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Abstract. Optimal prediction is a computational method for systems that cannot be properly
resolved, in which the unresolved variables are viewed as random. This paper presents a first analysis
of optimal prediction as a numerical method. We prove the convergence of the scheme for a class
of equations of Schrödinger type and derive error bounds for the mean error between the optimal
prediction solution and the set of exact solutions with random initial data. It is shown that optimal
prediction is the scheme that minimizes the mean truncation error.
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1. Introduction. The method of optimal prediction of Chorin, Kast, and Kupfer-
man [6, 7, 8] is a computational approach to problems that are too complex to be
properly resolved by standard numerical methods. Underresolution occurs when the
number of variables used in a computation is insufficient to capture the full range of
scales that occur in the solution. Such a situation is ubiquitous in complex nonlinear
systems (e.g., turbulence, geophysical models). The traditional approach to such dif-
ficulty is “modeling”—formulating a modified set of equations that try to compensate
for the lack of resolution. Optimal prediction is a new approach in which the unre-
solved variables are considered as random, and one tries to take advantage of their
statistics to predict the mean value of the resolved variables given their value at the
initial time.

The optimal prediction scheme was found to improve the accuracy of calculations
for a certain class of problems (see Chorin, Kupferman, and Levy [9] and Kast [12]).
In particular, equations of Schrödinger type in finite one-dimensional domains with
rough initial data were studied; standard numerical schemes are known to be severely
underresolved for such problems. Numerical experiments confirm that the optimal
prediction scheme can capture the evolution of the mean value of a small number
of Fourier modes over a short time interval better than a standard spectral scheme
that uses truncation. In a subsequent publication (Chorin, Hald, and Kupferman [5])
the non-Markovian nature of underresolved dynamics was pointed out. A Langevin-
type equation was derived and was found to yield reliable predictions for intermediate
times.
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The development of optimal prediction theory has been motivated all along by
the analogy between underresolved computations and statistical physics. The relation
between ensemble averages and nonlinear dynamics of high-dimensional systems is
one of the fundamental postulates of statistical mechanics. The numerical results
reported above are encouraging and indicate that statistical physics may be a natural
framework for considering underresolved computations.

From an analytical point of view, the theory of optimal prediction still has to be
elaborated on. The only rigorous analysis at present is due to Hald [10] for a restricted
set of linear problems. What is missing is an investigation of optimal prediction as
a numerical method. Such an analysis, we hope, would clarify in what sense optimal
prediction is really optimal and provide rigorous error bounds. It is the goal of this
paper to fill this gap, at least in part.

In section 2 we present the general theory of optimal prediction. We introduce
only the assumptions that are essential to the theory and deemphasize the physical
context. Thus, some of the terminology and notations differ from the ones used in
previous publications.

The fundamental idea in optimal prediction theory is to approximate the solution
to a large system of n equations by the solution to a much smaller system of m
equations. It is assumed that the two systems share at time t = 0 identical values for
their common variables, whereas the remaining variables are random and drawn from
a probability distribution that is invariant. The solution to the initial value problem
in m variables is thus compared to a collection of initial value problems in n variables.

The main result in section 2 is that the mean deviation between the exact and
approximate solutions is bounded by an expression that is proportional to the mean
truncation error (Theorem 1). The surprising fact is that the mean truncation error
does not depend on time. Optimal prediction is shown to be the scheme that yields
the smallest possible truncation error. Furthermore, we obtain a lower bound on the
mean deviation between the solutions to the large and small systems, which reflects
the limits of predictability due to the randomness of the initial data.

In section 3 we investigate the defocusing nonlinear Schrödinger equation that was
the object of numerical experiments in [6, 7, 8, 9]. To avoid the technical difficulties
associated with weak solutions and measures on infinite-dimensional spaces [3], we
first approximate the nonlinear Schrödinger equation by a large system of n equations
that corresponds to spectral truncation. Then we try to approximate it by one that
involves only a small number of Fourier modes. Our main result is that the conditions
under which Theorem 1 holds are satisfied for this system (Theorem 2). Sections 4
and 5 contain the lemmas needed for the proof of Theorem 2.

Section 6 contains preliminary results concerning a novel idea, which is to use
optimal prediction as a basis for a sampling procedure. Numerical experiments show
that over long time intervals, optimal prediction cannot capture the decaying character
of averages, which is due to the dispersion of solutions that start with different initial
conditions. In [5] a non-Markovian version of optimal prediction was developed and
was found to improve the intermediate-time prediction. An alternative approach is
to solve the optimal prediction equations with m2 variables many times and average
over the last m2 −m1 components of the initial data. We show that such a sampling
procedure may reduce the error. The establishment of stricter bounds is left for future
investigation.

2. General theory. We consider a large system of ordinary differential equa-
tions,
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d

dt
u(t) = R(u(t)), u(0) =




s1

...
sn


 = s,(2.1)

where the first m coordinates, s1, . . . , sm, are assumed to be given at time t = 0,
whereas the remaining n−m coordinates, sm+1, . . . , sn, are random. Let the vector
Pu(t) contain the first m components of u(t) = u(s, t). We seek an approximate
method,

d

dt
v(t) = R(v(t)), v(0) =




s1

...
sm


 = Ps,(2.2)

with m < n and v(t) = v(Ps, t) for which

|Pu(t)− v(t)|2 =
m∑
j=1

|uj(t)− vj(t)|2

is small in a sense to be specified. In the language of [6] the first m components
of u represent a particular choice of collective variables; we focus on this case for
simplicity, but our results can be extended to collective variables that have a general
linear dependence on the components of u.

We make the following assumption regarding the dynamical systems (2.1), (2.2).
Assumption 1. (a) There exists a function H of n variables such that

d

dt
H(u(t)) = 0,

Z =

∫
Rn

e−βH(s) ds1 · · · dsn < ∞;

(b) the flow (2.1) preserves volume in phase-space, i.e.,

n∑
j=1

∂ujRj(u) = 0;

(c) let (v, w) =
∑m

j=1 vjwj be the discrete inner product; the function R satisfies
the Lipschitz condition

(v − w,R(v)−R(w)) ≤ L |v − w|2 , v, w ∈ R
m.

Condition (b) and the first part of (a) hold for all Hamiltonian systems; in this
case the function H is the Hamiltonian and represents the total energy of the system.
Condition (c) is quite restrictive by limiting the growth of the function R.

Since the deviation |Pu(s, t)− v(Ps, t)| depends on the random variables, sm+1,
. . . , sn, we cannot expect it to be small for all initial conditions s. Instead, our goal
is to design a scheme such that the error be small in the mean. To define averages we
introduce

E f =

∫
Rn

f(s)Z−1e−βH(s) ds1 · · · dsn,(2.3)
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where β > 0. In statistical mechanics 1/β is proportional to the temperature and
Z−1 exp(−βH(s)) is called the canonical distribution. In probability language Z−1 exp
(−βH(s)) is a probability density, and the corresponding probability measure is
µ0(E) =

∫
E
Z−1 exp(−βH(s)) ds. If Assumption 1 holds, then µ0 ({s : u(s, t) ∈ E})

does not depend on time, and we say that the measure is invariant. In [6, 7, 8] this
measure is called a prior measure because it embeds our belief about the distribution
of the initial data, i.e., Prob(u(0) ∈ E) = µ0(E).

Theorem 1. Let Assumption 1 be satisfied. Then(
E |Pu(s, t)− v(Ps, t)|2

)1/2

≤ eLt − 1
L

(
E |PR(s)−R(Ps)|2

)1/2

.

Remark. This is a general result. It does not depend onR except via the Lipschitz
constant L. It is possible that a local Lipschitz property may be sufficient in particular
cases. To use the result we must select R appropriately and estimate the right-hand
side. In this paper we consider two choices of R. The first choice is similar to
spectral truncation, and the second we call optimal prediction. In section 3 we use
Theorem 1 to get error bounds for approximations of nonlinear Schrödinger equations.
The detailed estimates are presented in sections 4 and 5.

Proof. The proof of Theorem 1 is similar to the convergence proof for Euler’s
method. The surprise is that the quantity that corresponds to the truncation error
is independent of time. Let ε2 = E(Pu − v, Pu − v). Differentiating both sides with
respect to t, writing ε̇ = d

dtε, and using (2.1) and (2.2) yields

εε̇ = E(Pu− v, P u̇− v̇)
= E(Pu− v, PR(u)−R(v))
= E(Pu− v, PR(u)−R(Pu)) + E(Pu− v,R(Pu)−R(v)).

To estimate the first term we use the Cauchy–Schwarz inequality twice, and to esti-
mate the last term we use the Lipschitz condition from Assumption 1(c):

εε̇ ≤ E |Pu− v| |PR(u)−R(Pu)|+ EL |Pu− v|2

≤
(
E |Pu− v|2

)1/2 (
E |PR(u)−R(Pu)|2

)1/2

+ LE |Pu− v|2

≤ ετ + Lε2.

(2.4)

This defines the truncation error, τ(t). We next show that τ(t) is independent of t.
Because H is a constant of motion and the flow in R

n is measure preserving, it follows
that

τ2(t) = E |PR(u(s, t))−R(Pu(s, t))|2

=

∫
Rn

|PR(u(s, t))−R(Pu(s, t))|2 Z−1e−βH(s)ds

=

∫
Rn

|PR(u(s, t))−R(Pu(s, t))|2 Z−1e−βH(u(s,t))

∣∣∣∣∂(u1, . . . , un)

∂(s1, . . . , sn)

∣∣∣∣ ds.
Changing variables s′ = u(s, t), we get

τ2(t) =

∫
Rn

|PR(s′)−R(Ps′)|2 Z−1e−βH(s′) ds′ = τ2(0).

Finally, we solve the differential inequality (2.4) and obtain

ε(t) ≤ eLt − 1
L

τ(0)
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as Pu− v = 0 at t = 0. This completes the proof.
To get a decent approximation to Pu(s, t) we must select R appropriately. The

simplest choice is to assume that um+1 = · · · = un ≡ 0 for all time and solve for
the remaining variables (which we then denote by v1, . . . , vm). This is a form of

truncation and amounts to solving v̇ = R̂(v), where
R̂(Ps) = PR(s),(2.5)

with sm+1 = · · · sn = 0 and s1, . . . , sm are dummy variables.
A more sophisticated choice ofR can be based on orthogonal projections. We start

with the following question: how does one approximate a function of two variables,
f(x, y), by a function of one variable, g(x), given a probability density ρ(x, y) on R

2?
Consider the identity∫

x,y

(f − g)
2
ρ dx dy =

∫
x,y

(
f −

∫
fρ dy∫
ρ dy

)2

ρ dx dy +

∫
x,y

(∫
fρ dy∫
ρ dy

− g

)2

ρ dx dy

+ 2

∫
x

(∫
fρ dy∫
ρ dy

− g

)∫
y

(
f −

∫
fρ dy∫
ρ dy

)
ρ dy dx.

The first integral does not depend on g, whereas the last integral vanishes. Hence,
g(x) = (

∫
ρ dy)−1

∫
fρ dy is the function that is closest to f(x, y) in the mean sense. In

probability theory this function is called the conditional expectation of f given x, and
it is denoted by E[f |x] (see [1, section 34]). If we replace x, y, and ρ by (s1, . . . , sm),
(sm+1, . . . , sn), and Z−1 exp(−βH(s)), respectively, we obtain that

R(Ps) = E[PR|Ps] =

∫
PR(s)e−βH(s) dsm+1 · · · dsn∫

e−βH(s) dsm+1 · · · dsn(2.6)

is the best approximation of PR(s) among all functions of Ps. The system v̇ = R(v)
is called optimal prediction and has the smallest truncation error of all approximation
methods of order m. In particular,

E |PR(s)−R(Ps)|2 ≤ E

∣∣∣PR(s)− R̂(Ps)
∣∣∣2 .(2.7)

Note that we use R in (2.6) rather than Ř or R̃ because our focus is on optimal
prediction, and the truncated scheme (2.5) is mainly used for comparison.

In Theorem 1 we compare the solution of (2.2) to solutions of (2.1) with the same
values of s1, . . . , sm and sm+1, . . . , sn random. Instead, we would like to compare
v(Ps, t) to the average of all Pu(s, t) with s1, . . . , sm given, i.e.,

E [Pu(s, t)|Ps] =

∫
Pu(s, t) e−βH(s)dsm+1 · · · dsn∫

e−βH(s)dsm+1 · · · dsn .

Replacing Pu(s, t) with v(Ps, t) we see that E[v(Ps, t)|Ps] = v(Ps, t). Since E[·|·] is
linear in the first variable and E[Pu− v|Ps] is the orthogonal projection of Pu− v on
the space of all functions of Ps, it follows from Pythagoras’s law that

E |Pu(s, t)− v(Ps, t)|2

= E |Pu(s, t)− v(Ps, t)− E[Pu(s, t)− v(Ps, t)|Ps]|2 + E |E[Pu(s, t)− v(Ps, t)|Ps]|2

= E |Pu(s, t)− E[Pu(s, t)|Ps]|2 + E |E[Pu(s, t)|Ps]− v(Ps, t)|2 .

(2.8)
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Equation (2.8) bears an instructive interpretation. The mean deviation between Pu
and v is the sum of two expressions. The first measures the mean deviation between
Pu and its average over all solutions with the same initial Ps. This term makes
no reference to the scheme v̇ = R(v). It is the intrinsic dispersion of solutions that
have only partial initial data in common. The second expression measures the mean
deviation between v and the average over all Pu having the same Ps. This is the
term that one can hope to make small by a clever choice of the function R(v).

Combining Theorem 1 with (2.7) and (2.8) we obtain the following corollary.
Corollary 1. If Assumption 1 holds and v satisfies (2.2) with a right-hand side

given by (2.5) or (2.6), then

(
E |E [Pu(s, t)|Ps]− v(Ps, t)|2

)1/2

≤ eLt − 1
L

(
E

∣∣∣PR(s)− R̂(Ps)
∣∣∣2)1/2

.

In the terminology of classical numerical analysis, the left-hand side of (2.7) can
be viewed as the local truncation error, whereas the left-hand side of (2.8) is the global
error. The definitions of these errors differ from the standard ones due to the proba-
bilistic interpretation of the underlying problem, which requires the consideration of
mean errors. The goal of a computational scheme is to minimize the global error. In
our case, this corresponds to the minimization of the second term on the right-hand
side of (2.8). It is often possible to bound the global error by an expression that is
proportional to the truncation error, and therefore the convergence of the former to
zero guarantees the global convergence of the scheme. This is also the case for the
optimal prediction scheme (Corollary 1).

There exists, however, an important distinction between classical numerical anal-
ysis and the analysis of underresolved computations. In the latter case, the mean
truncation error is in general not small, and it is not clear how the global error
builds up in time. Thus, a scheme that minimizes the mean truncation error is not
guaranteed to minimize the global error. In particular, it is not unlikely that other
approaches, for example, nonlinear Galerkin methods (see, e.g., [13]), could provide
schemes of the form (2.2) that yield better approximations in the sense of (2.8). The
optimal prediction scheme is optimal among all Markovian schemes in a “worst case”
sense, when the only estimate available for the global error is the one based on the
differential inequality (2.4).

Example of optimal prediction. To illustrate the difference between the truncated
scheme and optimal prediction we consider a very simple system that consists of two
harmonic oscillators coupled by a nonlinear spring. LetH = 1

2 (p
2
1+q2

1+p2
2+kq2

2+q2
1q

2
2)

with k > 1. Using Hamilton’s equations, ṗj = −∂qjH, q̇j = ∂pjH, we get

ṗ1 = −(1 + q2
2)q1, q̇1 = p1,

ṗ2 = −(k + q2
1)q2, q̇2 = p2.

If k is large, then the second particle will oscillate quickly. Setting p2 = q2 = 0 yields
the truncated scheme

ṗ1 = −q1, q̇1 = p1.

The equations for the optimal prediction are obtained from (2.6); evaluating the
integrals we find that

ṗ1 = −
(
1 +

1

β(k + q2
1)

)
q1, q̇1 = p1.
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Thus, q1/[β(k + q2
1)] is the function that best approximates q

2
2q1. If β is large or if k

is large and β is of order 1, then the optimal prediction scheme is close to truncation.
However, if β is small (high temperature) and k is moderate, then there is a big
difference between the two methods. Because this is such a simple problem we can
evaluate the truncation error for the two methods and conclude that

(
E |PR−R(P )|2

)1/2

=

√
2

3

(
E

∣∣∣PR− R̂(P )
∣∣∣2)1/2

.

From the point of view of error bounds, not much has been gained in this simple
example.

3. The defocusing Schrödinger equation. In this section we consider a par-
ticular class of equations of the form (2.1), namely, finite-dimensional representations
of equations of Schrödinger type. Let F be a function of two variables and consider
the nonlinear Schrödinger equation

pt = +qxx − (∂2F )(p, q),

qt = −pxx + (∂1F )(p, q),
(3.1)

where p = p(x, t) and q = q(x, t) are periodic functions with period 1; here subscripts
denote differentiation and (∂1F )(x, y) = (∂/∂x)F (x, y). Associated with this system
is a Hamiltonian (energy) function

H(p, q) =

∫ 1

0

[
1
2

(
p2
x + q2

x

)
+ F (p, q)

]
dx.(3.2)

Indeed, one readily checks that d
dtH(p(t), q(t)) = 0. In applications one frequently

encounters the function

F (p, q) =
λ

4
(p2 + q2)2,

where λ = ±1. If u = q+ıp, then (3.1) is equivalent to the cubic Schrödinger equation

ıut + uxx − λ |u|2 u = 0. If λ < 0, then random initial data lead to solutions that
after a long time look like a soliton embedded in a sea of small scale fluctuation;
see [4]. This will not happen if λ > 0. We therefore call (3.1) focusing if F < 0 and

defocusing if F > 0. In both cases the L2 norm
∫ 1

0
(p2+q2) dx is an additional constant

of motion and the equation is integrable; see [14, 2]. This creates a problem when
one seeks equilibrium states using techniques from statistical mechanics; see Jordan,
Turkington, and Zirbel [11] and Boucher, Ellis, and Turkington [2]. To circumvent
this difficulty, Chorin, Kast, and Kupferman [6, 7, 8], Chorin, Kupferman, and Levy
[9], and Chorin, Hald, and Kupferman [5] have used

F (p, q) =
1

4

(
p4 + q4

)
.

To work in a finite-dimensional space, i.e., with systems of ordinary differential
equations, we assume that p, q are periodic in [0, 1] and approximated by a finite
Fourier series, i.e.,

p(x, t) =

2n′∑
j=0

pj(t) ej(x), q(x, t) =

2n′∑
j=0

qj(t) ej(x),(3.3)



990 OLE H. HALD AND RAZ KUPFERMAN

where e0(x) = 1, e2j−1(x) =
√
2 cos(2πjx), and e2j(x) =

√
2 sin(2πjx). Note that

the ej are the normalized eigenfunctions of y
′′ + λy = 0 with λ0 = 0 and λ2j−1 =

λ2j = (2πj)
2. If we insert p, q from (3.3) into (3.2) we get

H =

2n′∑
j=0

1
2λj(p

2
j + q2

j ) +

∫ 1

0

F (p, q) dx.(3.4)

Hamilton’s equations ṗk = −∂qkH, q̇k = ∂pkH then yield

ṗk = −λkqk −
∫ 1

0

(∂2F )(p, q) ek dx,

q̇k = +λkpk +

∫ 1

0

(∂1F )(p, q) ek dx

(3.5)

for k = 0, 1, . . . , 2n′, that is, a system of n = 2 + 4n′ ordinary differential equations.
To understand the connection to the original system (3.1) we multiply each equation
by ek and sum over k; this leads to

pt = +qxx −
2n′∑
k=0

(∂2F (p, q), ek) ek,

qt = −pxx +

2n′∑
k=0

(∂1F (p, q), ek) ek,

where (f, g) =
∫ 1

0
f(x)g(x) dx. Therefore, we first expand p, q in a finite Fourier series,

and then we truncate the Fourier series for ∂2F (p, q) and ∂1F (p, q). We can also write
(3.5) as u̇ = R(u), where u = (p0, q0, . . . , p2n′ , q2n′)T .

The simplest approximation method, v̇ = R̂(v), is obtained via truncation; see
(2.5). Let m = 2 + 4m′ with m′ < n′; set v = (p0, q0, . . . , p2m′ , q2m′)T and solve

ṗk = −λkqk − (∂2F (p̂, q̂), ek) ,

q̇k = +λkpk + (∂1F (p̂, q̂), ek)
(3.6)

for k = 0, . . . , 2m′. Here, p̂ =
∑2m′

j=0 pjej , and q̂ =
∑2m′

j=0 qjej . Note that we use the
same notation, pj , qj , for the coordinates in u and v.

To derive the method of optimal prediction, v̇ = R(v), we follow (2.6) and solve

ṗk = −λkqk −
∫
(∂2F (p, q), ek) e

−βH(p,q) dp2m′+1 · · · dq2n′∫
e−βH(p,q) dp2m′+1 · · · dq2n′

,

q̇k = +λkpk +

∫
(∂1F (p, q), ek) e

−βH(p,q) dp2m′+1 · · · dq2n′∫
e−βH(p,q) dp2m′+1 · · · dq2n′

(3.7)

for k = 0, 1, . . . , 2m′. Thus, we perform a partial averaging by integrating over
the random coefficients for the high modes. To prove the convergence of optimal
prediction we need restrictive assumptions about the function F .

Assumption 2. The function F (x, y) = 1
2c0(x

2 + y2) + G(x, y), with c0 > 0,
satisfies

(a) F (0, 0) = (∂1F )(0, 0) = (∂2F )(0, 0) = 0;
(b) the matrix A = (∂1,1F

∂2,1F
∂1,2F
∂2,2F

) is positive definite, and |A| ≤ c1 for all (x, y);
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(c) |∇G(x, y)| ≤ c2 for all x,y.

Here ∂i,jF = ∂i∂jF and |A| denotes the 2 norm. Condition (a) is satisfied for
F = 1

4 (p
2+q2)2 and for F = 1

4 (p
4+q4), whereas (b) ensures that F is always positive

(see Lemma 1 below). Equation (3.1) is therefore defocusing. Condition (c) implies
that the normalization constant Z is finite (see below); it is needed because λ0 = 0.
The difficulty with Assumption 2 is that it restricts the growth of F for large (p, q)
and excludes the standard choices of F . Instead, we may use the following functions:

F (p, q) =
1

2ε

[
p2 + q2 − 1

ε
log

(
1 + ε(p2 + q2)

)]
,

F (p, q) =
p4

4 + εp2
+

q4

4 + εq2
.

These functions are quartic near the origin, grow quadratically at infinity, and satisfy
Assumption 2.

Theorem 2. Let u̇ = R(u) be the spectral method (3.5) for the Schrödinger
equation (3.1), and assume that u ∈ R

n for large n = 2 + 4n′. Let v̇ = R(v) be the
optimal prediction scheme (3.7) with m = 2 + 4m′ and m′ < n′. If Assumption 2
holds, then

(
E |E[Pu(s, t)|Ps]− v(Ps, t)|2

)1/2

≤ eLt − 1
L

c1 e
c1/24

π
√
βm′ ,

where the Lipschitz constant L is given by

L = c1

[
1 +

c1
π2m′ e

2βc22/c0+2c0/(π
2m′)

]
.

Remark. Theorem 2 is also valid if we replace v̇ = R(v) by the truncated scheme
v̇ = R̂(v), in which case we may use L = c1.

Proof. Theorem 2 has the same structure as Corollary 1. It is therefore sufficient
to check that Assumption 1 is satisfied. To do that we use Lemmas 1–4 below. Since
(3.7) is a Hamiltonian system it follows that conditions (b) and the first part of (a)
in Assumption 1 are automatically satisfied. For the second part of Assumption 1(a)
we combine (3.4) with the first inequality of Lemma 1 and get

Z =

∫
e−βH dp0 · · · dq2n′

≤
∫

eβc
2
2/c0e−β

∑
j

1
2 (λj+c0/2)(p

2
j+q

2
j ) dp0 · · · dq2n′

= eβc
2
2/c0

2n′∏
j=0

1

β(λj + c0/2)
;

thus Z < ∞. Here it is important that c0 > 0 as λ0 = 0. The Lipschitz property in
Assumption 1(c) is a consequence of Lemma 4. Finally, the estimate of the truncation
error is given in Lemma 2. This completes the proof.

4. Truncation errors. To prove Theorem 2 we must estimate the truncation
error for v̇ = R(v) at t = 0. We begin with upper and lower bounds for the nonlinear
terms

∫ 1

0
F (p, q) dx in the Hamiltonian (3.4).
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Lemma 1. Let p =
∑

j pjej, q =
∑

j qjej, where j = 0, 1, . . . , 2n′. If Assump-
tion 2 holds, then F (p, q) ≥ 0 and

∫ 1

0

F (p, q) dx ≥ c0
4

2n′∑
j=0

(p2
j + q2

j )−
c22
c0

,

∫ 1

0

F (p, q) dx ≥ F (p0, q0),

∫ 1

0

F (p, q) dx ≤ F (p0, q0) +
c1
2

2n′∑
j=1

(p2
j + q2

j ).

Proof. Since F (0, 0) = 0 it follows from Assumption 2(c) and the mean value
theorem that

F (p, q) =
c0
2
(p2 + q2) +

∫ 1

0

∇G(θp, θq)

(
p
q

)
dθ

≥ c0
2
(p2 + q2)− 1

2
· 2 · c2√

c0
2

√
c0
2

∣∣∣∣
(
p
q

)∣∣∣∣
≥ c0
2
(p2 + q2)− c22

c0
− c0
4
(p2 + q2).

To establish the first claim we integrate with respect to x and use the orthogonality
of the ej(x). The proof of the remaining statements is based on the convexity of F .
Let g(x) be twice differentiable. Then, Taylor’s theorem with an integral remainder
yields

g(1) = g(0) + g′(0) +
∫ 1

0

(1− θ)g′′(θ) dθ.(4.1)

If g(θ) = F (θp, θq) we conclude from Assumption 2(a), (b) that

F (p, q) = F (0, 0) +∇F (0, 0)

(
p
q

)
+

∫ 1

0

(1− θ)(p, q)

(
∂1,1F ∂1,2F
∂2,1F ∂2,2F

)(
p
q

)
dθ ≥ 0.

Next let g(θ) = F (p0 + θ(p− p0), q0 + θ(q− q0)). Since
∫ 1

0
ej dx = δ0,j it follows from

(4.1) and Assumption 2(b) that∫ 1

x=0

F (p, q) dx = F (p0, q0) +∇F (p0, q0)

∫ 1

x=0

(
p− p0

q − q0

)
dx

+

∫ 1

x=0

∫ 1

θ=0

(1− θ)(p− p0, q − q0)

(
∂1,1F ∂1,2F
∂2,1F ∂2,2F

)(
p− p0

q − q0

)
dθ dx

≥ F (p0, q0) + 0 + 0.

The last inequality is also a consequence of Assumption 2(b). In other words,

∫ 1

x=0

F (p, q) dx ≤ F (p0, q0) + 0 +
c1
2

∫ 1

x=0

∣∣∣∣
(
p− p0

q − q0

)∣∣∣∣
2

dx

= F (p0, q0) +
c1
2

2n′∑
j=1

(p2
j + q2

j ).
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This completes the proof.
Lemma 2. If Assumption 2 holds, then(

E

∣∣∣PR(s)− R̂(Ps)
∣∣∣2)1/2

≤ c1 e
c1/24

π
√
βm′ .

Proof. Let τ2 = E|PR− R̂(P )|2. Remember that p = ∑
pjej , q =

∑
qjej , with

j = 0, 1, . . . , 2n′, and p̂ =
∑

pjej , q̂ =
∑

qjej , where j = 0, 1, . . . , 2m′. Combining
(3.5) and (3.6), canceling the linear terms, and using Bessel’s inequality results in

τ2 = E

2m′∑
k=0

|(∂2F (p, q)− ∂2F (p̂, q̂), ek)|2 + E

2m′∑
k=0

|(∂1F (p, q)− ∂1F (p̂, q̂), ek)|2

≤ E ‖∂2F (p, q)− ∂2F (p̂, q̂)‖2
L2 + E ‖∂1F (p, q)− ∂1F (p̂, q̂)‖2

L2 .

Using the mean value theorem, Assumption 2(b), and the orthogonality of the eigen-
functions ej(x) we obtain

τ2 ≤ E

∥∥∥∥
∫ 1

θ=0

(
∂1,1F ∂1,2F
∂2,1F ∂2,2F

)(
p− p̂
q − q̂

)
dθ

∥∥∥∥
2

L2

≤ c21E

∥∥∥∥
(
p− p̂
q − q̂

)∥∥∥∥
2

L2

≤ c21E

2n′∑
k=2m′+1

(p2
k + q2

k).

The expected value (2.3) involves the Hamiltonian (3.4). Using Lemma 1 we get upper
and lower bounds for the Hamiltonian. Thus,

τ2 ≤ c21

∫ ∑2n′

k=2m′+1(p
2
k + q2

k)e
−βH dp0 · · · dq2n′∫

e−βH dp0 · · · dq2n′

≤ c21

∫ ∑2n′

k=2m′+1(p
2
k + q2

k)e
−β∑2n′

j=1
1
2λj(p

2
j+q

2
j ) dp1 · · · dq2n′∫

e−β
∑2n′

j=1
1
2 (λj+c1)(p2j+q

2
j ) dp1 · · · dq2n′

.

Here the cancellation of
∫
exp(−βF (p0, q0)) dp0dq0 is justified by the first inequality

in Lemma 1 with (p, q) = (p0, q0). To evaluate the integrals we introduce

ak =

∫
p2
ke

− 1
2βλkp

2
k dpk∫

e−
1
2β(λk+c1)p2k dpk

=
1

βλk

(
1 +

c1
λk

)1/2

,(4.2)

bj =

∫
e−

1
2βλjp

2
j dpj∫

e−
1
2β(λj+c1)p2j dpj

=

(
1 +

c1
λj

)1/2

.(4.3)

The symmetry between p and q then implies that

τ2 ≤ 2c21
2n′∑

k=2m′+1

ak

2n′∏
j=1,j �=k

bj

2n′∏
j=1

bj = 2c
2
1

2n′∑
k=2m′+1

1

βλk

2n′∏
j=1

(
1 +

c1
λj

)
.

Since 1+ c1/λ ≤ ec1/λ,
∑

k≥1 λ
−1
k ≤ (2π)−2 · 2 · (π2/6), and

∑
k≥m′+1 k

−2 < 1/m′ we
conclude that

τ2 ≤ 2c21
1

β(2π)2
2

m′ e
c1/12.

This completes the proof.
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5. The Lipschitz constant. In this section we show that the method of op-
timal prediction applied to the defocusing Schrödinger equation satisfies a Lipschitz
condition, i.e., Assumption 1(c). We begin with the derivation of upper and lower
bounds for the nonlinear term in the Hamiltonian (3.4).

Lemma 3. Let p =
∑2m′

j=0 pjej, q =
∑2m′

j=0 qjej, r =
∑2n′

j=2m′+1 rjej, and s =∑2n′

j=2m′+1 sjej. If Assumption 2 holds, then

∫ 1

0

F (p+ r, q + s) dx ≥ c0
2

2m′∑
j=0

(p2
j + q2

j ) +

∫ 1

0

G(p, q) dx− c22
2c0

,

∫ 1

0

F (p+ r, q + s) dx ≤ c0
2

2m′∑
j=0

(p2
j + q2

j ) +

∫ 1

0

G(p, q) dx+
c22
2c0

+ c0

2n′∑
j=2m′+1

(r2
j + s2

j ).

Proof. Since F (x, y) = 1
2c0(x

2 + y2) + G(x, y) and p, q are orthogonal to r, s, it
follows that∫ 1

0

F (p+ r, q + s) dx

=

∫ 1

0

{
1
2c0

[
(p+ r)2 + (q + s)2

]
+G(p, q) +G(p+ r, q + s)−G(p, q)

}
dx

= 1
2c0

2m′∑
j=0

(p2
j + q2

j ) +
1
2c0

2n′∑
j=2m′+1

(r2
j + s2

j ) +

∫
G(p, q) dx

+

∫ 1

x=0

∫ 1

θ=0

∇G(p+ θr, q + θs)

(
r
s

)
dθ dx.

(5.1)

Denote the last term by I1. Since |∇G| ≤ c2 and 2ab ≤ a2 + b2 we get

|I1| ≤ 1

2

∫ 1

x=0

2
c2√
c0

√
c0

∣∣∣∣
(
r
s

)∣∣∣∣ dx
≤ 1

2

(
c22
c0
+ c0

∫ 1

0

(r2 + s2) dx

)

=
c22
2c0

+
c0
2

2n′∑
j=2m′+1

(r2
j + s2

j ).

Inserting in (5.1) completes the proof.
Lemma 4. Let v̇ = R(v) be the optimal prediction scheme (3.7) for the Schrödinger

equation (3.1). If Assumption 2 holds, then

(v − w,R(v)−R(w)) ≤ L |v − w|2 ,

where

L = c1

[
1 +

c1
π2m′ e

2βc22/c0+2c0/(π
2m′)

]
.

Remark. Lemma 4 has been formulated for optimal prediction because that is
what we are most interested in, but it is equally valid for the truncated scheme (3.6),
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in which case we may use L = c1. The corresponding proof is straightforward and
will not be presented.

Proof. The main difficulty in this proof is notational. Let p =
∑

pjej , q =
∑

qjej ,
a =

∑
ajej , and b =

∑
bjej , where j = 0, 1, . . . , 2m′. Set v =

(
p
q

)
,
(
p+a
q+b

)
, and rewrite

(3.7) as

ṗk = −λkqk − gk(v),
q̇k = +λkpk + fk(v),

where fk = (f, ek) and gk = (g, ek). We shall use v,w with two interpretations. In
the first one, v is a vector with 2 + 4m′ components pj , qj . In the second one, v is a
function with two components p(x), q(x). We can therefore write |v| = ‖v‖L2 . In the
calculation of the inner product the linear terms cancel and we have

E = (v − w,R(v)−R(w))

=

2m′∑
k=0

[ak (gk(v)− gk(w))− bk (fk(v)− fk(w))] .

Using the Cauchy–Schwarz inequality, Bessel’s inequality, and the mean value theorem
gives

E ≤

2m′∑
k=0

(a2
k + b2k)




1/2 
2m′∑
k=0

[
(gk(w)− gk(v))

2
+ (fk(w)− fk(v))

2
]

1/2

≤
∣∣∣∣
(
a
b

)∣∣∣∣
(∫ 1

x=0

[
|f(w)− f(v)|2 + |g(w)− g(v)|2

]
dx

)1/2

= |v − w|
∥∥∥∥
∫ 1

θ=0

d

dθ

(
f
g

)
(v + θ(w − v)) dθ

∥∥∥∥
L2

.

(5.2)

To continue we need f , g explicitly. Here it is convenient to use a new notation for
the high frequencies that are averaged out. Let

r =

2n′∑
j=2m′+1

rjej , s =

2n′∑
j=2m′+1

sjej ,

dr = dr2m′+1 · · · dr2n′ , ds = ds2m′+1 · · · ds2n′ .

Since v =
(
p
q

)
, w − v =

(
a
b

)
it follows from (3.7) that

f (v + θ(w − v)) =

∫
∂1Fe−βH dr ds∫
e−βH dr ds

,

where ∂1F and H are evaluated at (p + θa + r, q + θb + s). Canceling the common
factor exp(−β

∑
j

1
2λj [(pj + θaj)

2 + (qj + θbj)
2]) in the numerator and denominator,

differentiating with respect to θ, and finally restoring the common factor yield
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df

dθ
= −

[∫
e−βH dr ds

]−2[∫
e−βH(−β)

∫ 1

x=0

∇F ·
(
a
b

)
dx dr ds

] [∫
∂1Fe−βHdr ds

]

+

[∫
e−βHdr ds

]−1[∫
∇∂1F ·

(
a
b

)
e−βH + ∂1Fe−βH(−β)

∫ 1

x=0

∇F ·
(
a
b

)
dx dr ds

]
.

To analyze this expression we need a more compact notation. Let

A = ∂1F, B = ∇∂1F ·
(
a
b

)
,

α =

∫ 1

x=0

∇F ·
(
a
b

)
dx, dµ =

e−βH dr ds∫
e−βH dr ds

.

Then

df

dθ
= β

∫
αdµ

∫
Adµ+

∫
B dµ− β

∫
Aαdµ.

If we replace some of the rj , sj by r′j , s
′
j we can write the b terms as a double integral;

indeed,

df

dθ
=

∫
B dµ− β

2

∫
(A−A′)(α− α′) dµ dµ′,

where A′ and α′ are evaluated at (p + θa + r′, q + θb + s′). We use the mean value
theorem to evaluate α− α′ and get

α− α′ =
∫ 1

x=0

∫ 1

η=0

(a, b)

(
∂1,1F ∂2,1F
∂1,2F ∂2,2F

)(
r − r′

s− s′

)
dη dx.(5.3)

Here ∂i∂jF are evaluated at (p+ θa+ r′ + η(r − r′), q + θb+ s′ + η(s− s′)). Similar
arguments show that

A−A′ =
∫ 1

η=0

(∂1,1F, ∂1,2F )

(
r − r′

s− s′

)
dη.

If we replace ∂1F by ∂2F we obtain a similar expression for dg/dθ and conclude that

d

dθ

(
f
g

)
=

∫ (
∂1,1F ∂2,1F
∂1,2F ∂2,2F

)(
a
b

)
dµ

− β

2

∫ ∫ 1

η=0

(
∂1,1F ∂2,1F
∂1,2F ∂2,2F

)(
r − r′

s− s′

)
dη (α− α′) dµ dµ′.

The rest of the proof consists of a series of inequalities. We begin with α−α′ in (5.3).
It follows from Assumption 2(b) and the Cauchy–Schwarz inequality that

|α− α′| ≤
∫ 1

x=0

∣∣∣∣
(
a
b

)∣∣∣∣ c1
∣∣∣∣
(
r − r′

s− s′

)∣∣∣∣ dx
≤ c1

(∫ 1

x=0

(a2 + b2) dx

)1/2 (∫ 1

x=0

[
(r − r′)2 + (s− s′)2

]
dx

)1/2

= c1


2m′∑
j=0

(a2
j + b2j )




1/2 
 2n′∑
j=2m′+1

[
(rj − r′j)

2 + (sj − s′j)
2
]

1/2

.
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Since a(x), b(x) do not depend on rj , sj , and ‖(ab)‖L2 = |v − w| we find that

∥∥∥∥ d

dθ

(
f
g

)∥∥∥∥
L2

≤ c1

∥∥∥∥
(
a
b

)∥∥∥∥
L2

+
β

2

∫
c1

∥∥∥∥
(
r − r′

s− s′

)∥∥∥∥
L2

|α− α′| dµ dµ′

= c1 |v − w|+ β

2
c21 |v − w|

∫ 2n′∑
k=2m′+1

[
(rk − r′k)

2 + (sk − s′k)
2
]
dµ dµ′.

(5.4)

The treatment of the last integral, which we denote by I2, follows the arguments in
Lemma 2.

The measure dµ involves the Hamiltonian H(p+θa+r, q+θb+s). From Lemma 3
we get upper and lower bounds forH, and canceling all terms involving pj+θaj ,qj+θbj
we see that

∫
f dµ ≤ ∫

f dν if f ≥ 0 and

dν =
eβc

2
2/c0e−β

∑2n′
j=2m′+1

1
2λj(r

2
j+s2j )dr ds∫

e−β
∑2n′

j=2m′+1
1
2 (λj+2c0)(r2j+s2j )dr ds

.

Since
∫
rk dν =

∫
sk dν = 0 and r, s occur symmetrically, we see that

I2 ≤ 2
∫ 2n′∑

k=2m′+1

(r2
k + s2

k) dν

∫
dν′

= 4

∫ 2n′∑
k=2m′+1

r2
k dν

∫
dν′.

(5.5)

Since 1 + c1/λ < ec1/λ and
∑2n′

k=2m′+1 λ
−1
k < (2π)−2 · 2/m′ it follows from (4.3) with

c1 replaced by 2c0 that

∫
dν′ = eβc

2
2/c0


 2n′∏
j=2m′+1

bj




2

= eβc
2
2/c0

2n′∏
j=2m′+1

(
1 +

2c0
λj

)

≤ eβc
2
2/c0+c0/(π

2m′).

(5.6)

Using (4.2) together with (4.3) we obtain

2n′∑
k=2m′+1

∫
r2
k dν = eβc

2
2/c0

2n′∑
k=2m′+1

ak

2n′∏
j=2m′+1,j �=k

bj

2n′∏
j=2m′+1

bj

= eβc
2
2/c0

2n′∑
k=2m′+1

1

βλk

2n′∏
j=2m′+1

(
1 +

2c0
λj

)

≤ 2

β(2π)2m′ e
βc22/c0+c0/(π

2m′).

(5.7)
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Combining (5.5), (5.6), and (5.7) gives

I2 ≤ 2

βπ2m′ e
2βc22/c0+2c0/(π

2m′).

Finally we insert the bound for I in (5.4) and conclude from (5.2) that

E ≤ |v − w|2 c1
[
1 +

c1
π2m′ e

2βc22/c0+2c0/(π
2m′)

]
.

This completes the proof.

6. Optimal sampling. In Theorem 2 we have compared averages of the solu-
tions of a large system (3.5) with a single solution of the optimal prediction equation
(3.7). For nonlinear Schrödinger equations the numerical experiments by Chorin,
Kupferman, and Levy [9] show that the averages will decay as time grows. If β is
small the decay is rapid. This decay cannot be captured by the method of optimal pre-
diction as (3.7) is a finite-dimensional Hamiltonian system. It is therefore natural to
average the solutions of the optimal prediction equations to improve the performance
of the method.

To formulate such an algorithm we modify the notation from section 2 slightly.
We let m1 < m2 < n and let P1s, P2s consist of the first m1, m2 components of s.
Here m2 plays the same role as m in the previous sections. The idea is to average the
optimal prediction solutions v(P2s, t) over sm1+1, . . . , sm2 . Thus, we view s1, . . . , sm1

as given and sm1+1, . . . , sm2
as random. To reveal the appropriate measure we observe

that

E [v(P2s, t)|P1s] =

∫
v(P2s, t)e

−βH(s)dsm1+1 · · · dsn∫
e−βH(s)dsm1+1 · · · dsn

=

∫
v(P2s, t)

∫
e−βH(s)dsm2+1 · · · dsn dsm1+1 · · · dsm2∫ ∫

e−βH(s)dsm2+1 · · · dsn dsm1+1 · · · dsm2

=

∫
v(P2s, t)e

−βH0(P2s)dsm1+1 · · · dsm2∫
e−βH0(P2s)dsm1+1 · · · dsm2

,

(6.1)

where H0 = −(1/β) ∫ exp(−βH)dsm2+1 · · · dsn. In statistical mechanics H0 is known
as free energy and Z−1

0 exp(−βH0) becomes the canonical distribution for v̇ = R(v) on
the space (s1, . . . , sm2). It has been shown by Chorin, Hald, and Kupferman [5] that
if (2.1) is a Hamiltonian system corresponding to H, then (2.2) is also Hamiltonian
but corresponding to H0.

Since E[·|Pis] is the orthogonal projection on the space of functions of (s1, . . . , smi),
it follows that

E |E[P2u|P2s]− v|2 = E |E[P2u− v|P2s]− E[E[P2u− v|P2s]|P1s]|2

+ E |E[E[P2u− v|P2s]|P1s]|2

= E |E[P2u|P2s]− E[P2u|P1s]− (v − E[v|P1s])|2

+ E |E[P2u|P1s]− E[v|P1s]|2 .

(6.2)

Here we have suppressed the dependence on s, t in u, v and used that E[E[·|P2s]|P1s] =
E[·|P1s]. This is a standard identity for conditional expectations, but in our setup
it can be verified by a direct calculation. Combining (6.2) with Corollary 1 and the
proof of Theorem 2 we get the following corollary.
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Corollary 2. Let u̇ = R(u) be the spectral method (3.5) for the Schrödinger
equation (3.1) and assume that u ∈ R

n for large n = 2 + 4n′. Let v̇ = R(v) be
the optimal prediction scheme (3.7) with m2 = 2 + 4m′

2 and m′
1 < m′

2 < n′. If
Assumption 2 holds, then

(
E |E[P2u(s, t)|P1s]− E[v(P2s, t)|P1s]|2

)1/2

≤ eLt − 1
L

c1 e
c1/24

π
√

βm′
2

.

Remark. Corollary 2 is also valid if we replace v̇ = R(v) by v̇ = R̂(v). The diffi-
culty lies in the interpretation because the function H0 in (6.1) is not the Hamiltonian
for the truncated scheme (3.6). Thus we cannot interpret (6.1) as an average over the
canonical measure.

7. Concluding remarks. The error bounds in this paper are unusual in several
aspects. In numerical analysis we typically compare the computed solution with the
exact solution, and the estimates involve bounds on the higher derivatives of the
exact solution. In this paper we estimate the error in the mean, where the mean is
taken over all initial conditions. This is similar to convergence proofs for stochastic
differential equations, where the mean is taken over all random forcing functions.
Thus, we cannot say that the error is small in any particular experiment, only that it
is small with high probability.

Our convergence proof for the nonlinear Schrödinger equation exploits the fact
that the equation can be regarded as a Hamiltonian system. In the limit n → ∞ the
initial data for the partial differential equation lie in Hα for α < 1/2, but they are
not smooth enough to be in H1/2. Thus we approximate highly irregular functions
and our rate of convergence is correspondingly low.
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