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Abstract

The log conformation representation proposed in [R. Fattal, R. Kupferman, Constitutive laws for the matrix-logarithm of the conformation
tensor, J. Non-Newtonian Fluid Mech. 123 (2004) 281-285] has been implemented in a FEM context using the DEVSS/DG formulation for
viscoelastic fluid flow. We present a stability analysis in 1D and identify the failure of the numerical scheme to balance exponential growth as
a possible source for numerical instabilities at high Weissenberg numbers. A different derivation of the log-based evolution equation than in
[R. Fattal, R. Kupferman, Constitutive laws for the matrix-logarithm of the conformation tensor, J. Non-Newtonian Fluid Mech. 123 (2004)
281-285] is also presented. We show numerical results for the flow around a cylinder for an Oldroyd-B and a Giesekus model. With the log
conformation representation, we are able to obtain solutions beyond the limiting Weissenberg numbers in the standard scheme. In particular,
for the Giesekus model the improvement is rather dramatic: there does not seem to be a limit for the chosen model parafeE). (

However, it turns out that although in large parts of the flow the solution converges, we have not been able to obtain convergence in localized
regions of the flow. Possible reasons include artefacts of the model and unresolved small scales. More work is necessary, including the use of
more refined meshes and/or higher order schemes, before any conclusion can be made on the local convergence problems.

© 2005 Elsevier B.V. All rights reserved.
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1. Introduction in [3]. In essence, it is a numerical instability caused by the
failure to balance the exponential growth of the stress (due to
The high Weissenberg number problem (HWNP) has been deformation) with convection. Such a failure iscommonto all
the major stumbling block in computational rheology for the methods that approximate the stress by polynomial base func-
last three decades. The term “HWNP” refers to the empirical tions (the choice of polynomial base function is explicit in
observation that all numerical methods break down when thefinite elements and implicit in finite differences). The remedy
Weissenberg number exceeds a critical value. The preciseproposed irf3] was a change of variables into new variables
critical value at which computations break down varies with that scale logarithmically with the stress tensor. Specifically,
the problem (including the constitutive model), the method the constitutive relations were reformulated as equations for
and the mesh used. The precise mechanism that leads to théhe matrix logarithm of the conformation tensor, exploiting
breakdown has remained something of a mystery[&emnd the fact that the latter is symmetric positive definite. Numeri-
the references therein). cal experiments for a two-dimensional (2D) lid-driven cavity
A mechanism responsible for at least part of the problems using a second-order finite difference scheme indicate that
seen at high Weissenberg number has been recently proposeschemes based on the new logarithmic formulation are im-
mune to the high Weissenberg number breakdown.

* Corresponding author. Tel.: +31 40 247 5081; fax: +31 40 244 7355. 'In th|§ pape.:r,' we implement the new logarithmic fo.rmu-
E-mail addressesn.a.hulsen@tue.nl (M.A. Hulsen); lation with a finite element method (FEM), and test it for
raananf@cs.huji.ac.il (R. Fattal); raz@math.huji.ac.il (R. Kupferman). a classical benchmark problem—flow past a cylinder. More
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specifically, we have in mind the following goals: of the conformation tensor: the Oldroyd-B and the Giesekus

_ . model, which can be written as follows
(1) Develop a FEM scheme with much better numerical sta-

bility. ¢c=L-c+c LT+ f(c), (4)
(2) Getmore insight into the HWNP by analyzing the numer-

ical breakdown within a FEM point of view. with
(3) Present benchmark results that confirm the validity of the _}(C - Oldroyd-B
new method at low and moderate Weissenberg numbers,f(c) _ A (5)
where comparison to existing data is possible. —Z(c — I +afc — I)?) Giesekus
(4) Establish new benchmark results at higher Weissenberg A
numbers. The Oldroyd-B model is identical to a Giesekus model with

(5) Investigate the limitations of the method, and in particu- ¢ = 0. We will solve Eq(4)in a Eulerian frame and therefore
lar, understand how accuracy is lost at high Weissenbergyrite

numbers. Such an understanding is important for the future

design of higher order methods. c= a—j +u-Ve. (6)
The paper is structured as follows. In Sect®mwe de-  goundary conditions will be discussed for the flow around a

scribe the governing equations and introduce the notationscy"nder problem that will be analyzed in Sectién
used henceforth. In Secti@ywe describe the standard FEM

discretization based on DEVSS and discontinuous Galerkin.

In Section4, we analyze the stability of the standard dis- 3 Numerical discretization

cretization, and in particular obtain a simple stability criterion

whose violation causes the high Weissenberg number break-  £or the spatial discretization of the system of equations,

down. In Sectiorb, we derive the constitutive equation for e will use the finite element method. We will basically use

the matrix logarithm of the conformation tensor; the deriva- ipe same implementation as describeftinand give a brief
tion is based on a different approach thafilih In Sectior, summary here.

we present numerical results for the flow past a cylinder for |4 order to obtain a proper mixed velocity-stress for-
an Oldroyd-B and a Giesekus model. In particular, we will yyjation, we use the Discrete Elastic-Viscous Split Stress
verify the criterion for breakdown in the standard discretiza- (DEVSS) formulation of Génette and Fortifb] for the dis-
tion. We also show the improved stability of the matrix 10g  cretization of the linear momentum balance and the con-
formulation. A discussion follows in Sectioh tinuity equation. For this we introduce an extra variable
e = 2npD. Note that Génette & Fortir{5] introduceD as an
] ) extra variable, however usirgnstead leads to a symmetric
2. Governing equations system matrix. We rewrite the momentum balance @&J.

_ ) ) o ) and the continuity equation E(R) as follows
We will consider the flow of viscoelastic fluids at creeping

flow conditions (inertia can be neglected) in a spatial region VP — V- (2nsD(u) + 7) — V - (2npD(u) —e) =0,  (7)
2, having a boundary denoted By For this, we need the V.u=0 ®)
following set of equations: the momentum balance, the mass ’

balan_cg for incompressible flows and a constitutive equation D) + ie -0 (9)
describing the stress. Np

The momentum balance and mass balance are given by For the weak formulation of Eq§7)—(9), we introduce sep-

Vp—V-(2nsD)—V-1=0, 1) arate functional spaces far, p and e, which we denote
by U, P and E, respectively. The weak formulation can

V-u=0, 2) be found by multiplying with test functions and integra-

tion by parts: find £, p,e) € U x P x E such that for all

wherep is the pressurey is the velocity vector, the rate- (v.q.8) € U x P x E, we have

of-deformation tensor is given b = %(L + LT), with the
velocity gradient tensak = (Vu)" andz is the extra-stress ~ — (V - v, p) + (Vv, 2yD(u) — e + 1) = (v, 0)r, (20)
(or polymer stress). The coefficieptis the solvent viscosity.

The polymer stress is given by —(¢.V-u) =0, 11)

1
}7 —_ _— =
T = Tp(c — I), (3) (ga Vu) + 277p (g7 e) 07 (12)
wherec is the conformation tensory, is the zero-shear-rate  where (, ) and ¢, -)r are properL? inner products on the

viscosity of the polymer part of the stress ani the relax- domain2 and on the boundaiy, respectively. The viscosity
ation time. We will use two different models for the evolution 7 is the zero-shear-rate viscosity+ np ande is the traction
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vector on the boundary. The system for p, e) is symmet- that
rical.
The discrete form of the equations is obtained by re- % _HJ% = bc, (14)

quiring that the weak form is valid on approximating sub- 9 9%
spacesU x P, x E; which consist of piecewise polyno-  \yherea is a constant convection speed dnd 0 is the ex-

mial spaces. The discret_e solut_ions and the discrete tesrponential growth factor. Eq14) can be interpreted as a 1D
functions are denoted with subindéx (up, pn, ;) and representation of the model for the conformation tensor Eq.
(vn, qn &,)- We will use quadrilateral elements with con- (4 ith the linear form off (Eq. (5)a in the Eulerian frame
tinuous biquadratic polynomialg),) for the velocity space (using Eq(6)) witha ~ |u|andb ~ —1/4 + 2+/— detL (see

U, discontinuous linear polynomials{) for the pressure  pejow). For non-linear models, like the Giesekus model, the
spaceP;, and continuous bilinear polynomialg){) for the equation represents not the full model but a linearized one.

viscous polymer-stress spagg. o _ For simplicity we assume > 0 for now. We will assume
For the discretization of the constitutive equation, we use ¢(x, = 0) = 1 as initial condition and(x = 0, /) = 1 as in-

the discontinuous Galerkin method (D[B). The functional flow condition. The analytical solution is given by
space for is denoted byl. This leads to the following weak

formulation of the constitutive equation E@): findc € T bx

on all elementg; such that for alw € T, we have (. 1) = exp(;) forx < ar, (15)

d .
(w,a—:-i-u-Vc—L.c—c-LT—f(c)) expbr) forat < x = L

€

The solution is split into a region where it is steady but expo-
+ / (n-ww: (" —c)dy =0, (13) ngntially growingin space with a grpvvth fact@[a gnq are-
yin gion where the solution is exponentially growing in time with
5 a growth factor ofb. At time r = L/a, the time-dependent
where ¢, -).; denotes an’.< inner product on elemer, region disappears and the solution is steady forL /a. De-
only, ;" is the part of the element boundary wheren < 0 spite the exponential growth factbrit is possible to obtain

(inflow boundary) is the outwardly directed unitnormalon 5 gteady state due to balancing of exponential growth by the
y". Furthermoreg™ is the value o in the upstream neighbor

) ‘ convection.
element or the imposed value at the inflow boundary part of  Now assume a grid haviry equidistant intervals of size
I". We will use discontinuous bilinear polynomial@{) for Ax. The coordinates are = iAx, i =0, ..., N. If we dis-

the spacel},. The combination of the DEVSS formulation
with DG has been introduced by Baaijens e{dl.and it has

been proved by Fortin et 4B] that it leads to a proper mixed
velocity-stress scheme. dc; ci— ¢

cretize Eq.(14) in space using a first-order upwind scheme
[9] and incorporate the inflow condition we get

i—1
For the time discretization of the constitutive equation Eq. g, ~ ~ ¢~ Ay +bi
(13), we use an explicit Euler scheme, where the time deriva- a a .
tive is discretized byc/or ~ ("1 — ¢")/ At and all other = <b - A_x) it - = 1...N, (16)

terms are evaluated gt For time-accurate solutions we can

use a higher order scheme, such as Adams-Bashforth, but forwith ¢;(f) = c(x;, £) andco = 1. Assuming that bothk; and

obtaining steady-state solutions this is not necessary. Notec;_1 are positive, it is easy to see that the coefficient;of

that the equations can be solved at element level. Next wemust be negative:

substituter"*1 = np/A(c"*1 — I) into EqQ.(10). The system

matrix for SONING @1, prt1, €n41) i SymmetricalandLU — h— 2 <0 or Ax < 2 = Axeri, 17)

decomposition is performed at the first time step. Since this X b

matrix is constant in time, solutions at later time steps can be gtherwise d;/df remains positive and the numerical solution

found by back substitution only. This results in a significant s not able to obtain a steady state, as the exact solution does.

reduction of the CPU time. The source of the numerical instability is the failure to balance
the exponential growth by convection. Note that in the grid
points of the steady region the exact solution @) can be

4. A stability criterion for exponential profiles written as
In [3], an analysis of a numerical instability is given for a bx; Ax i
one-dimensional (1D) problem discretized using afirst-order i = ®XP{ 7= | = | &XP{ 11— ] ] - (18)

upwind scheme. Here we briefly repeat that and at the same

time extend the analysis to our DG scheme. Using this, we can interpret the stability criterion E§j7) as
The ‘toy problem’ we are considering here is as follows: saying thatAx must be such that the growth factor in a single

find c¢(x, r) with x in the interval (Q L) and timer > 0 such cell, i.e.ciy1/ci, must be smaller that
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In order to derive a similar stability criterion for DG, we sis
rewrite Eqg.(16) into a matrix system:

bx forx < at
y 0 s(x,)=4{ a r=dan (26)
bt forat<x <L,
de By
a — ct+f which clearly shows the linear behaviorsifoth in the steady
C region and the time-dependent region.
0 By A possible extension of the definition 6fto 2D is sug-
a gested by considering the discretization of

withy =b— 2+, =L (19)
Ax Ax dc dc dc 97

For obtaining a steady numerical solution, itis required that 7 | “*3x Yoy T be, 7)

the eigenvalue=£ y) of the coefficient matrix must be nega-

tive. This is identical to Eq(17). For DG with linear polyno-

mial interpolation, we can write the discretized equations in

on a regular grid with first-order upwinding. In that case, the
coefficient ofc; become$ — a,/Ax — a,/Ay and therefore

the same form as E@19), however nowy andg are 2x 2 b
matrices (segl0]): C= ol Wl (28)
Ax Ay
y=b (10> + 4 (_3_1> , g= L (O 4 ) , with Ax and Ay a typical size of the elements nandy
01 Ax\ 3 -1 Ax \0-2 direction, respectively, seems to be a reasonable extension
(20) to 2D. Another possible extension is given[B], wherea

in Eq. (22)is replaced byd? + a2)'/? and Ax represents a
The eigenvalues of the coefficient matrix are identical to typical grid size in the direction of the ‘velocitya(, a,).
the eigenvalues of, which areb + (—2 + iv/2)a/ Ax. For Application of the analysis above to the viscoelastic con-
stability the real part of the eigenvalues must be negative: stitutive model Eq(4) is rather straightforward. The coef-
ficientsa and @y, a,) represent the velocity vectar, thus

b—22 <0 or Ax<22. (22) a=u in 1D and @,, a,) = (1, v) in 2D. The coefficienb
Ax b represents the positive growth rate of the right-hand side of
Now let’s introduce a dimensionless grid numiger Eqg.(4). Since, the constitutive model is a tensor equation, we
need to compute the eigenvalues of the coefficient matrix of
C = Axi, (22) the right-hand side, i.e. for the Oldroyd-B model we write the
lal equation as a matrix equation:
then Eqs(17) and(21) can now be written as ¢ = Be (29)
C <1 forfirst-order upwind (23) wherec = (cxx, cxy, cyy) . The representative value foris

the maximum (positive) eigenvalygnay of the 3x 3 matrix
(24) o N
B. The criterion for a positive eigenvalue and the actual value

respectively. Note that we have extended the definition of Of maxis given in the following equation (s¢#1,12]):
C such that both positive and negative valuesaofre 1 1
allowed. Hmax = —— + 2+/—detL, for detL < — (30)
As explained in1] and[3], the numerical instability de- A A
scribed above can be removed by solvingfer log c instead which is consistent with the stability criterion §3] that
of c. This removes exponential profiles from the quantity that is derived directly from the discretized equations. For the
is being solved and therefore also the source of the instability. Giesekus model, we first linearize the right-hand side and
The exponential growth is fully contained within the variable compute the eigenvalues of the coefficient matrix of the per-
s and only becomes visible when transforming back with turbed system. That is, we write the solution foalong a
¢ = exp(s). The equation fos can easily be derived, using particle path for perturbed initial conditions as follows
s = c/c With s = ds/0t + ads/dx:

C < 2 for DG with Py interpolation

c=c¢+e, (31)

% ag—i =b. (25) wheree is the unperturbed solution ards the perturbation,
which we assume is small. Substituting [E8{l) into Eq.(4)

Note that the right-hand side is now a constant. Therefore, aand retaining only linear terms leads to the linearized system

similar analysis for a discretized version of E85) as we in matrix form

did for Eq.(14) leads to a diagonal coefficient that is always

negative (unconditional stability). The analytical solution for € = E(¢)e, (32)
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wheree is now a vector with three components. The coef-
ficient matrix E(c) depends linearly om for the Giesekus
model. The eigenvalues of the matr(c) are derived in
[11,12]and the result show that for two-dimensional flows a
single eigenvalue becomes positive when

1 o
detC < 0, ithC=——I+L——(c—1). 33
efC <0, wi I tL—S-D. (33
The value of the positive eigenvalug,ax is given by
[tmax = tr C + [(tr C)? — 4 detC] /2. (34)

Note that by using an analytical result derived1] it can

be proved that t€ < 0 for a Giesekus mode[11,12])). We
assume that the exponential growthedffor small€) is the
important criterion here, hence we $et umax When there

is a positive eigenvalue. Eq83) and(34)reduce to Eq(30)

for « = 0. For negative or complex eigenvalues we just set
b = 0, makingC = 0. In planar extension the eigenvalues are
all real and the Eq433) and (34)combined with Eq(22)
can be written in the compact form

Ax max(Z — 1[1 + 2a(c.y — 1)], 0)

Jue]

: (35)

whereithas beenassumedthat L,, > O (positive stretch-
ing).

The value ofC becomes critical in regions where we have
a high stretching rate combined with a small velocity. Par-

ticularly troublesome are stagnation points and geometric

singularities (sharp corners), which conforms with the ex-

perience that problems containing these are the most difficults = Z —nin;+®-s+5 -

to simulate for higher Weissenberg numbers.
As suggested ifil] and[3], the numerical instability for

viscoelastic flows can be removed, as in the 1D toy problem,

by solving fors = logc instead ofc. This removes expo-
nential profiles from the quantity that is being solved for and

therefore also the source of the instability. In the next section,

we will derive an evolution equation farthat will replace
the evolution equation far.

5. Evolution equation for the logarithm of the
conformation tensor

In the previous section, we have identified the failure to
resolve exponential profiles as a major restriction on the sta- .

bility of standard schemes. It is suggested that this restrlctlon

can be lifted by solving for the matrix-logarithm of the con-
formation tensok instead ofc itself. In order to do so, we
need an evolution equation foe= log ¢. In [1] this evolution

equation has been derived by a decomposition of the velocity
gradient. In this paper, we give an alternative derivation using

an approach which is related to the work of Hil#] on the

evolution of the principal axes of the deformation tensor.
The conformation tensar is a symmetric positive defi-

nite tensor and therefose= log ¢ can be uniquely defined in

31

terms of the principal direction;, i = 1, 2, 3 of ¢:

3
loge =Y " log(ci)n;n;.
i—1

(36)

s =

or s is coaxial withc and its principal values; are given by
s; = log(c;). The evolution ofs can be computed from Eq.
(36) as follows

3

E nn,

1

(37)

Zs,nn,—}—Zvnn,
i=1

Sowe need expressions tpandn;. These can be determined
from the constitutive equation, as we will show below. First
we need to writez; in a different way.

The principal directions; are orthogonal vectors of a con-
stant (unit) length. Therefore, the time derivatiugare given
by just three independent quantities, which can be written in
the form of an skew-symmetric tenser

3
ili =®W-n; = Za)ﬁnj,
j=1

wherew;; are the components af with respect to the prin-
cipal directions, i.ew;; = n; - ® - nj. Note thatw;; = —wj;
fori # jandw;; = 0 fori = j. Now Eq.(37) can be written
as follows

(38)

3
T

i= l
3

= Z—n n; ~|—ZZ(SZ — sj)wjinn;.

i=1 i=1j=1

(39)

Note that the last term is indeed a symmetric tensor.
Now we writec in a similar way:

c= Zc,n n; + ZZ(Q cj)wjinin;.

i=1 j=1

(40)

and transform the right-hand side of the constitutive equation
Eq. (4) to the principal directions:

c=L-c+c- LT—I—f(c)

= ZZ(C] ij + i ]l)n nj+ Zfl(cls c2, c3)nin;,

i=1 j=1
(41)

where we have writterf; explicitly as a function of the prin-
cipal values ot, using the property thaf(c) is an isotropic
function. Equating thdiagonalcomponents of Eq$40)and
(41)leads to
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¢i = 2ciLii + fi(c1,c2,¢3), i=123 (42)
and from theoff-diagonalcomponents we get:
oy = ST 123 i) e
Cj—Ci
(43)

Substituting these results into E§9)leads to our final result
for the evolution ofs = logc:

3
. fi
s= Z (ZLH + c_: n;n;
i=1

3 3

2.2 5=,

+ i=1 j=1 (cjLij + ciLj)nn;. (44)
L. Ci —Cj
i#]
Note that:

¢ Inthe limitthat two principal values are the same, we have:
o=
lim

Ci—>Cj Cj —

ij (cjLij+cilji) = Lij+ Lji = 2D;j,  (45)

and thej- andji-components of the non-diagonal term in
Eq.(44)nicely add-up to the diagonal term to form a tensor
in the (;, n;) plane independent of the principal vectors,
as it should, since these are not unique in this case. If all
principal values are the same, the terms add up to the full
tensor D.

The term with f; can be written in tensorial form as fol-
lows:

34,
> C—fmm =c flo). (46)
i=1""

There is a clean separation of effects in &) (see also
Eq. (39)):

o stretching along the principal axes with;,

o relaxation along the principal axeg (c;),

o rotation of the principal axes with.

As in the 1D toy problem, the stretching term is additive
rather than multiplicative.

Inthe actual implementation itis easy to replace @by

Eq. (44). Additional requirements are a routine that com-
putes the principal directions and valuessadnd trans-
formations of the components of a tensor in the global
frame to the principal frame and vice versa. Furthermore,
to compute the stress tensgrthe conformation tensar
needs to be computed from which is most easily per-
formed in the principal frame using = exp(;) and then

a transform to the global frame.

Since the conformation tensoeis computed frons using

¢ = exps, itis positive definitéby design’, even ifs con-
tains large numerical errors. This property probably also
contributes to the stability of the log-based scheme. This is
similar to the situation with Brownian configuration fields
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[4], where the method always produces a positive definite
conformation tensor.
e The resulting Eq(44)is in agreement witffil].

6. Results for the flow around cylinder confined
between two plates

6.1. Problem description

We consider the planar flow past a cylinder of radRis
positioned between two flat plates separated by a distance
2H. The ratioH/R is equal to 2 and the total length of the
flow domain is 3®. The flow geometry is shown fRig. L In
the following we will use anx, y) co-ordinate system with
the origin positioned at the center of the cylinder.

We assume the flow to be periodic. This means that we
periodically extend the flow domain such that cylinders are
positioned 3® apart. This avoids specification of inflow and
outflow boundary conditions. The flow is generated by spec-
ifying a flow rateQ that is constant in time. The required
pressure gradient is computed at each instant in time. We
assume no-slip boundary conditions on the cylinder and on
the walls of the channel. Since the problem is assumed to
be symmetric we only consider half of the domain and use
symmetry conditions on the center line, i.e. zero tangential
traction.

The dimensionless parameters governing the problem are
the Weissenberg numb@fi = AU/R and the viscosity ratio
ns/nwhereU = Q/2H is the average velocity angd= ns +
np is the zero-shear-rate viscosity of the fluid. In this paper,
we usens/n = 0.59, which is the value used in benchmarks
for the Oldroyd-B model.

In the following, we will only use dimensionless quanti-
ties: the time variable has been made dimensionless with the
characteristic time scale of the flaky U, velocities withU,
lengths withL, stresses witlhyU/R.

To solve the problem numerically we used five meshes,
denoted by M3-M7, where each mesh is derived from the
previous one by a uniform refinement which approximately
doubles the number of elements. We start from a base mesh

L =30R

Fig. 1. Geometry of the cylinder between two flat plates. The flow is from
left to right.
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Fig. 2. Base mesh MO from which all other meshes are derived. The base mesh MO has 120 elements.

Table 1
Numerical parameters

M3 M4 M5 M6 M7
Number of elementsNe) 1920 4320 7680 17280 30720
Number of nodal points 7921 17461 31201 69841 123841
Smallest radial element size 0.0220 0.0148 0.0111 0.00743 0.00558
SmallestAr used 5x 1073 3x 1073 3x 1073 2x10°3 1.5%x 1073

MO, which is depicted irFig. 2 The numerical parameters
of the meshes are summarizedimble 1

we monitor the maximum value of, in the domain and the

obtain a steady state depends on the Weissenberg nifiber
For very highWithe relaxation time becomes more important

a reasonable steady state is obtained.

6.2. Oldroyd-B model

6.2.1. Criterion for numerical instability
In this section, we try to verify that the criterion E@4)

determines the onset of the numerical instability in the flow
around a cylinder for the standard FEM implementation. The
breakdown of the solution sets in on the center line down-
stream of the cylinder close to the stagnation point. Therefore,
we use the 1D expression fOiEq.(35)on the center line. By
breakdown we mean that the solution ‘explodes’, that is the

in for Wi = 0.87, slightly lower than for mesh M4. IRig.

3, we have also plotted the result for the computation using
In order to judge whether we have obtained a steady state matrix logarithms forWi = 1.0 using mesh M4. The com-
putations are stable. The values®ére significantly larger
drag on the cylinder as a function of time. The time needed to than 2 in both points of the first element without showing any

numerical instabilities.

It is difficult to show the critical value o€ to be exactly
and at least several relaxation times must be computed befor& here, because that is proved to be the value for a constant

velocity and constant growth factor, which is

far from true in

the first element. Furthermore, the 1D analysis is only an in-
dication for the FEM computation, which is 2D. Anyway, we
believe that the above results support the conclusion that the
numerical instability as discussed in Sectdagat work here.

6.2.2. Drag results

In Table 2we give the value for the steady-state dimen-

sionless drag coefficiemt

Fx

K=—,
nUR

(47)

solution grows exponentially and reaches numerical overflow with F, the drag on the cylinder, for various valueWwf us-
ing different meshes. The most extensive set is for M4. All
results are obtained using matrix logarithms. We also show

within a small number of time steps.

We will use mesh M4 which breaks down féfi = 0.88.
The numerical divergence starts to set in fee 20 when
starting up from a zero stress stateFig. 3we give the val-
ues ofC along the center line in the Gauss integration points.
This plot has been derived from the velocity along the center
line extracted from the FEM calculation. Therefore, the Gauss
points are not real Gauss points in the FEM calculation, be-
cause these are interior to the 2D elements. These 1D Gaus
points are expected to be the most relevant though for the on-
set of the instability and avoids calculati@gn points where
the velocity is zero. IrFig. 3, we see that foWi = 0.7 the
value ofCis positive, indicating exponential growth in space,
but small C < 0.25). For higheiVi the region with positive
C becomes larger and the value®©irows. ForWi = 0.86
the value ofC is smaller than 2. FoWi = 0.87 the value o€
in the first point is larger than 2 (slightly higher than 3). For
Wi = 0.88 the value ofC for time s = 18 in the first point is

the results of Fan et aJ15], Caola et al[16] and Owens
59 ;
: +  Wi=0.70 (stable
45 *  Wi=0.86 (stable 1
= Wi=0.87 (stable
4 + ‘:--,. o Wi=0.88, time=18 (unstable) -
; = Wi=1.0, matrix logarithm
< 35+ 1
ap 1
O 25 1
1.5 -x«-"g '..k 1
TN |
0.5 ‘:"‘g . 1
e il M My eenn meena e

close to 5 and the solution diverges after that. We see the same

behavior for the coarser mesh M3 (results not shown), except
that the value ofC in the first point becomes larger than 2
(C = 2.7) for Wi = 0.86 and the numerical instability sets

Fig. 3. The value of for variousWi on the centerline in the wake of the
cylinder for the Oldroyd-B model. The mesh is M4. The values shown are
in the (two) Gauss integration points and connected by a line.
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Table 2

Dimensionless steady-state drag coeffickent

Wi M3 M4 M5 M6 M7 Ref.[15] Ref.[16] Ref.[17]

0.0 132.358 132.36 132.384 132.357
0.1 130.363 130.36

0.2 126.626 126.62

0.3 123.193 123.19

0.4 120.596 120.59

0.5 118.836 118.83 118.763 118.827
0.6 117.872 117.792 117.778 117.775 117.775 117.78 117.775
0.7 117.448 117.340 117.320 117.315 117.315 117.32 117.291
0.8 117.373 117.36 117.237
0.9 117.787 117.80 117.503
1.0 118.675 118.501 118.471 118.49 117.783 118.030
1.1 119.466 118.031 118.786

1.2 120.860 120.650 120.613 119.764

1.4 123.801 123.587 (123.541)

1.6 127.356 127.172

1.8 (131.458) 131.285

2.0 (135.839)

et al. [17], which are all close to ours. We did not include sults in the wake foiwi = 0.7 is plotted inFig. 6. It is clear
the results of Alves et a[18], which are close to the re- we have nice convergence ftfi = 0.6. For Wi = 0.7 we
sults of Fan et al[15]. For the two most refined meshes have more difficulty obtaining convergence, especially in the
M6 and M7, we have only included two result®i(= 0.6 wake. ForWi = 0.7 we have also plotted the results of Fan et
andWi = 0.7) to show that we indeed have convergence for al.[15] and we see that on the cylinder wall we have the same
the drag for these Weissenberg numbers when using the lognaximum but our results are shifted slightly upstream. In the
conformation representation. The reason for notincluding re- wake we seem to converge to higher values than Fan et al.
sults for higher Weissenberg numbers for these meshes is nof15]. In the same figure, we have also plotted the results for a
a lack of stability. Mesh refinement beyoniti = 0.7 does one-dimensional DG calculation, starting from the back stag-
not seem to be useful considering the lack of convergencenation point, using the velocity componentfrom the FEM
of the stress in the wake of the cylinder (see the discussioncalculation. The 1D calculation uses a very refined equidis-
Section6.2.3. tant mesh with roughly 10 elements in the first element of the
Since the computations using the standard FEM break FEM solution. Fowi = 0.6 the results of the 1D calculation
down just belowWi = 0.9 for all three meshes M3, M4 and are consistent with the FEM results. B&f = 0.7 the 1D re-
M5, it is clear that the matrix logarithm implementation is sults are higher and seem to be almost the same for mesh M4
more stable. At some value @fi the solution becomes time- and M5. Since both stress profiles (i.e. 1D and 2D) should
dependent and a steady solution cannot be obtained, but combe identical in theory, it is clear that we have not obtained
putations can continue without breakdown even for somewhat convergence in the wake even for our most refined mesh M7.
higher values ofMi. In the table, we have indicated onset of

unsteady fluctuations (for the meshes M3, M4 and M5) by 14

putting the result ok between parentheses. The result printed I —
is a value roughly before the fluctuations begin. The fluctua- 132} ; Choad:
tions in the drag are still small (say 0.1%), but no steady-state € 55|
solution can be found. These fluctuations become worse for 2
higherWi and are likely to be numerical artefacts due to the & "2/
incorrect stresses in the wake (see Sedfi@n3. o 1261
In Fig. 4, we have also plotted the results of mesh M4 in ’g Yk
a graph. It is clear that our results féfi < 1 are very close 3
to the results of Fan et gl15], which are obtained usinga 5 '%?
higher order FEM. £ 120|
'1% 118
6.2.3. Convergence of stresses 116 . ; ) , ; ; : i
The convergence of the drag coefficient with mesh refine- ¢ 02 04 08 08 1 12 14 16 18

ment is not considered to be a very good indicator of accu-

ra?y‘ Therefore, we have plotted fig. 5 for _Wl = 0.6 and Fig. 4. Dimensionless dradf, vs. Weissenberg numbe/, for the flow
Wi = 0.7 the stres; CPmponemx on the Cy.“.nde_r wall and past a cylinder in a channel using an Oldroyd-B model. The results of Alves
along the center line in the wake. A magnification of the re- et al.[18] are graphically close to the results of Fan e{5].
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Fig. 5. The stress component,, as a function of the curve coordinasealong the cylinder surface and the center line in the wake of the cylinder. In the front
stagnation point = 0 and at the back stagnation paint r; left figure: Wi = 0.6, right figure:Wi = 0.7.

This becomes even more pronounced¥ér= 1.0. InFig. exponential growth. If we take a closer look at the left figure
7,we have plotted,, onthe cylinderwall and alongthe center in Fig. 7, we see that the stress maximum is near 1.4 and
line in the wake again fowi = 1.0. In the left figure, we see  decreasing with mesh refinement whergas- 0.5. This is
a reasonable convergence on the cylinder surface, similar toinconsistent with a steady solution, since at the stress maxi-
Wi = 0.7, butno sign of convergence in the wake. If we dothe mum the convection term is zero and exponential stretching
1D calculation here we find stresses thatrateshhigher than would lead to an unsteady solution. The stress maximum
the results from the FEM and now are also mesh dependentin the 1D solution is at the point whebg = 0.5, which is
A possible reason for the incorrect stress profiles is that thenearx = 1.9. It is also clear fronfig. 9that compared with
width of the stress wake is much smaller than the width of the lowerWi = 0.7 the length scale over which the velocity
the elements in the wake. This is illustratedHig. 8 where gradient changes near the stagnation point is much smaller
it is clear that the width of the wake is small and becomes than the smallest element size in the most refined mesh (M5).
smaller with mesh refinement. It should be noted however that Whether mesh-refinement will solve this problem is unclear.
it does not necessarily mean that increased mesh refinemenit is not even clear whether a smooth solution near the cylin-
will eventually lead to a converged stress profile. der exists or even whether a solution exists at all for this
Another ‘proof’ that the stresses on the centerline are in- Weissenberg number. Nevertheless, the drag on the cylinder
correct is a plot ok, with ¢ = dv,./dx, on the centerline for  (se€Table 9 seems to be unaffected by the convergence prob-
Wi = 1.0 as depicted ifrig. 9. A value larger than 0.5 means lems. This supports the experience by many authors that the
drag is a poor indicator of accuracy of the solution.

45
6.2.4. Behavior at higher Wi

Although the stresses in the wake are already incorrect at
Wi = 1.0, the matrix logarithm method allows us to obtain
stable numerical solutions for high®i. It is useful to de-
scribe the behavior of these solutions, because failure is quite
differentthan what we were used to before, which usually was
catastrophic failure. With the matrix logarithm the solution
becomes unsteady at somé depending on the mesh. For
example, irFig. 10we show the stress profiles for two differ-
ent Weissenberg numbers. B&¥ = 1.4 the wake becomes
unsteady for mesh M5 (not for M3 and M4). For larger times
this shows up as a non-smooth stress profile, whereas for
smaller times it looks still smooth. The numerical solution
however does not fail, in the sense that computations can be
Fig. 6. The stress componeny; as a function of the curve coordinagen Co_ntlnued without E_i problem. A¥i = 1.6 the numerical SO'_
the center line in the wake of the cylinder fét = 0.7. This is a re-plot of lution for meshM 5 is unsteady as well, but the stress profile
the results in the wake ¢fig. Sb. remains smooth, as can be seen in the right figurEigf

40
35
30

25

Tex

20




M.A. Hulsen et al. / J. Non-Newtonian Fluid Mech. 127 (2005) 27-39

36
200 : : 12000 : —
M3
180 M4 e
= M5
160 10000 7 M4-1D T
i M5-1D  —-----
140 i
8000 | ! 3 b
120 i
. 100 ; X
R 6000 F ! ~ 1
80 AN N
i f \
60 i N
4000 i NN .
40 N\
20 2000 ,;‘.‘E Ng A N 4
0 ™
.20 1 L Il L O L-ﬂ-»-r L L 1 Il =3
0 1 2 3 4 5 3 4 5 6 7 8 9 10

Fig. 7. The stress componeny; as a function of the curve coordinatalong the cylinder surface and the center line in the wake of the cylindévifes 1.0.
In the front stagnation point= 0 and at the back stagnation paint 7. Left figure: FEM results, right figure: FEM results and 1D results in the wake. Note

the different scales on the axes.

10. For higher values o#Vi the numerical solution becomes 6.3. Giesekus model
worse, also in other parts of the region, and eventually expo-
nential growth sets in and no solution for larger times can be  The Oldroyd-B model is not a good model for high stretch-
found anymore. ing, because the stretch (actually the conformation teejsor
The remarkably better stability behavior of the matrix log- can grow to infinity even for a relatively small finite stretch
arithm method for highewican be underlined by examining rate. This is possibly causing the difficulties in the wake of
the value of det. In previous methods the value of @dte- the cylinder for the Oldroyd-B model. In order to limit the
comes negative in a few points in the mesh at some rather lowstretch to physical levels, nonlinear models must be used.
valueWiand is a precursor of the usual catastrophic instabil- For dilute polymer solutions the FENE type models are used,
ity for a slightly higher value ofWi. In Fig. 11we show the where the stretch is restricted to some finite value. For poly-
value of log(det) = tr(log ¢) = trs as a function ok on the mer melts and concentrated polymer solutions other types
center line and on the cylinder wall fé¥; = 1.8 with mesh of nonlinearity are introduced, such as the tube model (Doi-
M4. The value is larger than 0, which means thatedet1. Edwards model) or anisotropic friction (Giesekus model). In
The latter is true in the complete region of the flow. Note this paper, we will use the Giesekus model, because it is easy

that dett > 1 can be derived analytically for the Oldroyd-B to implement and has all the ingredients to limit the stretch
model (see Hulse[13]). to show the real strength of the matrix logarithm method.
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Fig. 9. The value of.¢ as a function of the coordinateon the center line in

Fig. 8. The stress component,, as a function of at the cross section  the wake of the cylinder foWi = 1.0. Also shown is the result fd¥i = 0.7

x = 2 for Wi = 1.0. Note the scale on the horizontg) éxis. for one mesh.
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Fig. 10. The stress component,, as a function of the curve coordinag along the cylinder surface and the center line in the wake of the cylinder. In the
front stagnation poiné = 0 and at the back stagnation pain& 7; left figure: Wi = 1.4, right figure:Wi = 1.6.

It should be noted that for the Giesekus model the confor- which breaks down foWi = 1.20, slightly higher than for
mation tensore is not limited to some finite value, but in  the Oldroyd-B model Wi = 0.87). In Fig. 12we give the
order to reach infinity, the stretch rates must be infinite as values ofC along the center line in the Gauss integration
well. We will choose a value af = 0.01. This gives atwo-  points. The contribution t€ of the extra term involving,
dimensional Trouton ratio of /{2«) = 50, still leading to is about 25% in the first element. We see that the behavior
substantial strain-hardening, but compared to the Oldroyd- is similar to that obtained with the Oldroyd-B, except that
B the stretch is much more restricted. For polymer melts a we have a slightly higher Weissenberg num@émow. For
larger value, for example = 0.25 as in[7], with even more Wi = 1.17 the value ofC is smaller than 2. FoWi = 1.18
restricted strain-hardening seems to be more appropriate. andWi = 1.19 the value o€ in the first point is larger than 2
(near 2.3 and 3.1, respectively). Féi = 1.20 the solution
6.3.1. Criterion for numerical instability breaks down. This again supports our hypothesis that the nu-
Again we try to verify that the criterion Eq24) de- merical instability as discussed in Sectibis the reason for
termines the onset of the numerical instability in the flow numerical breakdown.
around a cylinder for the standard FEM implementation. We
again check the 1D criterion E¢35) on the center line.  6.3.2. Behavior at high Wi
Now the term in Eq(35) involving c,, is non-zero. We will The behavior for high values ®¥i of the Giesekus model
use a Giesekus model with= 0.01. We will use mesh M3  with « = 0.01 using the FEM implementation with matrix

7 : ; : ; 35 .
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Fig. 11. The value of log(de) as a function of the coordinaten the center Fig. 12. The value o€ for variousWi on the centerline in the wake of the

line in front of the cylinder, along the cylinder surface, and the center line cylinder for the Giesekus model. The mesh is M3. The values shown are in
in the wake of the cylinder. the (two) Gauss integration points and connected by a line.
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Fig. 13. The value of,, for Wi = 100 on the centerline and on the wall of
the cylinder for the Giesekus model with= 0.01. Two meshes are shown:
M3 and M4.

Fig. 15. The value ot,, for Wi =5 on the centerline and on the wall of
the cylinder for the Giesekus model with= 0.01 for various meshes. Also
shown are the results for meshes M3 and M4 using the 1D procedure as
explained in SectioB.2.3

logarithm is dramatically different than for the Oldroyd-B
model: there doesot seem to be a limitin \Min Fig. 13 we
have plotted the component of the conformation terger
on the cylinder wall and along the center line as a function
of x over the whole computed region fiéfi = 100 for mesh
M3 and M4. No convergence has been achieved just behind6.3.3. Mesh convergence

the cylinder in the wake and on the cylinder surface for these  In the previous section, we saw that at the high= 100
meshes. Note that for this high valueWf, the wake extends  convergence problems appear at localized regions. In this sec-
to the next cylinder in the periodic domain. Note also that the tion, we will consider the convergence problems at a lower
values ofcy, are very high and that in the Giesekus model Wi = 5.0, where they appear in a somewhat larger region in
the nonlinear terms are two orders of magnitude larger thanthe wake. The results are shownFiiy. 15 Convergencen

the linear terms near the maximum Hig. 14the dragonthe  the cylinder is easily obtained, however convergence in the
cylinder and the maximum value of; inthe flowisshownas  wake up to about one radius from the cylinder is very diffi-
afunction of time for mesh M4. Itis clear that two time scales cult. In the same figure, we have also plotted the results of
seems to be acting here at the same time. The drag, whicha one-dimensional DG calculation as explained in Section
is mainly determined by the shear stresses on the cylinder,6.2.3 We see that in the wake, where we have convergence
evolves in the time frame of one relaxation time, whereas the problems, the 1D calculation gives locally near the cylinder
maximumc,, seems to evolve in a shorter time scale related significantly higher values far,,, but surely not as dramatic

to flow deformation. Note that the time it takes for a patrticle
on the center line to return to the same position (no cylinder
present) is 20 whereas the relaxation time is 100.

Fig. 14. The drag coefficiett and the maximum value @f,, as a function of time foii = 100. the Giesekus model with= 0.01. The mesh is M4.
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as we saw for the Oldroyd-B problem. Also the typical length Acknowledgements

scale involved seems to be much smaller. This is an indication

that for mesh convergence in this region we need at least a We thank Frank Baaijens for stimulating discussions and
mesh thatis much more refined than our most refined meshesfor giving the first author the opportunity to present this work
A way to achieve convergence is possibly by adaptive local at the. ICR2004. ) )
refinement or higher order methods, but problems of another ~ This research was funded in part by the Applied Math-
nature, such as improper discretization and model problemseématical Sciences subprogram of the Office of Energy Re-
cannot be ruled out either. More work is needed here. How- S€arch of the US Department of Energy under Contract DE-
ever, this is beyond the scope of this paper. AC03-76-SF00098.

References

7. Conclusions and discussion o ) )
[1] R. Fattal, R. Kupferman, Constitutive laws for the matrix-logarithm of

. . . the conformation tensor, J. Non-Newtonian Fluid Mech. 123 (2004)
It has been shown that also in the FEM implementation 281-285.

(DEVSS with Discontinuous Galerkin), the log conformation  [2] R. Keunings, A survey of computational rheology, in: D.M. Binding et
representation removes the catastrophic breakdown present al.(Ed.), Proceedings of the Xllith International Congress on Rheology,
in the standard FEM implementation. We use a standard Vol 1. Cambridge, UK, Glasgow, UK, British Society of Rheology,
benchmark problem: the flow around a cylinder using an 2000, pp. 7-14. ) ) ) ) .

. ) [3] R. Fattal, R. Kupferman, Time-dependent simulation of viscoelastic
Oldroyd'B model and also tested a Giesekus model with flows at high weissenberg number using the log-conformation repre-
a = 0.01. Especially the Giesekus model shows a dramatic sentation. J. Non-Newtonian Fluid Mech., 126 (2005) 23-37.
improvement of the numerical stability. That doesn’'t mean [4] M.A. Hulsen, A.P.G. van Heel, B.H.A.A. van den Brule, Simulation
all problems are solved. of viscoelastic flows using Brownian configuration fields, J. Non-

It turns out that high Weissenberg number problems re- _, NeWtonian Fluid Mech. 70 (1997) 79-101.

. . e ; . [5] R. Guénette, M. Fortin, A new mixed finite element method for com-

main notoriously difficult due to the exponential behavior of puting viscoelastic flows, J. Non-Newtonian Fluid Mech. 60 (1995)

the constitutive equations. For the case of the flow arounda  27-52.

cylinder for the Oldroyd-B model we do not find any sign of  [6] M. Fortin, A. Fortin, A new approach for the FEM simulation of vis-

convergence for the stress in the wake beyond some rather coelastic f_I_ows, J. Non-Newtonian Fluid l\/_I_ech. 32 (1998) 295-310.

small Weissenberg number (order 1). We believe the prob- [/ 'I?/.IP.'T' Baaijens, S.H.A. Selen, H.P.W. Baaijens, G.W.M. Peters, H.E.H.
. Lo . eijer, Viscoelastic flow past a confined cylinder of a low density

lems might be related to the constitutive behavior of the polyethylene melt, J. Non-Newtonian Fluid Mech. 68 (1997) 173-203.

Oldroyd-B model, that is the unlimited extension of the poly-  [8] A. Fortin, R. Giénette, R. Pierre, On the discrete EVSS method, Comp.

mer at finite extension rates. It is possible that no solutions Meth. Appl. Mech. Eng. 189 (2000) 121-139.

exist beyond some Weissenberg number, but further investi- [9] \R; %eVegue, IN;JS?;tzrical Methods for Conservation Laws, Birkhauser

. . . eriag, basel, .

gations ar(_a nee,de_d_ to answer that question. EOI‘ the GI(:"S(al(uflO] M.A. aulsen, E.A.J.F. Peters, B.H.A.A. van den Brule, Anew approach

model, which S'gn'flcamly reduces the extension, there does to the deformation fields method for solving complex flows using inte-

not seem to be a limit to the obtainable Weissenberg numbers  gral constitutive equations, J. Non-Newtonian Fluid Mech. 98 (2001)

for the chosen parameters of the model. As for the Oldroyd-B 201-221.

model, convergence problems exist in the wake of the cylin- [11] M.A. Hglserw., Analysis and.numerical §imul.ation of the flow of vis-

der. However, for the Giesekus model these problems are iﬂee'?\ls;'t;;'rll‘;]sdsprl‘é%;hes's' Delft University of Technology, Delft

much more localized near the Cy“nder- Very refined local [12] J. van der Zandén, M.A. Hulsen, Mathematical and physical require-

meshes and/or higher order methods might be appropriate to  ments for successful computations with viscoelastic fluid models, J.

obtain convergence in these localized regions. This is how- Non-Newtonian Fluid Mech. 29 (1988) 93-117.

ever beyond the scope of this paper and further work is needed13] M.A. Hulsen, Some properties and analytical expressions for plane

to determine the precise reason of the convergence problems. gg"‘('lcgs"s‘;os”gggnd Giesekus models, J. Non-Newtonian Fluid Mech.

Another open question that remains is: sgppose_ we I/]":’-Ve[l4] R. Hill, Aspect of invariance in solid mechanics, Adv. Appl. Mech. 18
been able to obtain convergence at some high Weissenberg  (1978) 1-75.
number by some higher order scheme with very refined [15] Y. Fan, R.I. Tanner, N. Phan-Thien, Galerkin/least-square finite-
meshes, will the standard method be stable also? After all, ‘:)Iemhergf‘(iggg)sgg?t;sagyV'Scoe'as“cf'OWSvJ- Non-Newtonian Fluid

oo ech. —256.
the_C parameter (see E(122)) S_hOU|d go FO Z?I‘O for infinite [16] A.E. Caola, Y.L. Joo, R.C. Armstrong, R.A. Brown, Highly parallel
ref'n?ment fora smooth.solutlon. Even if this tums out to be time integration of viscoelastic flows, J. Non-Newtonian Fluid Mech.
true in the end, the matrix log method proposed here has the 100 (2001) 191-216.
advantage of having the ability to obtain solutions for rela- [17] R.G. Owens, C. Chawie, T.N. Philips, A locally-upwinded spec-
tively coarse meshes, which are accurate in large parts of the Rr/la' tﬁ“ﬁg??&%ﬁﬁ? f7°1f viscoelastic flows, J. Non-Newtonian Fluid
. ech. —71.

fIOW. T_he user can evaluate the solution E_ind after S_Ome anaI-[18] M.A. Alves, P.J. Oliviera, F.T. Pinho, The flow of viscoelastic fluids past
ysis might conclude that local inaccuracies are unimportant a cylinder: finite-volume high-resolution methods, J. Non-Newtonian

for the practical problem at hand. Fluid Mech. 97 (2001) 207-232.



	Flow of viscoelastic fluids past a cylinder at high Weissenberg number: Stabilized simulations using matrix logarithms
	Introduction
	Governing equations
	Numerical discretization
	A stability criterion for exponential profiles
	Evolution equation for the logarithm of the conformation tensor
	6Results for the flow around cylinder confined between two plates
	Problem description
	Oldroyd-B model
	Criterion for numerical instability
	Drag results
	Convergence of stresses
	Behavior at higher Wi

	Giesekus model
	Criterion for numerical instability
	Behavior at high Wi
	Mesh convergence


	Conclusions and discussion
	Acknowledgements
	References


