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ONE-SIDED POLARIZATION AND RENORMALIZATION FLOW IN
THE KOSTERLITZ-THOULESS PHASE TRANSITION*

RAZ KUPFERMAN' AND ALEXANDRE J. CHORINT

Abstract. The renormalization group (RNG) analysis of the Kosterlitz—Thouless (KT) phase
transition is a basic paradigm in statistical physics and a well-known success of the RNG approach.
It was recently shown that the derivation of the RNG parameter flow for the KT problem rests
on the assumption of one-sided polarization, which is implausible and cannot be derived from first
principles. We extend this analysis by exhibiting simple self-consistent alternate assumptions that
lead to different parameter flows. We then study the KT transition numerically and show that
the properties of the transition are well described by the standard RNG analysis (up to some minor
paradoxes). The reason for the success of the assumption of one-sided polarization remains unknown;
the problem exemplifies the difficulties in the mathematical analysis of the RNG. Related issues in
turbulence theory are pointed out.
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1. Introduction. The Kosterlitz—Thouless (KT) transition is the transition be-
tween a conducting and an insulating phase in a sparse Coulomb system in the plane;
it also is a basic paradigm in statistical physics, has been extended to the analysis
of transitions in vortex and other two-dimensional systems, and constitutes a model
for transitions in more dimensions. A basic theory of mean-field type for this system
was given by Kosterlitz and Thouless several decades ago [11]; in particular, these
authors sketched the famous renormalization group (RNG) parameter flow that has
remained the basic building block of subsequent work. Rigorous work on this tran-
sition is available, and modern approaches to the renormalization group have also
appeared and provided higher order corrections to the basic theory [4, 16, 18]. For
the sake of brevity, we shall use throughout a terminology appropriate for a Coulomb
system.

Numerical work intended to check this theory has a long history [24, 25] and there
is a substantial amount of recent work [27, 20, 21, 22, 23, 10, 15]. It was always clear
that the verification of the properties of what is a very weak transition is difficult,
but recent work does indeed claim to have verified the basic properties of the KT
parameter flow.

In a recent paper [9], Chorin and Hald showed that, within the framework of
the simplest and oldest description of the transition, one can derive essentially differ-
ent renormalization parameter flows with distinct properties; historically influential
arguments that these flows are equivalent contain fundamental errors. A further con-
clusion was that the derivation of the KT renormalization flow rests on a very specific
assumption of one-sided polarization, which has long been known to be implausible
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in its literal form [28]. In further, still unpublished work, these authors have reached
similar conclusions for more sophisticated derivations of the RNG equations. The con-
clusion that one-sided polarization was a key to the validity of the KT model has also
been reached by Alastuey and Cornu [2], who attempted to verify its consequences
in a simplified model problem. A conclusion from this work is that the validity of
the basic renormalization theory for the KT problem is far from being established on
theoretical grounds. A further goal for reconsidering the standard theory is the re-
cent discovery that well-known and long undoubted scaling properties of dense vortex
systems are in fact in error [5].

As discussed below, the alternate models proposed by [9] cannot be approximated
by a system confined to a finite region of the plane, as required in any numerical
verification. We therefore exhibit a new family of allowable models, also based on
assumptions that differ from one-sided polarization. The conclusions based on these
assumptions can be falsified numerically, and we show that although these alternate
assumptions lead to the same asymptotic, “universal” properties as the standard KT
theory, the locations of the corresponding phase transition lines are different and are
sensitive functions of the specific assumptions.

We then study numerically the KT phase transition line in variables that are
sensitive to the specific assumptions made. A key issue is the validity of the finite-
size scaling without which the calculations cannot be brought to a conclusion; we
offer a detailed analysis of this scaling. The conclusion is that those aspects of the
standard KT theory that are accessible to a numerical calculation with available tools
are verified with unexpected accuracy; paradoxes and uncertainties still remain, and
we discuss them. We also point out an analogous paradox in turbulence theory (which
was indeed our motivation for undertaking this study).

The paper is organized as follows: We begin with a description of the Coulomb
system, followed by a review of the relevant linear response theory and a summary of
the conclusions of Chorin and Hald with a new example that extends them. We then
explain the numerical approach and implement it with care. The conclusions and the
open questions, as well as the related problem in turbulence theory, are summarized
in a final section.

2. The Coulomb gas in the plane. Consider a two-dimensional Coulomb gas
with 2N particles that carry a unit charge ¢ = £1, in an L x L square box. Without
loss of generality, one can assume that the gas is neutral [17], and thus to each positive
charge corresponds a negative charge, with N being the number of pairs of opposite
charges.

The Hamiltonian of the system is

(2.1) H = %/dx /dx’p(x)G(x—x')p(x’),

where p(x) is the charge density, and G(x) is the Green function of the Coulomb
interaction which satisfies

(2.2) V2G(x) = —27m6(x),

subject to appropriate boundary conditions. For an infinite system G(x) = — log |x|+
C, where C' is a constant. Simulations are, however, restricted to finite systems. It is
usual and reasonable to work with periodic finite systems.

The interaction between point charges diverges logarithmically at short distance,
and it is necessary to introduce a cut-off length, o, for the system to be stable. In a
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lattice model the cut-off is built in if distinct particles are prevented from occupying
the same lattice site. In a continuum model a cut-off can be introduced by exclud-
ing configurations in which the separation between any two particles is less than a
minimum length (a “hard core” model). A standard alternative is to regularize the
interaction by smoothing the charge distribution ¢(x — x;) associated with each par-
ticle (a “soft core” model). We adopt the second approach and assume each particle
has a Gaussian charge density profile [15], so that the charge density field is

2N 1 oON , .
(2.3) px) = D aidlx = xi) = g > qie <L
=1 i=1

After substitution of (2.3) into (2.1) the Hamiltonian can be written as a double sum,

1 2N 2N
(2.4) Hy({xi}) = 5 D> aVixi —x))g;,

i=1 j=1

where
(2.5) Vi(x; —xj5) = /dx /dx,gb(Xi —x)G(x — x)o(x; —X)

is the regularized interaction, which can be represented by the Fourier series
1 1 4202 9 27
(2.6) V(x) = o Z 72 OXP (— 2 k ) exp <sz . x) .

For r = |x| small enough compared to the spatial period L, V(x) is spherically
symmetric and approximated by

) iy e () - () o]

where Ei(-) is the exponential-integral function [1] and ~ is the Euler constant.

The critical properties of the Coulomb gas are characterized in particular by a
sharp change in the response of the system to external fields. This response can
be expressed by the dielectric “constant” e, which is related to the two-point charge
correlation function in the absence of external fields. The relation between the two is
a standard result of linear response theory, which we review for the sake of clarity.

Consider an external electrostatic potential, ¥(x), which adds to the Hamiltonian
a perturbation

(2.8) 0H = /dxp(x)\Il(x).

This external field induces a charge redistribution whose average in the linear response
regime is

(2.9) (p(x)) = =B (p(x) 6H), ,

where the notation (-), refers to an average with respect to the unperturbed system.
The induced charge distribution creates an induced electrostatic field, which together
with U(x) forms an effective field,

(2.10) Ueff(x) = U(x) + /dx' (p(x')G(x—x') = /dx’ e lx—x)U(x).
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The last identity defines the inverse dielectric function e~!(x), which is easily ex-
pressed in Fourier space; let

(2.11) e1(k) = % /dx'e_l(x) exp (—2L7Tk~x> .

(2.12) 1K) = 1 2 (0K,
with

2
(2.13) p(k)p(=k) = % exp ( ) qu exp ( ik - xj>

The components of the wave vector k in a finite periodic system with period L
are multiples of %” Note that a k = 0 excitation corresponds to a uniform shift of the
electrostatic potential, which has no physical effect on the system. Hence the smallest
wave vector for which a dielectric response can be defined in a periodic system is
k=k|l= 2% -

The inverse dielectric constant, e~!, is the k — 0 limit of e~!(k) in the thermo-
dynamical limit. The two limits, k — 0 and L. — oo, are not interchangeable, as the
k — 0 limit is not defined for a finite system. In the simulations below we calcu-
late the inverse dielectric function for the smallest nonzero wavevector. The inverse
dielectric constant is then obtained by the limit

2T
2.14 1 lim 1! .
(2.14) € im e~ <L>

L—oo

It has been argued in the computational literature that e—! (27”) is not a conve-
nient quantity to work with in the determination of the phase transition point. One
proposed alternative is to extrapolate the inverse dielectric function calculated for
finite wave numbers and ﬁfei:l L to k = 0. As the system size tends to infinity, both
the k = 2% component of e~1(k) and the extrapolation to zero wave vector converge
to the same limit, and we see no reason to prefer the latter, which has no physical
significance and produces an additional numerical error.

The statistical properties of a macroscopic system are determined by the proba-
bility measure associated with its microscopic states. We shall use both the canonical
and the grand-canonical ensembles in the analysis of the system. In the canonical
ensemble N, the number of pairs, is fixed, and the probability density function for
the configuration {x;} is the Boltzmann distribution,

1 — X
(2.15) p({x:}) dej =5 BHn ({x:}) de] ,

where Z, is the canonical partition function and g = T is the inverse temperature. In
the grand-canonical ensemble the number of pairs can vary, and a chemical potential
or an energy per charge u is introduced. It is convenient to start with a system in
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which the number of states is countable; let { be a spatial discretization size; the
continuum limit will be recovered below. The probability density function for a state
with N pairs and a configuration {x;} is

2N 2N

. ﬁ — i N _—BHN({x:i}) ﬁ

210 o) ([T55) =70 ligg)
where Zg. is the grand-partition function and z = e2Pr is the fugacity.

The Coulomb gas model we have just defined includes the following parameters:
the temperature 7'; the number of charge pairs N or, alternatively, the fugacity z;
the system size L; and the cut-off length o. In the grand-canonical ensemble we also
introduce a lattice size . This system exhibits interesting scaling properties, which
reduce the number of independent parameters and provide insight on the role of the
cut-off length.

Consider (2.16): If the grid size ¢ is small compared with the interaction cut-off
length o, the statistical properties of the system are asymptotically invariant under
the grid refinement transformation,

(2.17) ¢ — acC, z— az, T-—-T, o — o, L— L.

This suggests the definition of a rescaled fugacity, Z = %, which remains invariant
under grid refinement. The continuum limit can then be taken by keeping Zz fixed
while ¢ — 0.

Another scaling relation follows from the fact that both the regularized interac-
tion (2.6) and the inverse dielectric function (2.11) depend only on the length ratios,
x;/L and o/L. Therefore the dielectric function remains invariant under the scaling
transformation

(2.18) o — ao, L — al, z— a1z, T—T.

Two results follow from this invariance: (i) The cut-off length o can always be set
equal to one by an appropriate rescaling of the other parameters. (ii) The limit of point
charges 0 — 0 with the other parameters fixed is equivalent to the limit of infinite
fugacity or infinite particle density. The cut-off length determines the elementary
length scale of the system, and certain quantities diverge as it tends to zero, as is
usual in the theory of phase transitions.

3. The KT renormalization group. Heuristically, the KT phase transition
can be described as follows: At low temperatures all the particles form bound pairs of
opposite charge and the medium is dielectric. At the critical temperature, T, charge
unbinding occurs, and for T' > T, there exist free charges which can conduct electric
current and screen electric fields. This transition is accompanied by sharp changes
in the dielectric constant and by the divergence of certain thermodynamic quantities
[19].

In their original work [11] Kosterlitz and Thouless presented a model of the phase
transition based on an iterated mean-field approach in the limit of low fugacity. In
this model, at temperatures below the transition temperature, the medium is viewed
as consisting of bound pairs of particles, or electric dipoles. In general, there is some
ambiguity in the identification of the pairs in a system in which the degrees of freedom
are the coordinates of the individual charges; however, at low charge density this is
not a serious problem.
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Consider a dipole of size r; its contribution to the total energy can be divided
into an intrinsic contribution V(r) (the “bare” interaction) and the energy associated
with its interaction with the rest of the system. In the mean-field approximation the
interaction between charges that belong to different pairs is replaced by its ensemble
average. The average energy of interaction between a dipole and the rest of the system
is added to the bare interaction and defines an “effective,” or renormalized, interaction
energy. Within the mean-field approximation the total energy can be written as a
sum of the effective energies of the dipoles.

The effective energy E(r) associated with a dipole of size r can be related to a
scale-dependent dielectric function e(r): Start with a dipole of size zero, and then
increase its size adiabatically, allowing the medium to equilibrate after each infinites-
imal step. In the absence of neighboring charges, work is done against a restoring
force f%—‘;. We introduce the dielectric function by writing the effective force as

—e1(r) %—‘T/. The effective energy of a dipole of size r is by definition

(3.1) E(r)= —/OT ds 671(8)887‘:.

Note that both V(r) and €(r) are assumed to depend on the size of the dipole but not
on its orientation. This approximation holds as long as the dipole is small compared
to the size of the system. The lower limit of integration is taken as zero because the
finite cut-off has already been taken into account in the definition of the regularized
interaction, V. Note also that the same notation, e ~!(-), was introduced first in (2.10)
and then in (3.1). The equivalence of these two definitions is a postulate of the KT
theory and does not follow from rigorous analysis.

One next considers the statistics of a gas of noninteracting dipoles whose energies
are given by (3.1). At low fugacity, Z < 1, the density of dipoles of size between r
and r + dr is

(3.2) dn(r) = 2rzr dr exp [ﬁ /0 dse—l(s)aaﬂ +0 (%),

where n(r) is the number density of dipoles of size up to r. The polarizability of a

dipole is p(r) = %Brz [11], and the electric susceptibility of the medium, ¥, is the

total polarizability per unit square,

(3.3) X = /000 dn(r) p(r) ~ w0z /000 drr3 exp {ﬂ /OT ds e_l(s)%‘:} .

Finally, the dielectric constant is related to the susceptibility by

(3.4) e=14+2my~1+ 2772ﬂ2/ drr® exp {ﬂ/ ds el(s)av} .
0 0

0s
As pointed out in [9], (3.4) is not sufficient to determine the function e(r); it
is a single constraint on the infinite set of values of the function e(r). One has to
make additional assumptions to obtain a solvable model. The best known of the
assumptions made by KT (for historical remarks, see, e.g., [9]) was that equation
(3.4) could be generalized into a scale dependent equation for the function e(r):

s t
(3.5) e(r) =1+ 277255/ dt t3 exp [6/ ds 61(3)%‘;} .
0 0



THE KOSTERLITZ-THOULESS PHASE TRANSITION 1849

The natural physical interpretation of this approximation is that the energy of a given
dipole is reduced only by the polarization of dipoles that are smaller than itself. In
particular, the energy of a dipole of size r is reduced by the polarization of a dipole
of size r — 6r but not by the polarization of a pair of size r 4+ ér, however small ér
may be. At first sight, this is an implausible assumption, even though the resulting
procedure is natural within the framework of the renormalization group.
It is customary to introduce a new function K (r) = B¢ ~1(r), in terms of which
(3.5) becomes
T t 8‘/
(3.6) K 'r)y=8""1+ 271'22/ dt t* exp [/ ds K(s)as} .
0 0

The integral equation (3.6) can be transformed into a system of first order differ-
ential equations. Define a logarithmic scale by ¢ = log r; (3.6) is then equivalent to
the pair of ordinary differential equations

dK~!

TS
dy

T =[x (- g,

(3.7)

with the initial conditions

(3.8)
y(0) ~ 212z et for / <« —1.

The equivalence is in the sense of ordinary calculus: Integration of (3.7) yields values of
the function K (r) in (3.6). However, (3.7) can also be given an interesting additional
interpretation: One can view y(¢) and 8/K ~1(¢) as the effective fugacity and dielectric
constant at scale ¢, and thus (3.7) describe the flow of the parameters as functions of
scale; they can thus be viewed as RNG equations.

On the basis of this model one can also calculate n(r), the density of dipoles of
size smaller than r, which satisfies the differential equation

dn e 2
with the initial condition n(—o0) = 0.

The RNG equations (3.7) differ slightly from their standard form because we
accounted explicitly for the effect of a regularized interaction, V(). This correction
to the equations becomes small as £ > 1. One normally assumes that the universal
properties of the system are determined by the properties of the fixed point of the
renormalization flow [3], while the precise location of the phase transition line, which
can be read from these equations as well, may well depend on the contingencies of the
cut-off and of the specific assumptions used to derive the RNG equations from the
more general statement of the linear response assumption.

The macroscopic inverse dielectric constant is the asymptotic value e = = TK (o).
The two parameters T' and Z determine the initial conditions (3.8) and thus deter-
mine ¢~ !. For each value of z there exists a critical temperature T,.(Z); it is widely
believed that at T, the dielectric constant €' jumps discontinuously from a
finite value to zero [19].
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FiG. 1. The K-y projection of the renormalization flow (3.7) for Z = 0.006, T' = 0.0957 (solid
line), T = 0.0959 (dashed line), and T = 0.0961 (dash-dot line). The initial condition is given by
(3.8) with £ = —4.0. The critical curve is the one that approaches the fized point (4,0).

The critical behavior of the system can be read from (3.7) as follows: For ¢ >> 1
the derivative Z—-’; simplifies into [4 — K (£)]y(¢), and the trajectories (K (¢),y(¢)) are
given by a family of curves [9]

K 4
(3.10) y = log 1 + % 1+¢(T, 2),
where ¢(T), Z) is a constant that characterizes the curve and is determined by the initial
conditions. The resulting family of functions y = y(K) has a vertical asymptote at
K =0, is decreasing for 0 < K < 4, has a minimum y,,;, = ¢(T,2) at K = 4, and
increases for K > 4. Points at which these curves intersect the K-axis are fixed points;
hence y does not change sign along a trajectory. As K(—oc) > 0 and y(—o0) > 0, y(¢)
is always positive and K (¢) is monotonically decreasing. The trajectory that passes
through the fixed point (K = 4,y = 0) is the critical trajectory which separates the
parameter values for which K., = K(0o) = 0 (the conducting phase) from those for
which K is finite (the dielectric phase); see Figure 1. Note that this description of
the phase transition contains a strong heuristic element; in [9] it is shown that the
RNG trajectories are not well defined in the conducting phase.

From (3.10) it follows that this fixed point is reached for ¢ = 0; i.e., the condition
¢(T,,Z) = 0 defines implicitly the critical curve T.(2z). This observation is often
interpreted as meaning that K., jumps at the transition point from K., = ¢ 1/T =4
to 0, a conclusion known as the universal jump condition (but it should be pointed
out that though the conclusion may well be true, it is shown in [9] that this derivation
makes no mathematical sense).

The phase transition line determined from (3.7) is shown in Figure 2.

Equations (3.7) can be derived by more sophisticated means, together with higher
order (in y) approximations; the most attractive alternative proceeds through the
identification of the system with a sine-Gordon field theory (see, e.g., [17]). However,
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F1G. 2. The phase transition line, Tc(Z), calculated from the renormalization group equations
(3.7). The open circles are the phase transition points as evaluated from our numerical calculation.

for our present purposes the derivation above is sufficient. Our goal is to examine
whether the phase transition can be described by (3.7) with their initial data; the
identification of flaws in various derivations is outside the scope of the present paper.

4. Alternative assumptions and their RNG flows. We have already shown
that the KT model leading to (3.6) involves an additional assumption: The dipole
interactions are assumed to be one-sided; dipole energies are affected only by the
polarization of smaller dipoles. As was demonstrated in [9], the KT assumption is not
the only one that can be made, and we have argued that it is implausible. Several
other assumptions can be found in the literature. The general belief is that these other
assumptions also lead to the KT parameter flow (see (3.7)). In [9], Chorin and Hald
showed that this general belief is false, and indeed that most of the derivations of the
KT equations within the context of linear response theory are in error. Other a priori
reasonable assumptions lead to phase transition lines different from the KT line in
Figure 2 and to theories that are different both qualitatively and quantitatively.

Note that the models offered in [9] that are drastically different from the KT
model are nonlocal, in the sense that the energy of a pair of any size is affected by the
polarization of pairs of all sizes, large as well as small, but of course with weights that
differ according to the relative size. In a finite calculation, there is no way to check
the correspondence between these different models and numerical results because all
dipole pairs beyond the size of the computational domain are suppressed.

We now exhibit a simple model that demonstrates the sensitivity of the KT phase
transition line to the specific assumption of one-sided polarization. Suppose that
instead of having the dipoles of size up to r and no others affect the energy of a pair
of size r, we allow also the pairs up to size ar to enter into the calculation of K(r),
where « is a parameter. This assumption generalizes the KT assumption, and the
choice a # 1 is not less plausible than the KT assumption o = 1. It is natural to
assume that the range of scales that contribute to K grows with r, because the size
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Fic. 3. Phase transition lines, T.(Z), calculated by solving the integral equation (4.1) for three
values of a: 1.0 (circles), 1.2 (stars), and 2.0 (crosses).

of the pairs grows with r, and the larger the size of the pairs, the more uncertainty
there should be as to which pairs contribute to K. The resulting integral equation
for K(r) is

ar t
(4.1) K 'r)y=p"1+ 27r22/ dt t3 exp {/ ds K(s)av] .
0 0 88

This equation is equivalent to a pair of differential-difference equations,

dK—!
4.2 =y

dy a2e2l 4p?

@:y(ﬁ) 4—y(€—|—logoz)<1—e /4 )]

The initial conditions are

K(—o00) =T,
(4.3) y(0) ~ 2m2zatet, < —1.

The solution of (4.2) depends on the value of a. However large ¢ may be, the
solution of (4.2) never “forgets” its initial conditions, and some properties of the phase
transition change. In particular, the location of the phase transition line changes with
« (see Figure 3). Thus a simple generalization of the sharp one-sidedness assumption
of the KT model has a substantial effect on the phase transition line.

Note that as £ — oo, the new RNG equations (4.2) converge to the KT equations
(3.7); indeed, for ¢ large enough, the additive argument in K becomes negligible. By
contrasting this remark with the theory in [9], we reach the following conjecture: All
models of the phase transition in which only a finite range of dipole sizes can affect the
energy of a dipole of a given size give rise to RNG equations with the same asymptotic
properties near the critical point. However, this still allows the nonuniversal properties
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of the transition—for example, the location of the phase transition line—to depend
on the specific properties of the model; in the present case, the phase transition line
is a sensitive function of a.

5. The numerical algorithm. We now turn to the numerical investigation of
the KT transition. First, the infinite plane must be approximated by a square, and
it is generally believed that the boundary conditions that typically yield the highest
accuracy (i.e., represent most faithfully what happens in the whole plain) are periodic
boundary conditions. A major uncertainty is introduced in this way: It is far from
obvious, and probably false in general, that the statistics of a Coulomb system in a
finite domain, with any boundary conditions, converge to the statistics of a Coulomb
system in the plane. Indeed, it is quite easy to see that the Coulomb interaction in the
plane decays so slowly with distance that the effect of those charges that are outside
a circle of radius R on the charges at the center of that circle does not tend to zero
as R increases. By the same argument, models in which pairs of all sizes interact,
such as the ones considered in [9], cannot be studied numerically on a finite domain.
A whole class of interesting phenomena is therefore excluded at the outset. We are
studying a problem that differs from the true problem, and are excluding models that
differ from the bounded-interaction model and that would make sense only for the
true problem. This limitation should not be forgotten.

The statistical properties of our Coulomb gas in a periodic domain can be calcu-
lated by Monte-Carlo methods, where averages are calculated over a Markov chain of
states generated numerically. The standard way of doing so is the Metropolis algo-
rithm, in which the Markov chain process is specified by transition probabilities w;_.;
between states characterized by (N;,{x;}) and (N;,{x;}). For the statistical weight
of the ith state, p;, to approach the desired equilibrium value, p(N;, {x;}), as the size
of the sample tends to infinity, it is sufficient (although not necessary) to impose the
detailed balance condition

(5.1) p(Ni, {x;}) wij = p(Nj, {x;}) wj—;i Vi, j.

This condition does not define the transition probabilities uniquely.

Previous numerical work has been based on the grand-canonical ensemble. The
canonical and the grand-canonical ensembles lead to identical statistical properties in
the thermodynamical limit, where number fluctuations are negligible. In the present
problem, however, the simulations can be performed only with small systems in which
these fluctuations are not necessarily small. It will therefore be of interest to compare
the numerical results obtained with the two ensembles.

In the case of the canonical ensemble we proceed as follows: At each step one
particle is selected from the set of particles present, with each particle having an
equal chance to be chosen. An attempt is then made to move it to a new location
within a radius d from its current location; the new location is selected with uniform
probability within the circle of radius d, and periodicity is enforced. This defines a
trial move from a state (IV,{x;}) to a state (N, {x;}), which is then accepted with
probability min (1,exp{—F [Hn({x;}) — Hy({xi})]}).

This algorithm assigns nonzero probabilities only to transitions between states
that differ in the location of one particle by a distance less than d. The attempt
frequency between two states ¢ and j that are accessible to each other, i.e., the prob-
ability density of the event that there will an attempt to move the system from one
of them to the other, is constant and equal to Q;_.; = Q;_; = W—ip. The transition
probability, w;—;, is the product of the attempt frequency, §2;_.;, and the acceptance
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probability, a;—.;, that once the attempt is made, it will be accepted. This product
satisfies the detailed balance condition,

(5.2) Wimj _ Gimj _ —BlHN{x; ) —Hn({x:})]
Wj—4 Aj—q

The Markov chain for the grand-canonical ensemble has to include transitions
between states with differing numbers of particles. We construct a process in which
each step can allow pair creation, particle displacement, or pair elimination. The type
of trial move is selected at random, with probabilities py, po, and p|, respectively, with
by =py.

The relocation of particles is performed in exactly the same way as in the case of
the canonical ensemble. Pair addition is implemented by randomly selecting two sites
for the new particles to be added; the new sites are selected with uniform probability
throughout the system. Again we need to briefly consider a lattice model with grid
size ¢. Let (N, {x;}) and (N +1, {x;}) denote the state of the system before and after
the addition of a pair. The attempt frequency for such a move is Q;_.; = p;/ (%)4.
The backward transition of pair elimination is performed by randomly selecting a
positive and a negative charge to be removed. The attempt frequency in this case is
Qj—; = p,/(N+1)2. For detailed balance to be satisfied, the acceptance probabilities,
a;—; and a;_;, must guarantee that

(5.3)  Wimi ZRimiind oot (HN (%)) — Hy((xi)]}

Wj—q Qjﬂi Aj—q

Therefore, the ratio of acceptance probabilities must satisfy the condition

Qi j L z
5.4 Lt/ A Z e BHN ({5 D-Hv({x: D] = R.
o4 ai—i (N2
This relation is satisfied if we take, for example, a;—; = min(1,R) and a;_; =

min(1, R~!). We can now reintroduce the rescaled fugacity, z = z/¢*, and let the
lattice size go to zero.

The two algorithms defined above still include free parameters, such as d, ps,
and pg, which can be dynamically adapted such to optimize the convergence rate of
the Metropolis sampling. It is widely thought that an optimal convergence rate is
obtained when the acceptance ratio of a single Metropolis step is %; indeed, if the
acceptance ratio is too small, the system will change very slowly, and if it is too large,
it must be that the proposed moves are too small and the evolution will be slow as
well.

6. Finite-size scaling. A standard problem in Monte-Carlo simulations is the
extrapolation of the numerical results to the thermodynamical limit. As explained
above, the most we can obtain in a simulation is an evaluation of the inverse dielectric
function for the smallest nonzero wave number, which depends in general on both
the temperature T and the size of the system L. The phase transition point, T,
for a given chemical potential or density can be located by the requirement that at
T, the dielectric constant (2.14) drops discontinuously from a finite value to zero.
In doing so, we explicitly assume the correctness of the universal jump condition
[19] for which an independent check would have been desirable. This discontinuity
refers to the thermodynamical limit; hence we have to extrapolate the numerical

results to this limit. The extrapolation of 1 (2%) to the thermodynamical limit
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requires the knowledge of the form of the dependence of € on L. One can derive this
dependence from the RNG equations, but then the validity of the KT theory is based
on a numerical procedure into which this theory is built in; the most that can be then
claimed is that the results are consistent with the assumptions.
When ¢(T,2z) = 0 (i.e., at the critical temperature) and £ > 1, the (K (), y(¢))
trajectory is given by the function
K(¢) 4

(6.1) y(0) = 1ogT + X0~ 1

(see [9]); substitution into (3.7) yields a closed equation for K (¢),

K, K(0)
(6.2) Wf—K logT+K(K—4).

Linearizing about the fixed point K (¢) = 4 + x(¢), we find

dr 1,
(63) dié = _§K} 5
which is easily integrated. Hence
(6.4) K(¢) 4{1+1} >1
’ 200+ 4o) |’ ’

or, reverting to the original linear scale,

(6.5) e t(r)=4T [1 r> 1,

* 210%(’“/%)] ’

where ¢y and Ly are integration constants and ¢p = — log Ly. Equation (6.5) is widely
viewed as a plausible guess for the scale dependent dielectric function of the KT
transition.

Note here a significant ambiguity: The parameter r refers to the size of a dipole;
in the KT theory one assumes that the energy of a dipole depends on the polarization
of smaller dipoles but not on the polarization of larger dipoles. If one identifies GK—1
evaluated at L with the factor by which the energy of a pair of size L is decreased,
one is making a nontrivial additional assumption according to which dipoles smaller
than L outside the square of side L do not contribute to the dielectric response, and
one also simplifies the complexities that arise when one has pairs smaller than L lie
partly inside and partly outside the periodic box of side L. In other words, we are
identifying, with no clear quantitative rationale, two quantities that are in principle
different: (i) The reduction in the energy of a single dipole pair by the mean field
induced by neighboring dipoles and (ii) the effective field resulting from the ensemble
average over the charge distribution induced by the external field. What we calculate
numerically is the response of our system to a spatially sinusoidal field with wave
number k = 2% It is most unlikely that e~!(L), as defined by the KT model, and

1 (2%), as defined by (2.12), are the same quantity. Indeed, [22] shows that they are
different and extracts a numerical relation between them which is hard to rationalize.
The derivation of the form of the finite-size scaling cannot be taken literally. Note
in addition that in a periodic system of size L the maximum separation between two

points is L/2.
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In a similar way, one finds y(r) and n(r),

1
6.6 ~nN — W
( ) y(r) 8(10g T/L0)27
1 1 2 r
. e — — | 4 ZEi(-2l0g )]
(6.7) n(r) ~ neo 8t |r2log r/Lo + L3 ! ( & Lo)]

In addition, the relevance of the finite-size scaling formula to the extrapolation of
data obtained for finite (and small) systems should depend on the scale at which the
behavior of K(¢) is well approximated by (6.4). From (6.4) it follows that

(6.8) ~ U+ 1l

2
K()—4
for £ > 1. In Figure 4(a) we plot ﬁ as a function of ¢ for z = 0.003 and
eight different values of temperature. The thick solid line corresponds to the critical
temperature T, = 0.1229532 and coincides with the line £ 4+ 0.951; thus £y = 0.951 or
Ly = e~ %o = 0.386. The other lines correspond from top to bottom to the values of
temperatures indicated in the legend of the figure. The further T is from T, the earlier
the curve deviates from the straight line. A deviation from the critical temperature
at the seventh significant digit causes the curves to separate at the logarithmic scale
of £ ~ 80.

For the sake of comparison with the numerical simulations one needs to consider
much smaller scales. In Figure 4(b) we present the same curves for 0 < ¢ < 10. The
thick solid line is again the asymptotic behavior of the critical curve. None of these
curves coincides with the asymptote in this range. For T very close to T, there exists
an intermediate range of scales where the behavior of the curves is linear; the slope
of the curve is, however, not one as predicted by the finite-size scaling formula. For
T = 0.1228, which deviates from the critical temperature by a tenth of a percent, there
is no range for which ﬁ is linear. The very high sensitivity of the renormalization
flow to the temperature and the fact that it agrees with the asymptotic behavior only
at very large scales shed doubt on the extrapolation procedure based on the finite-
size scaling formulas.

An alternative to this finite-size scaling, based on an analogue of the Callen—
Symanzik form of the RNG, has been proposed for the spin version of the KT tran-
sition [20] and turned out to be inapplicable in our calculations, as we shall discuss
further below.

7. Comparisons with some earlier work. The early numerical work on the
KT transition was related to the Xy spin model [25]. These simulations attempted to
validate the KT theory but gave inconclusive results due to poor statistics. In order to
have sufficient statistics one needs to have a large number of vortices. The vortex-pair
density near the phase transition in the Xy model is less than 1072, creating a need
for very large systems.

Saito and Miiller-Krumbhaar [24] were the first to study the Xy model by explic-
itly considering vortex statistics, i.e., by studying a Coulomb gas. They used a lattice
model with a chemical potential ¢ = —0.808 which corresponds to half the energy of
vortex-pair creation in the Xy model. They were able to locate the transition from
dielectric to metallic behavior within 20% accuracy.
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FiG. 4. Ewaluation of the asymptotic parameter £y for z = 0.003. The graphs show ﬁ

versus the renormalization flow parameter £. The thick solid line represents the asymptotic linear
dependence at the critical point, ﬁ =L+ £y with Lo = 0.951. The eight curves are for different

values of the temperature (see legend). (b) is a magnification of (a) at small values of £.

Lee and Teitel [12] considered a lattice Coulomb gas with a variable chemical
potential, defined by the Hamiltonian,

(7.1) H= %ZZqu(Xi —x)q; — 1Y g+ > (g —ad),
i 7 i 7

where the summations run over all lattice points, ¢; assumes all signed integers, and
the last terms help to suppress charges with |¢;| > 1. They focused mainly on the
first order transition to a solid-like checkerboard lattice, obtained for large negative
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values of the chemical potential. To locate the KT transition they calculated 1 (2%)

and identified the transition point as the intersection of the curves of =1 (2%) as a
function of T for different sizes of system. This intersection point lies close to the line
representing the universal jump condition but does not coincide with it. In fact, it is
not clear from the data that one should expect all the curves to intersect at one point
for increasing system size.

The use of the finite-size scaling relation to locate the KT transition was intro-
duced by Weber and Minnhagen [27]. The derivation of the scaling relation from the
KT renormalization group equations was, to our knowledge, first presented in [26].
For the Xy model these authors were able to locate the transition point based on the
best fit within a few tenths of a percentage point. This approach was then adopted
by numerous other authors [13, 10, 15].

As stated above, there is difficulty in validating a theory with a calculation that
explicitly uses the theory to be validated. We have been unable to avoid this vicious
circle completely while using periodic boundary conditions. An interesting alterna-
tive is to use “self-consistent” boundary conditions [6], where the interaction of the
environment with the subsystem under consideration is approximated by an appro-
priate mean-field term added to the Hamiltonian. The idea is to pick an appropriate
effective interaction such that (i) the modified Hamiltonian reduces to the original
one in the thermodynamical limit and (ii) there is only a weak dependence of the
observable of interest on the size of the system. These two properties may produce
values of the observables for a finite domain that do not deviate much from their
thermodynamical limits. Thus the use of self-consistent boundary conditions may be
a powerful alternative to the finite-size scaling discussed above; it is closely related to
the Callen-Symanzik form of the RNG [3]. Such an approach has been successfully
applied to spin systems [7].

In the context of the KT transition, self-consistent boundary conditions were
successfully used by Olsson [20, 21, 22, 23] in a spin formulation; he coupled the
finite domain to the spins outside the domain via a coupling constant and then found
the value of the coupling constant which minimized the dependence of the results
on the size of the domain. The KT scaling is still necessary for extrapolating the
values of the dielectric function and other variables to their infinite-domain values.
For the approach to work there must exist a value of the coupling constant for which
the derivative of the quantities of interest (for example, the dielectric constant) with
respect to the size L of the computational domain vanishes; this value of the coupling
constant presumably leads to the best values of the dielectric constant; the same holds
for other quantities of interest, possibly at other values of the coupling constant. We
have attempted to apply this method in the present problem and found that with the
analogue of the coupling used by Olsson the derivative of the dielectric constant with
respect to the system size was a monotonically increasing function of the system size,
i.e., the best value of the coupling constant was zero and the derivative was not zero
at that point; thus the method did not work.

From the success of Olsson’s coupling method, one may draw the conclusion that
KT calculations should be based on spin variables and that Coulomb variables lead to
less accurate results. Our present calculations do not contradict this general conclu-
sion, although they are successful in their own way. Coulomb models are appropriate
for studying models that may violate the KT assumptions because the KT assump-
tion is stated directly in these models; spin models introduce other effects that could
obscure the effects of the one-sidedness assumption. We expect to return to the ap-
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Fi1G. 5. The running average of the inverse dielectric function for the smallest nonzero wavevec-
tor as a function of the size of the sample for the canonical ensemble with T = 0.08, N = 16, and
L = 24. The three curves were calculated with three different seeds to initialize the random number
generator.

plication of coupling schemes in vortex systems in a later publication, because they
are potentially very useful and we do not fully understand why they failed in our
problem.

8. Numerical results. We now present the numerical results. The regularized
interaction function was calculated from the Fourier series (2.6). The cut-off was
o = 1. The number of Metropolis steps in each run was 5 - 10> L2. The first 10% of
the steps was excluded from the statistics in order to allow the system to equilibrate.

We start with the canonical ensemble. ’Il)\estimate the accuracy of the procedure
we plot in Figure 5 the running average of e—! (%’T) as a function of the sample size.
The three curves were calculated with the same values of the parameters except for a
different initial seed for the random number generator. The error scales as the (—%)
power of the sample size. From Figure 5 the error in the dielectric function can be

estimated as a fraction of a percent.

In Figure 6 we plot e~ (2%) as a function of temperature for a dipole density of
n = 0.0277. The five curves correspond to five different system sizes. The dashed line
is a graph of the locus of the universal jump 4e"'T = 1. The dielectric function is, as
expected, a decreasing function of temperature. This plot, however, is insufficient to
show the occurrence of a phase transition and does not allow us to locate the phase
transition point. Even if one relies on the belief that the graph of ¢~!(T) intersects
the universal jump curve at the critical point, it is not clear where this intersection
occurs as L — oo.

In order to locate the phase transition point we performed a fit based on the
finite-size scaling formula (6.5). The procedure is as follows: One picks values of the

inverse dielectric function, 1 (QT”), calculated for different values of T and L. For

each value of the temperature one tries to fit the dependence of 1 (2%) on L to the
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Fic. 6. Canonical ensemble: the “bare” (uncorrected by finite-size scaling) inverse dielectric
function for the smallest nonzero wavevector as function of temperature. The dipole density is
n = 1/36. The five curves correspond from top to bottom to L = 12, 16.97, 18.97, 20.78, and 24.
The dashed line is the 41T =1 curve.

finite-size scaling formula (6.5) by minimizing the x2-error function

2 -1 1 ?
(8.1) X3(T) Z{e (T, L;) — AT |1+ 210g(LZ-/L0)]}
with respect to the parameter Ly. The summation runs over the different system
sizes, L;. The assumption is that there exists a single temperature T, for which

. 2
(8.2) w,lLlirgooX (T;) =0.
The numerically estimated value of T, is therefore the one that minimizes the error
function x?(T). In order for this estimate to be meaningful, it has to be independent
of the set of system sizes used for this minimization. To verify that this is indeed the
case, we repeated this procedure for various sets of system sizes and checked that the
minimum does not vary much.

The dependence of the y?-error on the temperature is shown in Figure 7. The
three curves were obtained with fitting sets of 3, 4, and 5 different system sizes.
All three curves have a minimum in which the y2-error is small, of the order of the
sampling error. This minimum point is the numerical estimate for the phase transition
point. Thus for n = 0.0277 the phase transition point is T, = 0.0805.

A similar set of calculations was done for the grand-canonical ensemble. In Figure
8 we plot ¢! (ZT”) versus the temperature. Unlike in Figure 6 the dielectric function
is not monotonically decreasing as the size of the system increases. The five curves
approximately intersect at the point 7" ~ 0.085. Such an intersection point was
interpreted in [12] as the location of the phase transition point. It is, however, unclear
whether more curves are going to pass through the same point at larger system size.
Figure 6 indicates that curve intersection cannot be generally used as a criterion for
locating the phase transition point.
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Fic. 7. The fitting procedure for the canonical ensemble: x2-error of the fit versus tem-

perature for L = [12,16.97,18.97] (stars), L = [12,16.97,18.97,20.78] (crosses), and L =
[12,16.97,18.97,20.78,24] (open circles). These curves have a minimum around T ~ 0.0805. The
fitted value of Lo is 1.43 £0.01.

€ 1(2mL)

03

Fic. 8. Grand-canonical ensemble: the inverse dielectric function for the smallest nonzero
wavevector as a function of temperature. The fugacity is Z = 0.006. The five curves correspond to
L =12, 16.97, 18.97, 20.78, and 24. The dashed line is the 4¢ 1T =1 curve.

The finite-size formula for T below the transition point predicts a dielectric func-
tion which is a monotonically decreasing function of scale. This prediction is therefore
not satisfied below the point where the curves intersect. This is in contrast to Olsson’s
results [21], where monotonicity was obtained for all temperatures. One could specu-
late that in our calculation the dielectric function becomes monotonically decreasing
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Fi1G. 9. The fitting procedure for the data of Figure 8: x2%-error of the fit versus tem-
perature for L = [12,16.97,18.97] (stars), L = [12,16.97,18.97,20.78] (crosses), and L =
[12,16.97,18.97,20.78, 24] (open circles). These curves attain a minimum around T ~ 0.096.

only for much larger system sizes, thus justifying Olsson’s self-consistent boundary
conditions. An examination of Figure 4 in [21] shows, however, that for the system
sizes used in our calculation, L = 12—24, the two procedures deviate only slightly from
each other. Be that as it may, another uncertainty has been added to the calculation.

The corresponding y2-error is plotted versus the temperature in Figure 9. The
error function vanishes within the expected accuracy at T, ~ 0.096 4+ 0.001, which
indeed does not coincide with the point where the five curves intersect.

In the grand-canonical ensemble we can also calculate the average density of
dipoles, (n); it is plotted in Figure 10 as a function of temperature for five system
sizes. An intriguing result is that the density is a decreasing function of the size of
the system. This cannot be reconciled with the finite-size relation (6.7) as n(r) is by
the definition of the KT model a monotonically increasing function of r. We have not
found an adequate explanation for this observation.

Once we have a well-defined procedure to calculate the phase transition point, the
phase transition line T,.(Z) can be traced. It is shown in Figure 2, where the values
calculated from the Monte-Carlo simulations are represented by open dots and the
solid line is the prediction obtained by a numerical integration of the RNG equations
(3.7). The agreement between the two is remarkable.

For the average density of dipoles, (n), a similar comparison between the sim-
ulations and the RNG equations is problematic; in the absence of an appropriate
finite-size scaling formula we are unable to estimate accurately the L — oo limit of
the dipole density. In Figure 11 we plot (n), as a function of the fugacity, z, at the
phase transition line. The solid line is again the theoretical expectation; the open
dots represent the simulation results for the largest system (L = 24), and because (n)
is apparently a decreasing function of L, they constitute only an upper bound.

The inability to estimate accurately the density of dipoles in the thermodynamical
limit makes it difficult to compare the numerical results in the canonical and the
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Fic. 10. Grand-canonical ensemble: the average density of dipoles as a function of temperature.
The fugacity is Z = 0.006. The five curves correspond from top to bottom to L = 12, 16.97, 18.97,
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Fi1G. 11. The density of pairs, (n), as a function of the fugacity, z, for the critical temperature,
Tc(2). The solid line is the result of the RNG equations; the open circles are the Monte-Carlo

simulation results for L = 24.

grand-canonical ensembles. We can perform only a rough test of consistency based on
our upper bound for the dipole density in the grand-canonical ensemble. For a dipole
density of n = 0.0277, an interpolation based on the data points shown in Figure 11
gives a corresponding fugacity of z ~ 0.0082. From Figure 2 the critical temperature
for this value of the fugacity is T, ~ 0.085, i.e., about 5% off the calculated transition

point for the canonical sampling.

We have treated the parameter L as a free parameter selected by the procedure
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F1G. 12. The fitting parameter Lo as a function of temperature for z = 0.006.

in which the calculated values of e—1 (%”) were fitted to the finite-size scaling formula

(6.5). Given a model, L is not a free parameter but results from the renormalization
equations. We now compare the value of Ly obtained from the fitting procedure to
the value obtained from the KT model.

For z = 0.006 an analysis of the renormalization equations gives ﬁ ~ £+0.695,
which means that Ly = e~ % = 0.499. In Figure 12 we plot the values of Ly as
calculated from the fitting procedure as a function of temperature. For this value
of the fugacity the critical temperature was evaluated as T, = 0.096 £ 0.001, which
implies that 0.3 < Ly < 1.0. Within the accuracy of our procedure the numerical
estimate of Lg is not accurate enough to allow a sharp test of the KT model. The
most we can claim is that the numerical estimate of Ly agrees with the theoretical
expectation within a factor of two.

9. Discussion. The salient conclusion from our calculations is that the KT
renormalization flow predicts correctly the phase transition line in a KT transition
while plausible alternative models do not, at least for the infinite-size limit of a sys-
tem of finite size. The calculations use in an essential way the form of finite-size
scaling derived from the KT equations but do not depend on the precise values of the
coefficients in that scaling. The calculations also utilize the Nelson universal-jump
assumption, for which an independent check would have been desirable. The least one
can say is that the KT theory is self-consistent. Among the numerical questions that
remain inadequately analyzed are (i) the surprising behavior of the number density
n as a function of the system size; (ii) the inconsistent behavior of the intersections
of the finite-size transition curves, which should have offered a reliable alternative
to the localization of the transition points via the universal-jump assumption; and
(iil) the failure of the “self-consistent” boundary conditions to provide an alternative
path to the reduction of finite-size effects. The overall verdict on the results of the
one-sidedness assumption is not affected by these uncertainties; however, we can shed
no light on the origin of the KT one-sidedness assumption nor on the reason for its
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predictive power.

There is a similar paradox in turbulence theory. The well-known Kolmogorov—-
Obukhov spectrum in the inertial range spectrum of turbulence (for definitions and
references, see [8]) can be derived from an assumption of a one-dimensional cascade
in wave-number space (a direct analogue of one-sided polarization). However, this
assumption is well known to be false, and indeed the spectrum holds true even in
two-dimensional turbulence, where the preponderant energy flow is in the opposite
direction. The Kolmogorov—Obukhov spectrum can also be derived, as is well known,
from a scaling argument independent of any cascade direction. How can a false as-
sumption of one-sidedness lead to the correct form of the spectrum? We had hoped
that the analysis of the KT model would shed light on this paradox in turbulence,
and we have not abandoned hope that it may yet do so.

More generally, many RNG analyses [3] contain an assumption analogous to the
assumption of one-sided polarization: One considers a set of physical variables on
different length scales, and one assumes that the small-scale variables affect the large-
scale variables or vice-versa, neglecting the simultaneous mutual interaction (which is
often called “backscatter” in the turbulence literature [14]). However, backscatter is
known to occur in the strongly coupled systems to which the RNG is applied. Some
of these RNG analyses are quite successful, but the reason is unclear.
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