and De= 10.

Deborah number tends to zero. The behavior in this flow is the same as for the basic Doi model with the
inclusion of the finite aspect ratio and quadratic closure, since only the Maier–Saupe contribution to the
potential enters into the homogeneous kinetics. The solution to the full Doi model for rods with infinite
aspect ratio in shear flow without any closure approximation has been calculated recently by Faraoni and
coworkers [16]. Including the finite aspect ratio permits dynamic behavior that is contained in the exact
Doi model with an infinite aspect ratio but cannot occur for an infinite aspect ratio with quadratic closure.
Rey and Tsuji [4] have found these modes for the ‘complete’ model, as well as out-of-plane modes that
were not sought here.

Fig. 5. Diagram of flow regimes as functions of the nematic strength,U , and the Deborah number, De, for the homogeneous
model. This section of the parameter space exhibits steady, tumbling, and wagging solutions.
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4.3. Inhomogeneous solution: decoupled model

We next add the elastic coupling and the anchoring to the solid walls. These effects have been inves-
tigated in the past (e.g., Rey and Tsuji [4]), without accounting for the coupling between the nematic
structure and the momentum equation; i.e., the problem that has been considered, and which we consider
in this section, is one in which the shear rate is prescribed to remain uniform and constant at all times.
We will refer to this model as the ‘decoupled’ inhomogeneous model. In this case, we have an additional
parameter, the Ericksen number, Er; small values of the Ericksen number correspond to strong elastic
coupling.

In Fig. 6 we show surface plots that represent the time evolution of the functionsSxx(y), Sxy(y), and
|SSS(y)| for U = 10, De= 1, and Er= 100; the values ofU and De lie inside the tumbling regime for
the homogeneous equations. These results are generic: far enough from the walls, the structure tensor
behaves very similarly to its behavior in the homogeneous case (cf. Fig. 3), and there is a boundary
layer that connects the almost-uniformly tumbling region to the anchoring at the wall. Note that during

Fig. 6. Surface plots of (a)Sxx(y, t), (b)Sxy(y, t), and (c)|SSS(y, t)| for the decoupled model. The parameters areU = 10, De= 1,
and Er= 100.



R. Kupferman et al. / J. Non-Newtonian Fluid Mech. 91 (2000) 255–271 265

Fig. 7. The orientation fieldθ(y, t) for the decoupled model. The parameters areU = 6, De= 10, and Er= 100.

each tumbling cycle, a defect line must form on each side of the central axis. These defects are however
smoothly removed without the formation of any singularity. The mechanism of smooth defect removal
can be observed in Fig, 6c, which shows that the magnitude ofSSS vanishes periodically in the vicinity of
the wall; it is a momentary destruction of the nematic order that allows for a smooth removal of defects,
and appears to be equivalent to the ‘compatabilization’ observed by Rey and Tsuji [4].

In Fig. 7 we show the evolution of the nematic orientationθ(y) in the wagging regime. Here again, the
bulk is governed by the homogeneous dynamics with a boundary layer connecting it to the anchoring at
the walls.

4.4. Inhomogeneous solution: full model

We now examine the full model, including the coupling between the nematic structure and the momen-
tum equation. We keepU fixed equal to 10 for all calculations reported in this section, and we consider
only the case in which the solvent viscosity is negligible (νs = 0), so the dissipation of energy is entirely
due to the polymeric viscosity. We set Re= 1 for all calculations, and vary De and Er.

A first set of results is shown in Fig. 8 for De= 0.1 and Er= 100. Naively, one might expect the solution
to differ only slightly from the solution in the case of the decoupled model, i.e., to reach a tumbling limit
cycle. The outcome is very different from the naive expectation, however, and shows that the coupling
to the momentum equation cannot, in general, be treated as a small perturbation. Rather than reaching
a limit cycle, the system tends towards a spatially structured steady state. The time-dependent picture
shows that the director in the central section of the channel tumbles once before a balance between elastic
and shear forces is reached. Note the beginning of a cavity in the profile ofSxx , indicating an attempt to
tumble once more which was countered by the elastic forces.

Even more surprising is the state approached by the velocity fieldvx (Fig. 8b). The asymptotic velocity
profile is almost flat throughout most of the channel section, and exhibits very large gradients that are
concentrated in the vicinity of the two walls and at the center of the channel. In these three bands, where
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Fig. 8. Simulation results for Re= 1, De = 0.1, and Er= 100: (a) the structure tensor component,Sxx(y, t), (b) the shear
velocityvx(y, t), and (c) visualization of the nematic orientation in the steady-state.

the velocity seems to drop discontinuously, the director is parallel to the flow lines; flow alignment of the
polymers drastically reduces the local polymer viscosity. Obviously, large velocity gradients are possible,
partly due to the absence of solvent viscous forces. (The simulation does not allow us to determine with
certainty whether a steady state has in fact been reached, or if the balance between flow and elastic stresses
simply introduces a new long time scale. We verified that the state approached by the time-dependent
solution is indeed a stationary one by using a nonlinear solver for the time-independent equations.)

In Fig. 9 we present results for Er= 200. A larger value of Er implies weaker elastic stresses relative
to the flow stresses. As a result, the director in the central section of the channel tumbles twice before a
balance is reached. This time, there are five narrow bands (including the vicinity of the walls) in which the
director is approximately parallel to the flow lines, giving rise to five narrow bands with very large velocity
gradients. A careful analysis of the velocity profile indicates the possibility of jump discontinuities at
those points. A discontinuous velocity profile is not a priori forbidden by the equations of motion, which
may allow for weak solutions; this issue requires a more elaborate analysis, however.

In Fig. 10 we show velocity profiles for fixed Deborah number and increasing values of the Ericksen
number. As expected, the larger the Ericksen number, the larger is the number of defect lines across
the channel. In all four cases, the final state attained by the system is close to a stationary solution. An
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Fig. 9. Simulation results for Re= 1, De = 0.1, and Er= 200: (a) the structure tensor component,Sxx(y, t), (b) the shear
velocity,vx(y, t), and (c) visualization of the nematic order in the steady-state.

important observation is that the asymptotic state does not seem to have a characteristic length scale; the
distance between defect lines is not fixed, but is shorter the closer they are to the wall. The transverse
orientation patterns are in fact reminiscent of those obtained for tumbling nematics described by the
Leslie–Ericksen equation [1,17].

The model exhibits a rich range of dynamical behaviors, as can be seen in Fig. 11, where we in-
creased the Deborah number to De= 1. For low values of the Ericksen number, the system approaches
a steady-state, similar to the one described above. For Er= 400, however, the system reaches a
spatio-temporally-structured limit cycle. As above, the director in the middle section tumbles, gener-
ating smooth orientational waves. Now, however, instead of reaching a stress balance, the outermost
defect line is annihilated as it is squeezed between the propagating wave and the anchoring wall. This
process repeats periodically, with defect lines generated by director tumbling at the center of the chan-
nel and removed near the walls. This defect annihilation is examined with better temporal resolution in
Fig. 11c.

The velocity field (Fig. 11b and d), on the other hand, exhibits a truly unusual behavior. The annihilation
of the defect line releases a large amount of elastic energy, and is accompanied by a strong torque; this
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Fig. 10. The velocity profile,vx(y, t), for De= 0.1 and (a) Er= 300, (b) Er= 400, (c) Er= 500, and (d) Er= 600.

creates a strong and concentrated vortex. Note that during a short interval of time the maximum velocity
inside the channel significantly exceeds the driving wall velocities.

4.5. Length scales

The Marrucci–Greco potential contains a new parameter with dimensions of length, and one might
expect to observe the evolution of structures that scale with this length instead of the global length,H .
Let`denote any length scale of the solution that does not depend on the global geometry; i.e., is insensitive
to the width of the channel,H . Generally, one can writèas a characteristic length scale times a function
of all the independent dimensionless groupings of parameters, namely,

` = R8(U,De,Er, λ), (33)

where8 is a function of its arguments. Because` is assumed independent of the global geometry, its
only dependence onH can be through the shear rate,V/H , and as a result cannot be a function of the
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Fig. 11. Simulation results for De= 1 and Er= 400: (a) the structure tensor componentSxx(y, t), and (b) the shear velocity
vx(y, t). Figures (c) and (d) show a visualization of the structure tensor and the velocity profile for a magnified time interval
t = [21,23].

Ericksen number. Transforming to dimensionless variables this implies

`

H
= R

H
8(U,De, λ) =

(
8 De

U Er

)1/2

8(U,De, λ) ≡ (Er)−1/28′(U,De, λ). (34)

Hence, the width of an orientation layer should scale with the inverse square root of the Ericksen number
for fixed De. This observation has direct implications for the numerical procedure. An increase of the
Ericksen number by a factorr reduces all (dimensionless) characteristic length scales by a factor ofr−1/2,
and therefore requires a discretization that is finer by a factor ofr1/2. The simulations shown here do not
in fact seem to indicate the development of structures that scale in size with Er−1/2.
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5. Conclusions

The inclusion of a Marrucci–Greco potential in a Doi model with finite aspect ratio introduces a rich
set of dynamics in simple shear flow, including a remarkable periodic vorticity ‘burst’ near the shearing
surface and very large gradients in velocity at discrete planes. Full coupling of the structure and momentum
equations is required to observe the rich dynamics. By analogy to prior studies of the Doi equation (e.g.,
[16]) and the ‘complete’ theory of Rey and Tsuji [4], we may assume that some of the textures observed
in a two-dimensional simulation are unstable to three-dimensional disturbances, and an even richer range
of dynamics is possible for three-dimensional flows.

There is one disappointment in these simulations. The Marrucci–Greco nematic potential was conceived
as a means of addressing the role of defects in the flow of liquid-crystalline polymers by introducing a
length scale characteristic of molecular interactions. We do not see the development of textures that scale
with Er, as required to be independent of the global dimension of the shear cell, so the interesting textures
we do observe are probably unrelated to the development of the micron-size ‘domains’ characteristic of
liquid-crystalline polymers.
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