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Flow of viscoelastic fluids past a cylinder at high Weissenberg
number: Stabilized simulations using matrix logarithms
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Abstract

The log conformation representation proposed in [R. Fattal, R. Kupferman, Constitutive laws for the matrix-logarithm of the conformation
tensor, J. Non-Newtonian Fluid Mech. 123 (2004) 281–285] has been implemented in a FEM context using the DEVSS/DG formulation for
viscoelastic fluid flow. We present a stability analysis in 1D and identify the failure of the numerical scheme to balance exponential growth as
a possible source for numerical instabilities at high Weissenberg numbers. A different derivation of the log-based evolution equation than in
[ 3 (2004)
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R. Fattal, R. Kupferman, Constitutive laws for the matrix-logarithm of the conformation tensor, J. Non-Newtonian Fluid Mech. 12
81–285] is also presented. We show numerical results for the flow around a cylinder for an Oldroyd-B and a Giesekus model. W
onformation representation, we are able to obtain solutions beyond the limiting Weissenberg numbers in the standard scheme. I
or the Giesekus model the improvement is rather dramatic: there does not seem to be a limit for the chosen model parameterα = 0.01).
owever, it turns out that although in large parts of the flow the solution converges, we have not been able to obtain convergence

egions of the flow. Possible reasons include artefacts of the model and unresolved small scales. More work is necessary, includin
ore refined meshes and/or higher order schemes, before any conclusion can be made on the local convergence problems.
2005 Elsevier B.V. All rights reserved.
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. Introduction

The high Weissenberg number problem (HWNP) has been
he major stumbling block in computational rheology for the
ast three decades. The term “HWNP” refers to the empirical
bservation that all numerical methods break down when the
eissenberg number exceeds a critical value. The precise

ritical value at which computations break down varies with
he problem (including the constitutive model), the method
nd the mesh used. The precise mechanism that leads to the
reakdown has remained something of a mystery (see[2] and

he references therein).
A mechanism responsible for at least part of the problems

een at high Weissenberg number has been recently proposed

∗ Corresponding author. Tel.: +31 40 247 5081; fax: +31 40 244 7355.
E-mail addresses:m.a.hulsen@tue.nl (M.A. Hulsen);

aananf@cs.huji.ac.il (R. Fattal); raz@math.huji.ac.il (R. Kupferman).

in [3]. In essence, it is a numerical instability caused by
failure to balance the exponential growth of the stress (d
deformation) with convection. Such a failure is common t
methods that approximate the stress by polynomial base
tions (the choice of polynomial base function is explici
finite elements and implicit in finite differences). The rem
proposed in[3] was a change of variables into new variab
that scale logarithmically with the stress tensor. Specific
the constitutive relations were reformulated as equation
the matrix logarithm of the conformation tensor, exploit
the fact that the latter is symmetric positive definite. Num
cal experiments for a two-dimensional (2D) lid-driven ca
using a second-order finite difference scheme indicate
schemes based on the new logarithmic formulation are
mune to the high Weissenberg number breakdown.

In this paper, we implement the new logarithmic form
lation with a finite element method (FEM), and test it
a classical benchmark problem—flow past a cylinder. M

377-0257/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.jnnfm.2005.01.002
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specifically, we have in mind the following goals:

(1) Develop a FEM scheme with much better numerical sta-
bility.

(2) Get more insight into the HWNP by analyzing the numer-
ical breakdown within a FEM point of view.

(3) Present benchmark results that confirm the validity of the
new method at low and moderate Weissenberg numbers,
where comparison to existing data is possible.

(4) Establish new benchmark results at higher Weissenberg
numbers.

(5) Investigate the limitations of the method, and in particu-
lar, understand how accuracy is lost at high Weissenberg
numbers. Such an understanding is important for the future
design of higher order methods.

The paper is structured as follows. In Section2 we de-
scribe the governing equations and introduce the notations
used henceforth. In Section3, we describe the standard FEM
discretization based on DEVSS and discontinuous Galerkin.
In Section4, we analyze the stability of the standard dis-
cretization, and in particular obtain a simple stability criterion
whose violation causes the high Weissenberg number break-
down. In Section5, we derive the constitutive equation for
the matrix logarithm of the conformation tensor; the deriva-
tion is based on a different approach than in[1]. In Section6,
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of the conformation tensor: the Oldroyd-B and the Giesekus
model, which can be written as follows

ċ = L · c + c · LT + f (c), (4)

with

f (c) =




−1

λ
(c − I) Oldroyd-B,

−1

λ
(c − I + α(c − I)2) Giesekus.

(5)

The Oldroyd-B model is identical to a Giesekus model with
α = 0. We will solve Eq.(4) in a Eulerian frame and therefore
write

ċ = ∂c

∂t
+ u · ∇c. (6)

Boundary conditions will be discussed for the flow around a
cylinder problem that will be analyzed in Section6.

3. Numerical discretization

For the spatial discretization of the system of equations,
we will use the finite element method. We will basically use
the same implementation as described in[4] and give a brief
summary here.
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e present numerical results for the flow past a cylinde
n Oldroyd-B and a Giesekus model. In particular, we
erify the criterion for breakdown in the standard discret
ion. We also show the improved stability of the matrix
ormulation. A discussion follows in Section7.

. Governing equations

We will consider the flow of viscoelastic fluids at creep
ow conditions (inertia can be neglected) in a spatial re
, having a boundary denoted by�. For this, we need th

ollowing set of equations: the momentum balance, the m
alance for incompressible flows and a constitutive equ
escribing the stress.

The momentum balance and mass balance are given

p− ∇ · (2ηsD) − ∇ · τ = 0, (1)

· u = 0, (2)

herep is the pressure,u is the velocity vector, the rat
f-deformation tensor is given byD = 1

2(L + LT), with the
elocity gradient tensorL = (∇u)T andτ is the extra-stres
or polymer stress). The coefficientηs is the solvent viscosit
he polymer stressτ is given by

= ηp

λ
(c − I), (3)

herec is the conformation tensor,ηp is the zero-shear-ra
iscosity of the polymer part of the stress andλ is the relax
tion time. We will use two different models for the evolut
In order to obtain a proper mixed velocity-stress
ulation, we use the Discrete Elastic-Viscous Split St

DEVSS) formulation of Gúenette and Fortin[5] for the dis-
retization of the linear momentum balance and the
inuity equation. For this we introduce an extra varia
= 2ηpD. Note that Gúenette & Fortin[5] introduceD as an
xtra variable, however usinge instead leads to a symmet
ystem matrix. We rewrite the momentum balance Eq(1)
nd the continuity equation Eq.(2) as follows

p− ∇ · (2ηsD(u) + τ) − ∇ · (2ηpD(u) − e) = 0, (7)

− ∇ · u = 0, (8)

− D(u) + 1

2ηp
e = 0. (9)

or the weak formulation of Eqs.(7)–(9), we introduce sep
rate functional spaces foru, p and e, which we denot
y U, P and E, respectively. The weak formulation c
e found by multiplying with test functions and integ

ion by parts: find (u, p, e) ∈ U × P × E such that for al
v, q,g) ∈ U × P × E, we have

− (∇ · v, p) + (∇v,2ηD(u) − e + τ) = (v, σ)�, (10)

(q,∇ · u) = 0, (11)

(g,∇u) + 1

2ηp
(g, e) = 0, (12)

here (·, ·) and (·, ·)� are properL2 inner products on th
omain� and on the boundary�, respectively. The viscosi
is the zero-shear-rate viscosityηs + ηp andσ is the traction
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vector on the boundary. The system for (u, p, e) is symmet-
rical.

The discrete form of the equations is obtained by re-
quiring that the weak form is valid on approximating sub-
spacesUh × Ph × Eh which consist of piecewise polyno-
mial spaces. The discrete solutions and the discrete test
functions are denoted with subindexh: (uh, ph, eh) and
(vh, qh,gh). We will use quadrilateral elements with con-
tinuous biquadratic polynomials (Q2) for the velocity space
Uh, discontinuous linear polynomials (P1) for the pressure
spacePh and continuous bilinear polynomials (Q1) for the
viscous polymer-stress spaceEh.

For the discretization of the constitutive equation, we use
the discontinuous Galerkin method (DG)[6]. The functional
space forc is denoted byT. This leads to the following weak
formulation of the constitutive equation Eq.(4): find c ∈ T

on all elementsei such that for allw ∈ T , we have(
w,

∂c

∂t
+ u · ∇c − L · c − c · LT − f (c)

)
ei

+
∫
γ in
i

(n · u)w : (c+ − c) dγ = 0, (13)

where (·, ·)ei denotes anL2 inner product on elementei
only,γ in

i is the part of the element boundary whereu · n < 0
(inflow boundary),n is the outwardly directed unit normal on
γ or
e rt of
�

t on
w
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∂c

∂t
+ a

∂c

∂x
= bc, (14)

wherea is a constant convection speed andb > 0 is the ex-
ponential growth factor. Eq.(14) can be interpreted as a 1D
representation of the model for the conformation tensor Eq.
(4) with the linear form off (Eq. (5)a in the Eulerian frame
(using Eq.(6)) witha ∼ |u|andb ∼ −1/λ+ 2

√− detL (see
below). For non-linear models, like the Giesekus model, the
equation represents not the full model but a linearized one.
For simplicity we assumea > 0 for now. We will assume
c(x, t = 0) = 1 as initial condition andc(x = 0, t) = 1 as in-
flow condition. The analytical solution is given by

c(x, t) =

exp

(
bx

a

)
for x ≤ at,

exp(bt) for at < x ≤ L.

(15)

The solution is split into a region where it is steady but expo-
nentially growing in space with a growth factorb/a and a re-
gion where the solution is exponentially growing in time with
a growth factor ofb. At time t = L/a, the time-dependent
region disappears and the solution is steady fort > L/a. De-
spite the exponential growth factorb, it is possible to obtain
a y the
c

e
�

c me
[

c f
m

b

o ion
i does.
T nce
t grid
p
w

c

U
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c

in
i . Furthermore,c+ is the value ofc in the upstream neighb
lement or the imposed value at the inflow boundary pa
. We will use discontinuous bilinear polynomials (Q1) for

he spaceTh. The combination of the DEVSS formulati
ith DG has been introduced by Baaijens et al.[7] and it has
een proved by Fortin et al.[8] that it leads to a proper mixe
elocity-stress scheme.

For the time discretization of the constitutive equation
13), we use an explicit Euler scheme, where the time de
ive is discretized by∂c/∂t ≈ (cn+1 − cn)/�t and all othe
erms are evaluated attn. For time-accurate solutions we c
se a higher order scheme, such as Adams-Bashforth, b
btaining steady-state solutions this is not necessary.

hat the equations can be solved at element level. Nex
ubstituteτn+1 = ηp/λ(cn+1 − I) into Eq.(10). The system
atrix for solving (un+1, pn+1, en+1) is symmetrical and LU
ecomposition is performed at the first time step. Since
atrix is constant in time, solutions at later time steps ca

ound by back substitution only. This results in a signific
eduction of the CPU time.

. A stability criterion for exponential profiles

In [3], an analysis of a numerical instability is given fo
ne-dimensional (1D) problem discretized using a first-o
pwind scheme. Here we briefly repeat that and at the

ime extend the analysis to our DG scheme.
The ‘toy problem’ we are considering here is as follo

nd c(x, t) with x in the interval (0, L) and timet > 0 such
steady state due to balancing of exponential growth b
onvection.

Now assume a grid havingN equidistant intervals of siz
x. The coordinates arexi = i�x, i = 0, . . . , N. If we dis-

retize Eq.(14) in space using a first-order upwind sche
9] and incorporate the inflow condition we get

dci
dt

= −aci − ci−1

�x
+ bci

=
(
b − a

�x

)
ci + a

�x
ci−1, i = 1, . . . N, (16)

with ci(t) = c(xi, t) andc0 = 1. Assuming that bothci and
i−1 are positive, it is easy to see that the coefficient oci
ust be negative:

− a

�x
< 0 or �x <

a

b
= �xcrit, (17)

therwise dci/dt remains positive and the numerical solut
s not able to obtain a steady state, as the exact solution
he source of the numerical instability is the failure to bala

he exponential growth by convection. Note that in the
oints of the steady region the exact solution Eq.(15)can be
ritten as

i = exp

(
bxi

a

)
=
(

exp

(
�x

�xcrit

))i
. (18)

sing this, we can interpret the stability criterion Eq.(17)as
aying that�xmust be such that the growth factor in a sin
ell, i.e.ci+1/ci, must be smaller thate.
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In order to derive a similar stability criterion for DG, we
rewrite Eq.(16) into a matrix system:

dc

dt
=



γ 0

β γ

...
...

0 β γ


 c + f,

with γ = b − a

�x
, β = a

�x
. (19)

For obtaining a steady numerical solution, it is required that
the eigenvalue (= γ) of the coefficient matrix must be nega-
tive. This is identical to Eq.(17). For DG with linear polyno-
mial interpolation, we can write the discretized equations in
the same form as Eq.(19), however nowγ andβ are 2× 2
matrices (see[10]):

γ = b

(
1 0

0 1

)
+ a

�x

(
−3−1

3 −1

)
, β = a

�x

(
0 4

0−2

)
.

(20)

The eigenvalues of the coefficient matrix are identical to
the eigenvalues ofγ, which areb + (−2 ± i

√
2)a/�x. For

stability the real part of the eigenvalues must be negative:

b
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s(x, t) =


bx

a
for x ≤ at,

bt for at < x ≤ L,

(26)

which clearly shows the linear behavior ofsboth in the steady
region and the time-dependent region.

A possible extension of the definition ofC to 2D is sug-
gested by considering the discretization of

∂c

∂t
+ ax

∂c

∂x
+ ay

∂c

∂y
= bc, (27)

on a regular grid with first-order upwinding. In that case, the
coefficient ofci becomesb − ax/�x − ay/�y and therefore

C = b

|ax|
�x

+ |ay|
�y

, (28)

with �x and�y a typical size of the elements inx andy
direction, respectively, seems to be a reasonable extension
to 2D. Another possible extension is given in[3], wherea
in Eq. (22) is replaced by (a2

x + a2
y)

1/2 and�x represents a
typical grid size in the direction of the ‘velocity’ (ax, ay).

Application of the analysis above to the viscoelastic con-
stitutive model Eq.(4) is rather straightforward. The coef-
fi
a

r e of
E , we
n ix of
t the
e

c

w
t
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o

µ

w
i the
G and
c per-
t
p

c

w ,
w
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i

ε

− 2
a

�x
< 0 or �x < 2

a

b
. (21)

ow let’s introduce a dimensionless grid numberC:

= �x
b

|a| , (22)

hen Eqs.(17)and(21)can now be written as

< 1 for first-order upwind, (23)

< 2 for DG withP1 interpolation, (24)

espectively. Note that we have extended the definitio
such that both positive and negative values ofa are

llowed.
As explained in[1] and[3], the numerical instability de

cribed above can be removed by solving fors = logc instead
f c. This removes exponential profiles from the quantity

s being solved and therefore also the source of the insta
he exponential growth is fully contained within the varia
and only becomes visible when transforming back w
= exp(s). The equation fors can easily be derived, usi

˙ = ċ/c with ṡ = ∂s/∂t + a∂s/∂x:

∂s

∂t
+ a

∂s

∂x
= b. (25)

ote that the right-hand side is now a constant. Therefo
imilar analysis for a discretized version of Eq.(25) as we
id for Eq.(14) leads to a diagonal coefficient that is alw
egative (unconditional stability). The analytical solution
cientsa and (ax, ay) represent the velocity vectoru, thus
= u in 1D and (ax, ay) = (u, v) in 2D. The coefficientb

epresents the positive growth rate of the right-hand sid
q.(4). Since, the constitutive model is a tensor equation
eed to compute the eigenvalues of the coefficient matr

he right-hand side, i.e. for the Oldroyd-B model we write
quation as a matrix equation:

˙ = Bc, (29)

herec = (cxx, cxy, cyy)T. The representative value forb is
he maximum (positive) eigenvalueµmax of the 3× 3 matrix
. The criterion for a positive eigenvalue and the actual v
f µmax is given in the following equation (see[11,12]):

max = −1

λ
+ 2

√− detL, for detL < − 1

4λ2
, (30)

hich is consistent with the stability criterion in[3] that
s derived directly from the discretized equations. For
iesekus model, we first linearize the right-hand side

ompute the eigenvalues of the coefficient matrix of the
urbed system. That is, we write the solution forc along a
article path for perturbed initial conditions as follows

= ĉ + ε, (31)

hereĉ is the unperturbed solution andε is the perturbation
hich we assume is small. Substituting Eq.(31) into Eq.(4)
nd retaining only linear terms leads to the linearized sy

n matrix form

˙ = E(ĉ)ε, (32)
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whereε is now a vector with three components. The coef-
ficient matrixE(c) depends linearly onc for the Giesekus
model. The eigenvalues of the matrixE(c) are derived in
[11,12]and the result show that for two-dimensional flows a
single eigenvalue becomes positive when

detC < 0, with C = − 1

2λ
I + L − α

λ
(c − I). (33)

The value of the positive eigenvalueµmax is given by

µmax = tr C + [(tr C)2 − 4 detC]1/2. (34)

Note that by using an analytical result derived in[13] it can
be proved that trC < 0 for a Giesekus model ([11,12]). We
assume that the exponential growth ofε (for smallε) is the
important criterion here, hence we setb = µmax when there
is a positive eigenvalue. Eqs.(33)and(34)reduce to Eq.(30)
for α = 0. For negative or complex eigenvalues we just set
b = 0, makingC = 0. In planar extension the eigenvalues are
all real and the Eqs.(33) and (34)combined with Eq.(22)
can be written in the compact form

C = �x
max(2̇ε− 1

λ
[1 + 2α(cxx − 1)],0)

|u| , (35)

where it has been assumed thatε̇ = Lxx > 0 (positive stretch-
ing).
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terms of the principal directionni, i = 1,2,3 of c:

s = logc =
3∑
i=1

log(ci)nini, (36)

or s is coaxial withc and its principal valuessi are given by
si = log(ci). The evolution ofs can be computed from Eq.
(36)as follows

ṡ =
3∑
i=1

ċi

ci
nini +

3∑
i=1

siṅini +
3∑
i=1

siniṅi. (37)

So we need expressions for ˙ci andṅi. These can be determined
from the constitutive equation, as we will show below. First
we need to writėni in a different way.

The principal directionsni are orthogonal vectors of a con-
stant (unit) length. Therefore, the time derivativesṅi are given
by just three independent quantities, which can be written in
the form of an skew-symmetric tensorω:

ṅi = ω · ni =
3∑

j=1

ωjinj, (38)

whereωij are the components ofω with respect to the prin-
c
f
a

ṡ

c

a tion
E

c

-
c
f
(

The value ofCbecomes critical in regions where we h
high stretching rate combined with a small velocity. P

icularly troublesome are stagnation points and geom
ingularities (sharp corners), which conforms with the
erience that problems containing these are the most dif

o simulate for higher Weissenberg numbers.
As suggested in[1] and[3], the numerical instability fo

iscoelastic flows can be removed, as in the 1D toy prob
y solving for s = logc instead ofc. This removes expo
ential profiles from the quantity that is being solved for

herefore also the source of the instability. In the next sec
e will derive an evolution equation fors that will replace

he evolution equation forc.

. Evolution equation for the logarithm of the
onformation tensor

In the previous section, we have identified the failur
esolve exponential profiles as a major restriction on the
ility of standard schemes. It is suggested that this restri
an be lifted by solving for the matrix-logarithm of the co
ormation tensorc instead ofc itself. In order to do so, w
eed an evolution equation fors = logc. In [1] this evolution
quation has been derived by a decomposition of the vel
radient. In this paper, we give an alternative derivation u
n approach which is related to the work of Hill[14] on the
volution of the principal axes of the deformation tensor

The conformation tensorc is a symmetric positive defi
ite tensor and therefores = logc can be uniquely defined
ipal directions, i.e.ωij = ni · ω · nj. Note thatωij = −ωji
or i �= j andωij = 0 for i = j. Now Eq.(37)can be written
s follows

=
3∑
i=1

ċi

ci
nini + ω · s + s · ωT

=
3∑
i=1

ċi

ci
nini +

3∑
i=1

3∑
j=1

(si − sj)ωjininj. (39)

Note that the last term is indeed a symmetric tensor.
Now we writeċ in a similar way:

˙ =
3∑
i=1

ċinini +
3∑
i=1

3∑
j=1

(ci − cj)ωjininj. (40)

nd transform the right-hand side of the constitutive equa
q.(4) to the principal directions:

˙ = L · c + c · LT + f (c)

=
3∑
i=1

3∑
j=1

(cjLij + ciLji)ninj +
3∑
i=1

fi(c1, c2, c3)nini,

(41)

where we have writtenfi explicitly as a function of the prin
ipal values ofc, using the property thatf (c) is an isotropic
unction. Equating thediagonalcomponents of Eqs.(40)and
41) leads to
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ċi = 2ciLii + fi(c1, c2, c3), i = 1,2,3 (42)

and from theoff-diagonalcomponents we get:

ωij = ciLji + cjLij

cj − ci
, i, j = 1,2,3, i �= j, ci �= cj.

(43)

Substituting these results into Eq.(39)leads to our final result
for the evolution ofs = logc:

ṡ =
3∑
i=1

(
2Lii + fi

ci

)
nini

+

3∑
i=1

3∑
j=1

i�=j

si − sj

ci − cj
(cjLij + ciLji)ninj. (44)

Note that:

• In the limit that two principal values are the same, we have:

lim
ci→cj

si − sj

ci − cj
(cjLij + ciLji) = Lij + Lji = 2Dij, (45)

and theij - andji -components of the non-diagonal term in
Eq.(44)nicely add-up to the diagonal term to form a tensor

rs,
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• l-
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• tive

•
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lds

[4], where the method always produces a positive definite
conformation tensor.

• The resulting Eq.(44) is in agreement with[1].

6. Results for the flow around cylinder confined
between two plates

6.1. Problem description

We consider the planar flow past a cylinder of radiusR
positioned between two flat plates separated by a distance
2H . The ratioH/R is equal to 2 and the total length of the
flow domain is 30R. The flow geometry is shown inFig. 1. In
the following we will use an (x, y) co-ordinate system with
the origin positioned at the center of the cylinder.

We assume the flow to be periodic. This means that we
periodically extend the flow domain such that cylinders are
positioned 30R apart. This avoids specification of inflow and
outflow boundary conditions. The flow is generated by spec-
ifying a flow rateQ that is constant in time. The required
pressure gradient is computed at each instant in time. We
assume no-slip boundary conditions on the cylinder and on
the walls of the channel. Since the problem is assumed to
be symmetric we only consider half of the domain and use
symmetry conditions on the center line, i.e. zero tangential
t
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in the (ni,nj) plane independent of the principal vecto
as it should, since these are not unique in this case.
principal values are the same, the terms add up to th
tensor 2D.
The term withfi can be written in tensorial form as fo
lows:

3∑
i=1

fi

ci
nini = c−1 · f (c). (46)

There is a clean separation of effects in Eq.(44) (see also
Eq.(39)):
◦ stretching along the principal axes withLii,
◦ relaxation along the principal axes (fi/ci),
◦ rotation of the principal axes withω.
As in the 1D toy problem, the stretching term is addi
rather than multiplicative.
In the actual implementation it is easy to replace Eq.(4)by
Eq. (44). Additional requirements are a routine that co
putes the principal directions and values ofs and trans
formations of the components of a tensor in the glo
frame to the principal frame and vice versa. Furtherm
to compute the stress tensorτ, the conformation tensorc
needs to be computed froms, which is most easily pe
formed in the principal frame usingci = exp(si) and then
a transform to the global frame.
Since the conformation tensorc is computed froms using
c = exps, it is positive definite‘by design’, even ifs con-
tains large numerical errors. This property probably
contributes to the stability of the log-based scheme. Th
similar to the situation with Brownian configuration fie
raction.
The dimensionless parameters governing the problem

he Weissenberg numberWi = λU/R and the viscosity rati
s/ηwhereU = Q/2H is the average velocity andη = ηs +
p is the zero-shear-rate viscosity of the fluid. In this pa
e useηs/η = 0.59, which is the value used in benchma

or the Oldroyd-B model.
In the following, we will only use dimensionless quan

ies: the time variable has been made dimensionless wi
haracteristic time scale of the flowR/U, velocities withU,
engths withL, stresses withηU/R.

To solve the problem numerically we used five mes
enoted by M3–M7, where each mesh is derived from
revious one by a uniform refinement which approxima
oubles the number of elements. We start from a base

ig. 1. Geometry of the cylinder between two flat plates. The flow is
eft to right.
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Fig. 2. Base mesh M0 from which all other meshes are derived. The base mesh M0 has 120 elements.

Table 1
Numerical parameters

M3 M4 M5 M6 M7

Number of elements (Nel) 1920 4320 7680 17280 30720
Number of nodal points 7921 17461 31201 69841 123841
Smallest radial element size 0.0220 0.0148 0.0111 0.00743 0.00558
Smallest�t used 5× 10−3 3 × 10−3 3 × 10−3 2 × 10−3 1.5 × 10−3

M0, which is depicted inFig. 2. The numerical parameters
of the meshes are summarized inTable 1.

In order to judge whether we have obtained a steady state,
we monitor the maximum value ofcxx in the domain and the
drag on the cylinder as a function of time. The time needed to
obtain a steady state depends on the Weissenberg numberWi.
For very highWi the relaxation time becomes more important
and at least several relaxation times must be computed before
a reasonable steady state is obtained.

6.2. Oldroyd-B model

6.2.1. Criterion for numerical instability
In this section, we try to verify that the criterion Eq.(24)

determines the onset of the numerical instability in the flow
around a cylinder for the standard FEM implementation. The
breakdown of the solution sets in on the center line down-
stream of the cylinder close to the stagnation point. Therefore,
we use the 1D expression forCEq.(35)on the center line. By
breakdown we mean that the solution ‘explodes’, that is the
solution grows exponentially and reaches numerical overflow
within a small number of time steps.

We will use mesh M4 which breaks down forWi = 0.88.
The numerical divergence starts to set in fort ≈ 20 when
starting up from a zero stress state. InFig. 3we give the val-
u ints.
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in for Wi = 0.87, slightly lower than for mesh M4. InFig.
3, we have also plotted the result for the computation using
matrix logarithms forWi = 1.0 using mesh M4. The com-
putations are stable. The values ofC are significantly larger
than 2 in both points of the first element without showing any
numerical instabilities.

It is difficult to show the critical value ofC to be exactly
2 here, because that is proved to be the value for a constant
velocity and constant growth factor, which is far from true in
the first element. Furthermore, the 1D analysis is only an in-
dication for the FEM computation, which is 2D. Anyway, we
believe that the above results support the conclusion that the
numerical instability as discussed in Section4is at work here.

6.2.2. Drag results
In Table 2we give the value for the steady-state dimen-

sionless drag coefficientK

K = Fx

ηUR
, (47)

with Fx the drag on the cylinder, for various value ofWi us-
ing different meshes. The most extensive set is for M4. All
results are obtained using matrix logarithms. We also show
the results of Fan et al.[15], Caola et al.[16] and Owens

F he
c n are
i

es ofCalong the center line in the Gauss integration po
his plot has been derived from the velocity along the ce

ine extracted from the FEM calculation. Therefore, the G
oints are not real Gauss points in the FEM calculation
ause these are interior to the 2D elements. These 1D G
oints are expected to be the most relevant though for th
et of the instability and avoids calculatingC in points where
he velocity is zero. InFig. 3, we see that forWi = 0.7 the
alue ofC is positive, indicating exponential growth in spa
ut small (C < 0.25). For higherWi the region with positiv
becomes larger and the value ofC grows. ForWi = 0.86

he value ofC is smaller than 2. ForWi = 0.87 the value ofC
n the first point is larger than 2 (slightly higher than 3).
i = 0.88 the value ofC for time t = 18 in the first point is

lose to 5 and the solution diverges after that. We see the
ehavior for the coarser mesh M3 (results not shown), ex

hat the value ofC in the first point becomes larger than
C = 2.7) for Wi = 0.86 and the numerical instability se
ig. 3. The value ofC for variousWi on the centerline in the wake of t
ylinder for the Oldroyd-B model. The mesh is M4. The values show
n the (two) Gauss integration points and connected by a line.
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Table 2
Dimensionless steady-state drag coefficientK

Wi M3 M4 M5 M6 M7 Ref. [15] Ref. [16] Ref. [17]

0.0 132.358 132.36 132.384 132.357
0.1 130.363 130.36
0.2 126.626 126.62
0.3 123.193 123.19
0.4 120.596 120.59
0.5 118.836 118.83 118.763 118.827
0.6 117.872 117.792 117.778 117.775 117.775 117.78 117.775
0.7 117.448 117.340 117.320 117.315 117.315 117.32 117.291
0.8 117.373 117.36 117.237
0.9 117.787 117.80 117.503
1.0 118.675 118.501 118.471 118.49 117.783 118.030
1.1 119.466 118.031 118.786
1.2 120.860 120.650 120.613 119.764
1.4 123.801 123.587 (123.541)
1.6 127.356 127.172
1.8 (131.458) 131.285
2.0 (135.839)

et al. [17], which are all close to ours. We did not include
the results of Alves et al.[18], which are close to the re-
sults of Fan et al.[15]. For the two most refined meshes
M6 and M7, we have only included two results (Wi = 0.6
andWi = 0.7) to show that we indeed have convergence for
the drag for these Weissenberg numbers when using the log
conformation representation. The reason for not including re-
sults for higher Weissenberg numbers for these meshes is not
a lack of stability. Mesh refinement beyondWi = 0.7 does
not seem to be useful considering the lack of convergence
of the stress in the wake of the cylinder (see the discussion
Section6.2.3).

Since the computations using the standard FEM break
down just belowWi = 0.9 for all three meshes M3, M4 and
M5, it is clear that the matrix logarithm implementation is
more stable. At some value ofWi the solution becomes time-
dependent and a steady solution cannot be obtained, but com-
putations can continue without breakdown even for somewhat
higher values ofWi. In the table, we have indicated onset of
unsteady fluctuations (for the meshes M3, M4 and M5) by
putting the result ofKbetween parentheses. The result printed
is a value roughly before the fluctuations begin. The fluctua-
tions in the drag are still small (say 0.1%), but no steady-state
solution can be found. These fluctuations become worse for
higherWi and are likely to be numerical artefacts due to the
incorrect stresses in the wake (see Section6.2.3).

4 in
a e
t a
h

6
fine-

m ccu-
r
W d
a re-

sults in the wake forWi = 0.7 is plotted inFig. 6. It is clear
we have nice convergence forWi = 0.6. ForWi = 0.7 we
have more difficulty obtaining convergence, especially in the
wake. ForWi = 0.7 we have also plotted the results of Fan et
al. [15] and we see that on the cylinder wall we have the same
maximum but our results are shifted slightly upstream. In the
wake we seem to converge to higher values than Fan et al.
[15]. In the same figure, we have also plotted the results for a
one-dimensional DG calculation, starting from the back stag-
nation point, using the velocity componentvx from the FEM
calculation. The 1D calculation uses a very refined equidis-
tant mesh with roughly 10 elements in the first element of the
FEM solution. ForWi = 0.6 the results of the 1D calculation
are consistent with the FEM results. ForWi = 0.7 the 1D re-
sults are higher and seem to be almost the same for mesh M4
and M5. Since both stress profiles (i.e. 1D and 2D) should
be identical in theory, it is clear that we have not obtained
convergence in the wake even for our most refined mesh M7.

F
p Alves
e

In Fig. 4, we have also plotted the results of mesh M
graph. It is clear that our results forWi ≤ 1 are very clos

o the results of Fan et al.[15], which are obtained using
igher order FEM.

.2.3. Convergence of stresses
The convergence of the drag coefficient with mesh re

ent is not considered to be a very good indicator of a
acy. Therefore, we have plotted inFig. 5 for Wi = 0.6 and
i = 0.7 the stress componentτxx on the cylinder wall an

long the center line in the wake. A magnification of the
ig. 4. Dimensionless drag,K, vs. Weissenberg number,Wi, for the flow
ast a cylinder in a channel using an Oldroyd-B model. The results of
t al.[18] are graphically close to the results of Fan et al.[15].
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Fig. 5. The stress component,τxx, as a function of the curve coordinate,s, along the cylinder surface and the center line in the wake of the cylinder. In the front
stagnation points = 0 and at the back stagnation points = π; left figure:Wi = 0.6, right figure:Wi = 0.7.

This becomes even more pronounced forWi = 1.0. InFig.
7, we have plottedτxx on the cylinder wall and along the center
line in the wake again forWi = 1.0. In the left figure, we see
a reasonable convergence on the cylinder surface, similar to
Wi = 0.7, but no sign of convergence in the wake. If we do the
1D calculation here we find stresses that aremuchhigher than
the results from the FEM and now are also mesh dependent.
A possible reason for the incorrect stress profiles is that the
width of the stress wake is much smaller than the width of
the elements in the wake. This is illustrated inFig. 8, where
it is clear that the width of the wake is small and becomes
smaller with mesh refinement. It should be noted however that
it does not necessarily mean that increased mesh refinement
will eventually lead to a converged stress profile.

Another ‘proof’ that the stresses on the centerline are in-
correct is a plot ofλε̇, with ε̇ = ∂vx/∂x, on the centerline for
Wi = 1.0 as depicted inFig. 9. A value larger than 0.5 means

F
t f
t

exponential growth. If we take a closer look at the left figure
in Fig. 7, we see that the stress maximum is nearx = 1.4 and
decreasing with mesh refinement whereasλε̇ > 0.5. This is
inconsistent with a steady solution, since at the stress maxi-
mum the convection term is zero and exponential stretching
would lead to an unsteady solution. The stress maximum
in the 1D solution is at the point whereλε̇ = 0.5, which is
nearx = 1.9. It is also clear fromFig. 9 that compared with
the lowerWi = 0.7 the length scale over which the velocity
gradient changes near the stagnation point is much smaller
than the smallest element size in the most refined mesh (M5).
Whether mesh-refinement will solve this problem is unclear.
It is not even clear whether a smooth solution near the cylin-
der exists or even whether a solution exists at all for this
Weissenberg number. Nevertheless, the drag on the cylinder
(seeTable 2) seems to be unaffected by the convergence prob-
lems. This supports the experience by many authors that the
drag is a poor indicator of accuracy of the solution.

6.2.4. Behavior at higher Wi
Although the stresses in the wake are already incorrect at

Wi = 1.0, the matrix logarithm method allows us to obtain
stable numerical solutions for higherWi. It is useful to de-
scribe the behavior of these solutions, because failure is quite
different than what we were used to before, which usually was
catastrophic failure. With the matrix logarithm the solution
b or
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l file
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ig. 6. The stress componentτxx as a function of the curve coordinateson
he center line in the wake of the cylinder forWi = 0.7. This is a re-plot o
he results in the wake ofFig. 5b.
ecomes unsteady at someWi, depending on the mesh. F
xample, inFig. 10we show the stress profiles for two diff
nt Weissenberg numbers. ForWi = 1.4 the wake become
nsteady for mesh M5 (not for M3 and M4). For larger tim

his shows up as a non-smooth stress profile, wherea
maller times it looks still smooth. The numerical solu
owever does not fail, in the sense that computations c
ontinued without a problem. AtWi = 1.6 the numerical so
ution for meshM5 is unsteady as well, but the stress pro
emains smooth, as can be seen in the right figure ofFig.
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Fig. 7. The stress componentτxx as a function of the curve coordinatesalong the cylinder surface and the center line in the wake of the cylinder forWi = 1.0.
In the front stagnation points = 0 and at the back stagnation points = π. Left figure: FEM results, right figure: FEM results and 1D results in the wake. Note
the different scales on the axes.

10. For higher values ofWi the numerical solution becomes
worse, also in other parts of the region, and eventually expo-
nential growth sets in and no solution for larger times can be
found anymore.

The remarkably better stability behavior of the matrix log-
arithm method for higherWican be underlined by examining
the value of detc. In previous methods the value of detc be-
comes negative in a few points in the mesh at some rather low
valueWiand is a precursor of the usual catastrophic instabil-
ity for a slightly higher value ofWi. In Fig. 11we show the
value of log(detc) = tr(logc) = tr s as a function ofx on the
center line and on the cylinder wall forWi = 1.8 with mesh
M4. The value is larger than 0, which means that detc > 1.
The latter is true in the complete region of the flow. Note
that detc ≥ 1 can be derived analytically for the Oldroyd-B
model (see Hulsen[13]).

F n
x

6.3. Giesekus model

The Oldroyd-B model is not a good model for high stretch-
ing, because the stretch (actually the conformation tensorc)
can grow to infinity even for a relatively small finite stretch
rate. This is possibly causing the difficulties in the wake of
the cylinder for the Oldroyd-B model. In order to limit the
stretch to physical levels, nonlinear models must be used.
For dilute polymer solutions the FENE type models are used,
where the stretch is restricted to some finite value. For poly-
mer melts and concentrated polymer solutions other types
of nonlinearity are introduced, such as the tube model (Doi-
Edwards model) or anisotropic friction (Giesekus model). In
this paper, we will use the Giesekus model, because it is easy
to implement and has all the ingredients to limit the stretch
to show the real strength of the matrix logarithm method.

F n
t
f

ig. 8. The stress component,τxx, as a function ofy at the cross sectio
= 2 forWi = 1.0. Note the scale on the horizontal (y) axis.
ig. 9. The value ofλε̇ as a function of the coordinatexon the center line i
he wake of the cylinder forWi = 1.0. Also shown is the result forWi = 0.7
or one mesh.
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Fig. 10. The stress component,τxx, as a function of the curve coordinate,s, along the cylinder surface and the center line in the wake of the cylinder. In the
front stagnation points = 0 and at the back stagnation points = π; left figure:Wi = 1.4, right figure:Wi = 1.6.

It should be noted that for the Giesekus model the confor-
mation tensorc is not limited to some finite value, but in
order to reach infinity, the stretch rates must be infinite as
well. We will choose a value ofα = 0.01. This gives a two-
dimensional Trouton ratio of 1/(2α) = 50, still leading to
substantial strain-hardening, but compared to the Oldroyd-
B the stretch is much more restricted. For polymer melts a
larger value, for exampleα = 0.25 as in[7], with even more
restricted strain-hardening seems to be more appropriate.

6.3.1. Criterion for numerical instability
Again we try to verify that the criterion Eq.(24) de-

termines the onset of the numerical instability in the flow
around a cylinder for the standard FEM implementation. We
again check the 1D criterion Eq.(35) on the center line.
Now the term in Eq.(35) involving cxx is non-zero. We will
use a Giesekus model withα = 0.01. We will use mesh M3

F r
l r line
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which breaks down forWi = 1.20, slightly higher than for
the Oldroyd-B model (Wi = 0.87). In Fig. 12 we give the
values ofC along the center line in the Gauss integration
points. The contribution toC of the extra term involvingcxx
is about 25% in the first element. We see that the behavior
is similar to that obtained with the Oldroyd-B, except that
we have a slightly higher Weissenberg numberWi now. For
Wi = 1.17 the value ofC is smaller than 2. ForWi = 1.18
andWi = 1.19 the value ofC in the first point is larger than 2
(near 2.3 and 3.1, respectively). ForWi = 1.20 the solution
breaks down. This again supports our hypothesis that the nu-
merical instability as discussed in Section4 is the reason for
numerical breakdown.

6.3.2. Behavior at high Wi
The behavior for high values ofWiof the Giesekus model

with α = 0.01 using the FEM implementation with matrix

F he
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ig. 11. The value of log(detc) as a function of the coordinatexon the cente
ine in front of the cylinder, along the cylinder surface, and the cente
n the wake of the cylinder.
ig. 12. The value ofC for variousWi on the centerline in the wake of t
ylinder for the Giesekus model. The mesh is M3. The values shown
he (two) Gauss integration points and connected by a line.
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Fig. 13. The value ofcxx for Wi = 100 on the centerline and on the wall of
the cylinder for the Giesekus model withα = 0.01. Two meshes are shown:
M3 and M4.

logarithm is dramatically different than for the Oldroyd-B
model: there doesnot seem to be a limit in Wi. In Fig. 13, we
have plotted the component of the conformation tensorcxx
on the cylinder wall and along the center line as a function
of x over the whole computed region forWi = 100 for mesh
M3 and M4. No convergence has been achieved just behind
the cylinder in the wake and on the cylinder surface for these
meshes. Note that for this high value ofWi, the wake extends
to the next cylinder in the periodic domain. Note also that the
values ofcxx are very high and that in the Giesekus model
the nonlinear terms are two orders of magnitude larger than
the linear terms near the maximum. InFig. 14the drag on the
cylinder and the maximum value ofcxx in the flow is shown as
a function of time for mesh M4. It is clear that two time scales
seems to be acting here at the same time. The drag, which
is mainly determined by the shear stresses on the cylinder,
evolves in the time frame of one relaxation time, whereas the
maximumcxx seems to evolve in a shorter time scale related

tion of

Fig. 15. The value ofcxx for Wi = 5 on the centerline and on the wall of
the cylinder for the Giesekus model withα = 0.01 for various meshes. Also
shown are the results for meshes M3 and M4 using the 1D procedure as
explained in Section6.2.3.

to flow deformation. Note that the time it takes for a particle
on the center line to return to the same position (no cylinder
present) is 20 whereas the relaxation time is 100.

6.3.3. Mesh convergence
In the previous section, we saw that at the highWi = 100

convergence problems appear at localized regions. In this sec-
tion, we will consider the convergence problems at a lower
Wi = 5.0, where they appear in a somewhat larger region in
the wake. The results are shown inFig. 15. Convergenceon
the cylinder is easily obtained, however convergence in the
wake up to about one radius from the cylinder is very diffi-
cult. In the same figure, we have also plotted the results of
a one-dimensional DG calculation as explained in Section
6.2.3. We see that in the wake, where we have convergence
problems, the 1D calculation gives locally near the cylinder
significantly higher values forcxx, but surely not as dramatic
Fig. 14. The drag coefficientK and the maximum value ofcxx as a func
 time forWi = 100. the Giesekus model withα = 0.01. The mesh is M4.
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as we saw for the Oldroyd-B problem. Also the typical length
scale involved seems to be much smaller. This is an indication
that for mesh convergence in this region we need at least a
mesh that is much more refined than our most refined meshes.
A way to achieve convergence is possibly by adaptive local
refinement or higher order methods, but problems of another
nature, such as improper discretization and model problems
cannot be ruled out either. More work is needed here. How-
ever, this is beyond the scope of this paper.

7. Conclusions and discussion

It has been shown that also in the FEM implementation
(DEVSS with Discontinuous Galerkin), the log conformation
representation removes the catastrophic breakdown present
in the standard FEM implementation. We use a standard
benchmark problem: the flow around a cylinder using an
Oldroyd-B model and also tested a Giesekus model with
α = 0.01. Especially the Giesekus model shows a dramatic
improvement of the numerical stability. That doesn’t mean
all problems are solved.

It turns out that high Weissenberg number problems re-
main notoriously difficult due to the exponential behavior of
the constitutive equations. For the case of the flow around a
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