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EXISTENCE PROOF FOR ORTHOGONAL DYNAMICSAND THE MORI{ZWANZIG FORMALISMBYDror GivonInstitute of Mathematis, The Hebrew University of JerusalemGivat Ram, Jerusalem 91904, IsraelandDepartment of Mathematis, Lawrene Berkeley LaboratoryBerkeley, CA 94720, USAe-mail: givon�math.huji.a.ilANDOle H. HaldDepartment of Mathematis, University of CaliforniaBerkeley CA 94720, USAe-mail: ????ANDRaz KupfermanInstitute of Mathematis, The Hebrew University of JerusalemGivat Ram, Jerusalem 91904, IsraelandDepartment of Mathematis, Lawrene Berkeley LaboratoryBerkeley, CA 94720, USAe-mail: razk�math.huji.a.ilABSTRACTWe study the existene of solutions to the orthogonal dynamis equa-tion, whih arises in the Mori{Zwanzig formalism in irreversible statisti-al mehanis. This equation generates the random noise assoiated witha redution in the number of variables. If L is the Liouvillian, or Liederivative assoiated with a Hamiltonian system, and P an orthogonalprojetion onto a losed subspae of L2, then the orthogonal dynamisis generated by the operator (I � P )L. We prove the existene of las-sial solutions for the ase where P has �nite-dimensional range. In thegeneral ase, we prove the existene of weak solutions.Reeived January 14, 2004 1



2 D. GIVON, O. H. HALD AND R. KUPFERMAN Isr. J. Math.1. IntrodutionThe Mori{Zwanzig formalism is a entral paradigm in irreversible statistialmehanis [11, 20, 4℄. It is a formal proedure whereby a dynamial system isreformulated as a lower-dimensional system for a seleted set of variables (the\resolved" variables); the resulting system, whih is often alled a generalizedLangevin equation, has memory (ontains an integral over past values of theresolved variables) and ontains a time-dependent funtion, often interpreted as\noise", whih depends on the full initial data, and solves an auxiliary equa-tion known as the orthogonal dynamis equation. Within an appropriateprobabilisti setting, the noise funtion an be viewed as a random proess.This formalism has an adjoint version whih desribes the evolution of marginalprobability measures [12℄. The Mori{Zwanzig formalism has reently reeivedrenewed attention within the ontext of variable redution and stohasti mod-eling [1, 2, 10, 9℄.The key element in the Mori{Zwanzig proedure is a projetion operator.Funtions that depend on all the oordinates of the system are projeted onto asubspae of funtions that depend only on the resolved variables; the projetionis an orthogonal projetion in the L2 sense. There is freedom in the hoie ofprojetion, or equivalently, in the hoie of the subspae onto whih funtions areprojeted. Most ommon is the projetion onto the spae of funtions that arelinear in the resolved variables. Another possibility is to projet funtions ontothe subspae of all funtions of the resolved variables; within the probabilistisetting this orresponds to a onditional expetation [20, 1℄; this projetion anbe viewed as optimal, but may be diÆult to ompute. There exists a rangeof intermediate hoies that an be viewed as inreasingly high-dimensionalapproximations of the onditional expetation.The validity of the Mori{Zwanzig formalism relies on the well-posedness ofthe orthogonal dynamis equation, whih has always been taken for granted.The existene of solutions, i.e., the existene of a noise proess, is however asubtle issue, whih we address in the present paper. Our main results may besummarized as follows: if the range of the projetion is a �nite-dimensionalsubspae of L2, as is the ase in most of the statistial mehanis literature(see, e.g., [4℄), then the existene of lassial solutions may be proved. Ourproof is onstrutive, based on a redution of the orthogonal dynamis to anintegral equation of Volterra type. In the more general ase, for example, whenthe projetion is a onditional expetation, we only prove the existene of weaksolutions. The proof losely follows the lines of Friedrihs' existene proof for



Vol. xx, 2004 EXISTENCE OF ORTHOGONAL DYNAMICS 3symmetri hyperboli systems [6℄.The paper is organized as follows. In Setion 2 we present the Mori{Zwanzigformalism: we introdue the Hamiltonian dynamis, the orresponding proba-bility spae, various projetion operators, the orthogonal dynamis, and derivethe generalized Langevin equation. In Setion 3 we address in general the exis-tene of the orthogonal dynamis. In partiular, we provide a simple example,whih demonstrates how solutions may fail to exist in ertain ases. The ex-istene of orthogonal dynamis for the ase where the range of the projetionoperator is �nite dimensional is proved in Setion 4. The existene of weaksolution for general projetions is proved in Setion 5.2. The Mori{Zwanzig formalismConsider a Hamiltonian system,(2:1) dqidt = �H�pi ; dpidt = ��H�qi ;where q = (q1; : : : ; qn)T and p = (p1; : : : ; pn)T are n-dimensional vetors andH = H(q; p) is the Hamiltonian. Supplemented with 2n initial onditions,q(0), p(0), Hamilton's equations (2.1) govern the trajetory of a point in a 2n-dimensional Eulidean spae, � = R2n .We rewrite equations(2.1) in a slightly more abstrat form: let points in �be denoted by a 2n-dimensional vetor, x = (x1; : : : ; x2n)T , where eah of theomponents xi is either a position or a momentum oordinate; let x2i�1 = qiand x2i = pi. Hamilton's equations indue a ow map, 't: � 7! �, whihmaps every initial value x to its evolute 't(x) at time t. Equations(2.1) an berewritten as a di�erential equation for 't(x):ddt'ti(x) = bi('t(x))'0i (x) = xi i = 1; 2; : : : ; 2n;where b(x) = (b1(x); : : : ; b2n(x))T is the Hamiltonian vetor �eld, b: � 7! R2n .Hamiltonian vetor �elds are inompressible,(2:2) 2nXi=1 �ibi(x) = 0;and as a result preserve the Lebesgue measure in �; we use �i to denote thepartial derivative with respet to the i-th variable. In partiular, Hamiltonian



4 D. GIVON, O. H. HALD AND R. KUPFERMAN Isr. J. Math.dynamis preserve any absolutely ontinuous measure, �(dx) = %(x)dx, if thedensity %(x) is a funtion of the Hamiltonian. An invariant (probability) mea-sure of partiular interest in statistial mehanis is the anonial measure,whih orresponds to a probability density of %(x) = Z�1e��H(x), where � > 0is the inverse temperature and Z is a normalization onstant.Hamiltonian dynamis have an equivalent formulation in terms of an evolutionequation for funtions on � [14℄. By adopting this alternative framework oneobtains a linear evolution equation on an in�nite-dimensional spae. Let L bethe di�erential operator(2:3) L = 2nXi=1 bi(x)�i;known as the Liouvillian, or the Lie derivative assoiated with the vetor �eldb(x), and onsider the linear di�erential equation(2:4) ddtut(x) = Lut(x)u0(x) = g(x)for some funtion g: � 7! R. Equation (2.4) is known as the Liouville equa-tion. Its solution is ut(x) = g('t(x)) as we verify:ddtg('t(x)) = 2nXi=1 �ig('t(x))bi('t(x))= 2nXi=1 �ig('t(x)) 2nXj=1 �j'ti(x) � bj(x)= 2nXj=1 bj(x)�j[g('t(x))℄= Lg('t(x));where the identity bi('t(x)) = P2nj=1 �j'ti(x) � bj(x) = L'ti(x) is an immediateonsequene of the semigroup property 't('s(x)) = 's('t(x)); di�erentiateboth sides with respet to s and set s = 0. The ow map 't(x), x �xed,onstitutes a family of harateristi urves for the hyperboli system (2.4).We introdue the semigroup notation [13℄,g('t(x)) = (etLg)(x);where etL is the evolution operator assoiated with the Liouville equation (2.4).It is easily veri�ed that etLL = LetL. In the partiular ase where g is the i-th



Vol. xx, 2004 EXISTENCE OF ORTHOGONAL DYNAMICS 5oordinate, g(x) = �i(x) = xi, the solution is (etLg)(x) = �i('t(x)) = 'ti(x),the i-th omponent of the trajetory.Given a measure � on �, funtions g an be viewed as random variables,and etLg an be viewed as a random funtion, or a stohasti proess. Let�(dx) = %(x)dx be a probability measure, where the density %(x) is a funtionof H(x); we assume that %(x) is ontinuous and stritly positive for all x 2 �.The expeted value of a funtion g with respet to the measure � is given byE [g℄ = Z� g(x)%(x)dx:We endow the spae of funtions on � with the inner produt,(f; g) = E [fg℄;whih makes it a Hilbert spae L2 = L2(R2n ; �). By the inompressibility on-dition (2.2) and the invariane of the measure, the operator L is skew-symmetriin this Hilbert spae: (Lf; g) = �(f; Lg), for all f; g in the domain of L.Non-equilibrium statistial mehanis is based on the premise that one annotsolve the full system of equations(2.1), but an only follow the evolution of asmaller set of variables (the \resolved" oordinates). The remaining variables(the \unresolved" oordinates) are onsidered as random. For onreteness,we onsider the ase where the resolved variables are the �rst 2m oordinatesx̂ = (x1; : : : ; x2m). Let ~x = (x2m+1; : : : ; x2n) denote the vetor of unresolvedoordinates; thus x = (x̂; ~x). Similarly, let '̂t(x) = ('t1(x); : : : ; 't2m(x)) denotethe trajetories of the 2m oordinates of the solution that we fous on.The Mori{Zwanzig formalism uses a projetion operator, P , whih projetsfuntions in L2 onto a subspae of funtions that depend only on the resolvedvariables x̂, i.e., funtions on R2m . Let f 2 L2; most widely in use is the linearprojetion,(2:5) (Pf)(x̂) = 2mXi;j=1 a�1ij (f; xi)xj ;where the a�1ij are the entries of the 2m� 2m matrix whose inverse has entriesaij = (xi; xj). This is an orthogonal projetion of funtions in L2 onto thesubspae of linear funtions of the resolved oordinates x̂.More generally, let L̂2 � L2 denote the spae of funtions that depend onlyon x̂. We may pik a set of funtions in L̂2, say h�(x̂), � = 1; 2; : : : ;M ; for



6 D. GIVON, O. H. HALD AND R. KUPFERMAN Isr. J. Math.onveniene we make them orthonormal, (h�; h�) = Æ�� . We de�ne a projetion(2:6) (Pf)(x̂) = MX�=1(f; h�)h�(x̂);to whih we refer as a �nite-rank projetion. Finally, we onsider the pro-jetion of f onto the span of all funtions in L̂2, given by(2:7) (Pf)(x̂) = R f(x̂; ~x)%(x̂; ~x)d~xR %(x̂; ~x)d~x ;where d~x = dx2m+1 � � �dx2n. In the ontext of probability theory, Pf is theonditional expetation of f given x̂, usually denoted by E [f jx̂℄ (see, e.g.,Chung [3℄). It is the best least-square approximation of f by a funtion of x̂:E jf(x) � E [f jx̂℄j2 � E jf(x) � g(x̂)j2for all funtions g 2 L̂2. Note that sine L̂ is separable, it follows that thereexists an orthonormal set of funtions, fh�(x̂)g1�=1, suh that(Pf)(x̂) = 1X�=1(Pf; h�)h�(x̂) = 1X�=1(f; h�)h�(x̂):Thus, the onditional expetation is the limit of a �nite-rank projetion asM !1 and the h� span L̂2.Let P be any of the above three projetions. The Mori{Zwanzig formalismstarts by splitting the time derivative of the resolved omponents of the traje-tory 'tj(x) = etL�j(x), j = 1; 2; : : : ; 2m, into an expression that depends onlyon '̂t(x) plus a remainder:(2:8) ddtetL�j = etLL�j = etLbj = etLPbj + etLQbj;where Q = I � P . We de�ne R = Pb, whih is a vetor �eld in R2m . The �rstterm on the right-hand side, etLRj, is onsequently a funtion of the resolvedomponents of the solution: (etLPbj)(x) = Rj('̂t(x)).The formalism proeeds by splitting the remaining term, etLQbj, as follows.An auxiliary evolution operator, etQL, ating on funtions in the null spae ofP is introdued: wt(x) = etQLg(x) is de�ned as the solution of the orthogonaldynamis equation:(2:9) ddtwt(x) = QLwt(x)w0(x) = g(x)



Vol. xx, 2004 EXISTENCE OF ORTHOGONAL DYNAMICS 7with Pg = 0. Assuming that etQL is well-de�ned, the evolution operators etLand etQL satisfy the Dyson formulaetL = Z t0 e(t�s)LPLesQLds+ etQL;whih an be viewed as an appliation of Duhammel's priniple. Thus the seondterm on the right-hand side of (2.8) takes the formetLQbj = Z t0 e(t�s)LPLesQLQbjds+ etQLQbj :De�ning F t: R2n 7! R2m and Kt: R2m 7! R2m with omponents,F tj = etQLQbj ; Ktj = PLF tj ;equation (2.8) redues to the generalized Langevin equationddtetL�j = etLRj + Z t0 e(t�s)LKsj ds+ F tj ;or, in a more transparent form,(2:10) ddt'tj(x) = Rj('̂t(x)) + Z t0 Ksj ('̂t�s(x))ds+ F tj (x):Equation (2.10) is an identity between funtions. Its right-hand side has aonventional interpretation. The �rst term depends only on the instantaneousvalue of the resolved variables, and is therefore alled the Markovian vetor�eld. The seond term depends on x only through the value of '̂s(x) at times sbetween 0 and t; it therefore embodiesmemory e�ets. The third term dependson the full knowledge of the initial onditions x; it is viewed as a noise termwith statistis determined by the initial onditions. The orthogonal dynamis(2.9) an therefore be viewed as the noise generator for the generalized Langevinequation (2.10).While the Mori{Zwanzig formalism is usually presented based on a anonialmeasure, it is also of interest to onsider it within a miro-anonial framework,i.e., assuming that the total energy of the system is given, so that the dynamistake plae on an energy manifold. The geometrial bakground needed for suha formulation is presented in the Appendix.



8 D. GIVON, O. H. HALD AND R. KUPFERMAN Isr. J. Math.3. Existene of orthogonal dynamis: general onsiderationsThe Mori{Zwanzig formalism relies on the well-posedness of the auxiliary evolu-tion operator etQL, de�ned by (2.9). Note that etQL ats on Qbj , whih belongsto the orthogonal omplement of the range of the projetion P . We introduethe following subspaes of L2:
M = �u 2 L2 : Pu = u	 ; M? = �u 2 L2 : Pu = 0	 :The Mori{Zwanzig formalism relies on the assumption that QL is the genera-tor of a semigroup in M? (for general referenes on semigroup theory see [13,15, 5℄). Sine L itself is a generator of a unitary semigroup, then by Stone'stheorem [18℄ it is not only skew-symmetri, but also skew-adjoint in L2. Theprojetion operators P and Q are self-adjoint operators in L2, from whih itimmediately follows that PLP and QLQ are skew-symmetri operators in L2,hene PL and QL are skew-symmetri in M and M? respetively. Resortingagain to Stone's theorem, the existene of orthogonal dynamis boils down tothe question whether QL is a skew-adjoint operator in M?.Naively, it may seem that the omposition of a (self-adjoint) projetion anda skew-adjoint operator is always skew-adjoint. This is the ase when A is abounded, skew-symmetri operator and Q is an orthogonal projetion. Then,QAQ has an extension QAQ whih is skew-adjoint and the semigroupexp(tQAQ) is unitary in L2. This may fail for unbounded operators as thefollowing example shows.Example: Consider the Hilbert spae L2(R) and let (Au)(x) = (d=dx)u(x)with domain D(A) = W 1;20 (R� ) �W 1;20 (R+) � L2(R) (this domain oinideswith the set of absolutely ontinuous funtions in L2(R) that vanish at theorigin, and whose derivative is in L2(R)). A diret alulation shows that Ais a losed, skew-symmetri operator whih has a skew-adjoint extension withdomain W 1;2(R). Let Q be the orthogonal projetion:(Qu)(x) = � 0; x < 0,u(x); x � 0.Then QAQ is also skew-symmetri on W 1;20 (R�)�W 1;20 (R+), but has no skew-adjoint extension as its de�ieny indexes are not equal [19℄. In partiular, QAdoes not generate a semigroup on the range of Q.While the skew-adjointness of QL in M? turns out to be a subtle issue whenP is the onditional expetation (2.7), it is possible to show, under quite general



Vol. xx, 2004 EXISTENCE OF ORTHOGONAL DYNAMICS 9onditions, that PL is skew-adjoint in M , or equivalently, generates a unitarysemigroup in M . This is interesting beause QL = L � PL is then the sumof two skew-adjoint operators. This does not imply anything for QL, however,sine L and QL are de�ned on di�erent subspaes.Spei�ally, let L be as in (2.3) and let f 2 D(L) \M , i.e., f = f(x̂). Then,(Lf)(x) = 2nXj=1 bj(x)�jf(x̂) = 2mXj=1 bj(x)�jf(x̂);and (PLf)(x̂) = 2mXj=1(Pbj)(x̂)�jf(x̂) = 2mXj=1Rj(x̂)�jf(x̂);where, as before, Rj = Pbj is the Markovian vetor �eld.PL generates a semigroup in M for the same reason that L generates asemigroup in L2|beause the equation(3:1) ddtut(x̂) = PLut(x̂) = 2mXj=1Rj(x̂)�jut(x̂)is hyperboli and an be solved by the method of harateristis. Indeed, let t(x̂) be the ow map assoiated with the vetor �eld R:(3:2) ddt tj(x̂) = Rj( t(x̂)); 0j (x̂) = xj ; j = 1; 2; : : : ; 2m:Then ut(x̂) = u0( t(x̂))solves (3.1). To omplete the argument it is neessary to determine under whatonditions the ODEs (3.2) have a solution. In most ases of interest, the fun-tions bj(x) are di�erentiable and the projetion P preserves di�erentiability,hene the funtions Rj(x̂) are di�erentiable and (3.2) has a unique (loal) solu-tion. Note, moreover, that if % = %(H), thenH(x̂) = Z �(H(x))d~x;with �(H) = R1H %(s)ds, is a onstant of motion for solutions of (3.2).



10 D. GIVON, O. H. HALD AND R. KUPFERMAN Isr. J. Math.4. Existene of orthogonal dynamis: �nite rank projetionIn this setion we show the existene of orthogonal dynamis for the ase wherethe projetion P is given by the �nite-rank projetion (2.6), i.e., has �nite-dimensional range. Our proof is onstrutive and is based on a redution of(2.9) to a Volterra equation.Theorem 4.1: Let h� 2 L̂2, � = 1; 2; : : : ;M , be an orthonormal set, h� 2
D(L). For any funtion g 2 M? the orthogonal dynamis equation (2.9) has aunique solution on any bounded time interval.Proof: We start by rewriting the orthogonal dynamis equations (2.9) in thefollowing equivalent form:ddtwt(x)� Lwt(x) = �PLwt(x);w0(x) = g(x);where g belongs to the null spae of P . Using Duhammel's priniple with theleft-hand side as an inhomogeneous term, we obtain the integral equationwt(x) = etLw0(x)� Z t0 e(t�s)LPLws(x)ds:Substituting the expliit expression (2.6) for the projetion, we have(4:1) wt(x) = etLw0(x)� MX�=1Z t0 �(s)e(t�s)Lh�(x̂)ds;where �(s) = (Lws; h�):Given the funtions �(t), (4.1) is an expliit representation of wt(x) in termsof the solution operator etL of the Hamiltonian dynamis.To �nd the oeÆient funtions �(s) we apply L on both sides of (4.1), andtake an inner produt with eah of the basis funtions h�, � = 1; 2; : : : ;M . Thisyields the Volterra equation(4:2) �(t) = f�(t)� MX�=1Z t0 H��(t� s)�(s)ds;with a kernel matrixH��(t) = (LetLh� ; h�) = �(etLh� ; Lh�) = �(h� ; Le�tLh�) = �H��(�t);



Vol. xx, 2004 EXISTENCE OF ORTHOGONAL DYNAMICS 11and a foring vetorf�(t) = (LetLw0; h�) = �(w0; Le�tLh�):The problem of solving the orthogonal dynamis (2.9) has been thus reduedto that of solving the Volterra equation (4.2). Note that both the foring f�(t)and the kernel H��(t) are autoorrelation funtions with respet to the Liouvil-lian time evolution etL. These quantities an be alulated by averaging over aolletion of experiments or numerial simulations, with initial onditions drawnfrom the equilibrium distribution.By the unitarity of the evolution operator etL it follows thatjH��(t)j � kh�kkLh�k; jf�(t)j � kw0kkLh�k:Sine, as a result of the ontinuity of the semigroup etL, H��(t) and f�(t) areontinuous funtions of time, then there exist solutions to (4.2) on any boundedtime interval (see, e.g., [7℄ for a general referene on the Volterra equation).
5. Existene of weak solutionsHeneforth we onsider P to be the onditional expetation (2.7). We prove theexistene of a weak solution to the orthogonal dynamis (2.9). The main resultsare stated in Theorem 5.11 and Corollary 5.12. Our approah follows Friedrihs'onstrution of weak solutions for a symmetri hyperboli system [6℄ (see alsoJohn [8℄). For Friedrihs' method to be appliable, we �rst need to show that L2funtions in the null spae of P an be approximated, within this subspae, bysmooth funtions with ompat support. This is done in Lemmas 5.1 and 5.2.Throughout this setion it is assumed that the vetor �eld b(x) is di�erentiable,and that the density %(x) is ontinuous and stritly positive.We prove the existene of solutions on a �nite time interval [0; T0℄; T0 maybe taken arbitrarily large. Funtions wt(x) are de�ned on the domain R =[0; T0℄� R2n , whih is bounded by the two surfaesS = f0g � R2n ; T = fT0g � R2n :Following standard notations, we denote by C(R) the set of ontinuous funtionson R, and by Ck(R), k = 1; 2; : : : ;1, the set of k times di�erentiable funtions.We denote by C(R) and Ck (R) the sub-lasses of funtions that have ompatsupport in the x variables; spei�ally, u 2 Ck (R) if it is in Ck(R), and in



12 D. GIVON, O. H. HALD AND R. KUPFERMAN Isr. J. Math.addition supp (u) � [0; T0℄ �K for some K � R2n ompat. Given a funtionu 2 Ck(R), we denote by Su and Tu its restrition to the surfaes S and T ,respetively. Clearly, Su 2 Ck(S) and Tu 2 Ck(T ). The same holds for Ckreplaed by Ck .We endow the spaes C1 (R), C1 (S), and C1 (T ) with the inner produts(u1; u2)R = ZR ut1(x)ut2(x)%(x)dxdt;(v1; v2)S = ZS v1(x)v2(x)%(x)dx;(w1; w2)T = ZT w1(x)w2(x)%(x)dx:The orresponding norms are denoted by k � kR, k � kS , and k � kT , respetively.These spaes an be ompleted into Hilbert spaes, L2(R), L2(S), and L2(T ).Lemma 5.1: The spae of funtionsC1;0(R) = fu 2 C1 (R) : Su = Tu = 0gis dense in L2(R).Proof: C1 (R) is dense in L2(R) by de�nition. Funtions in C1 (R) an furtherbe approximated by funtions in C1;0(R) as is well known (see [16℄).Consider now the onditional expetation, P , whih is a projetion operatoron L2(R2n). Sine L2(S) and L2(T ) are isomorphi to L2(R2n), the projetionis automatially de�ned on these spaes. On L2(R) we de�ne, with a slightabuse of notation, P to at pointwise in time:(Pu)t(x̂) = R ut(x̂; ~x)%(x̂; ~x)d~xR %(x̂; ~x)d~x :It is easily veri�ed that P is an orthogonal projetion on a losed subspae ofL2(R).The orthogonal dynamis (2.9) takes plae in the null spae of P , hene weintrodue the following spaes:L2?(R) = L2(R) \N (P );L2?(S) = L2(S) \N (P );L2?(T ) = L2(T ) \N (P ):The following approximation lemma is analogous to Lemma 5.1. It states thatfuntions in L2?(R) an be approximated by smooth funtions of ompat sup-port within this subspae.



Vol. xx, 2004 EXISTENCE OF ORTHOGONAL DYNAMICS 13Lemma 5.2: The spae of funtions C1;0(R) \ L2?(R) is dense in L2?(R).Proof: Let u 2 L2?(R). Sine L2?(R) � L2(R), then by Lemma 5.1 thereexists, for all � > 0, a funtion v 2 C1;0(R) suh thatsupp v � [0; T0℄� [�b; b℄� � � � � [�b; b℄ � [0; T0℄� R2n ;for some b > 0, and ku � vkR � �=3. There is, however, no guarantee thatv 2 L2?(R); we an only dedue that the projetion of v on L2?(R) is small,kPvkR = kP (u� v)kR � ku� vkR � �=3:On the other hand, (I � P )v 2 C1(R) \ L2?(R), but will, in general, not haveompat support.We next de�ne g(x̂) = Z %(x̂; ~x)d~x;whih is a positive, di�erentiable funtion of x̂, andf(x̂; a) = Zjxij�a %(x̂; ~x)d~x;whih is a di�erentiable, inreasing funtion of a, with f(x̂; 0) = 0. Sinelima!1 f(x̂; a) = g(x̂), then it follows that for every x̂ there exists an a = A(x̂)suh that f(x̂; a) = 12g(x̂). Then we setR = maxjxij�bA(x̂) + b(here we use the fat that A(x̂) is a ontinuous funtion of x̂, whih follows fromthe impliit funtion theorem).Let now �(~x) be a non-negative C1(R2(n�m)) funtion with ompat support,0 � �(~x) � 1, and �(~x) = 1 if jxij � R, i = 2m+ 1; : : : ; 2n. By our hoie of Rit follows that for all x̂ suh that jxij � b, i = 1; : : : ; 2m,(P�)(x̂) = R �(~x)%(x̂; ~x)d~xR %(x̂; ~x)d~x � Rjxij�R %(x̂; ~x)d~xR %(x̂; ~x)d~x � 12 ;hene ���� �(~x)(P�)(x̂) ���� � 2:Finally, onsider the funtionwt(x̂; ~x) = vt(x̂; ~x)� (Pv)t(x̂) �(~x)(P�)(x̂) :



14 D. GIVON, O. H. HALD AND R. KUPFERMAN Isr. J. Math.Clearly, Pw = 0, hene w 2 L2?(R). It has ompat support in R as Pv hasompat support in the (t; x̂) variables and � has ompat support in the ~xvariables; sine all the funtions are also smooth we have w 2 C1;0(R)\L2?(R).It remains to show that w approximates u. Indeed,ku� wkR � ku� vkR + kv � wkR� �3 + Pv � �P�R� �3 + 2 � �3 :This ompletes the proof.We are going to prove the existene of a (weak) solution u 2 L2?(R) to theorthogonal dynamis equationEut(x) = � ddt �QL�ut(x) = 0;with u0 2 L2?(S). Sine the ow �eld b(x) is ontinuous, then L, whih is a �rst-order di�erential operator, maps C1 (R) into C(R). Note, however, that Qudoes not neessarily have ompat support even if u does. Hene, the operatorE maps C1 (R) \ L2?(R) into C(R) \ L2?(R). Weak solutions are de�ned withrespet to a weak extension of the operator E. We onstrut operators ~E; ~S,whih we show to be extensions of E; S (alled weak extensions), and provethat for every g 2 L2?(S) there orresponds a u 2 L2?(R) suh that ~Eu = 0 and~Su = g. The de�nition of ~E; ~S is based on the following adjointness formula:Lemma 5.3: The identity(5:1) (v; Ew)R + (Ev;w)R + (Sv; Sw)S � (Tv; Tw)T = 0holds for all v; w 2 C1 (R) \ L2?(R).Proof: This is an immediate onsequene of the skew-symmetry of QL inC1 (R2n) \ L2?(R2n):(v; Ew)R = ZR vt(x)h ddtwt(x)�QLwt(x)i%(x)dxdt= ZR n ddt [vt(x)wt(x)℄� wt(x) ddtvt(x)� vt(x)[QLwt(x)℄o%(x)dxdt= (Tv; Tw)T � (Sv; Sw)S � ZR wt(x)h ddtvt(x)�QLvt(x)i%(x)dxdt= (Tv; Tw)T � (Sv; Sw)S � (Ev;w)R:



Vol. xx, 2004 EXISTENCE OF ORTHOGONAL DYNAMICS 15The weak extensions ~E; ~S of the operators E; S are de�ned on a spaeL2?;w(R), whih we de�ne next:De�nition 5.4: The spae L2?;w(R) onsists of all funtions v 2 L2?(R) forwhih there exist funtions f 2 L2?(R) and g 2 L2?(S), suh that the relation(5:2) (v; Ew)R + (f; w)R + (g; Sw)S = 0holds for all w 2 C1 (R) \ L2?(R) for whih Tw = 0.By de�nition L2?;w(R) � L2?(R); by the adjointness formula (5.1), v 2C1 (R) \ L2?(R) satis�es (5.2) with f = Ev and g = Sv, thus we have thefollowing hierarhy: C1 (R) \ L2?(R) � L2?;w(R) � L2?(R):The following two lemmas are needed to establish that the mappings v 7! fand v 7! g are uniquely de�ned, and extend the operators E; S.Lemma 5.5: Equation (5.2) is satis�ed for v = 0 only if f = 0 and g = 0.Proof: Let v = 0 and suppose that (5.2) is satis�ed for some f 2 L2?(R) andg 2 L2?(S). Sine (5.2) holds for all w 2 C1 (R) \ L2?(R) for whih Tw = 0,it ertainly holds if we further restrit w to satisfy Sw = 0. In this ase, weremain with (f; w)R = 0for all w 2 C1;0(R)\L2?(R). By Lemma 5.2 this set is dense in L2?(R), thereforef = 0. Lifting now the restrition on Sw, (5.2) redues to(g; Sw)S = 0for all w 2 C1 (R) \ L2?(R) whih satisfy Tw = 0. It is easy to see that therestrition of C1 (R) \ L2?(R) funtions to the surfae t = 0 is dense in L2?(S),hene g = 0.Lemma 5.6: Let v 2 L2?;w(R); then the funtions f; g in (5.2) are uniquely andlinearly determined by v.Proof: Suppose that (5.2) is satis�ed by two sets of funtions f1; g1 and f2; g2:(v; Ew)R + (f1; w)R + (g1; Sw)S = 0;(v; Ew)R + (f2; w)R + (g2; Sw)S = 0:



16 D. GIVON, O. H. HALD AND R. KUPFERMAN Isr. J. Math.Subtrating one from another we get(0; Ew)R + (f1 � f2; w)R + (g1 � g2; Sw)S = 0;for all w 2 C1 (R) \ L2?(R) whih satisfy Tw = 0. By the previous lemma thisimplies f1 = f2 and g1 = g2. The linearity of v 7! f and v 7! g is an immediateonsequene of the bilinearity of the inner produt.Corollary 5.7: Let v 2 L2?;w(R): the linear mappings v 7! f , v 7! g,whih we denote by f = ~Ev and g = ~Sv, are weak extensions (the so-alledFriedrihs extension) of the operators E and S in the sense that(5:3) (v; Ew)R + ( ~Ev;w)R + ( ~Sv; Sw)S = 0for all w 2 C1 (R) \ L2?(R) for whih Tw = 0.Next, we de�ne a strong extension of the operators E and S:De�nition 5.8: The spae L2?;s(R) onsists of all funtions v 2 L2?(R), forwhih there exist funtions f 2 L2?(R), g 2 L2?(S), and a sequene of funtionsvn 2 C1 (R) \ L2?(R), Tvn = 0, suh that(5:4) limn!1 kvn � vkR = 0; limn!1 kEvn � fkR = 0; limn!1 kSvn � gkS = 0:Lemma 5.9: If v 2 L2?;s(R) then v 2 L2?;w(R), i.e.,C1 (R) \ L2?(R) � L2?;s(R) � L2?;w(R) � L2?(R):Proof: Let v 2 L2?;s(R) and vn be a sequene in C1 (R) \ L2?(R), Tvn = 0,satisfying (5.4). For all w 2 C1 (R) \ L2?(R) for whih Tw = 0, the adjointnessformula (5.1) reads(vn; Ew)R + (Evn; w)R + (Svn; Sw)S = 0:Taking the limit n!1 we have(v; Ew)R + (f; w)R + (g; Sw)S = 0;whih by De�nition 5.4 implies that v 2 L2?;w(R) with ~Ev = f and ~Sv = g.Thus, the mappings v 7! f , v 7! g in De�nition 5.8 are extensions of theoperators E, S; they are alled strong extensions and are denoted by f = �Ev,g = �Sv.We next derive a so-alled energy inequality, whih holds for all funtions inL2?;s(R):



Vol. xx, 2004 EXISTENCE OF ORTHOGONAL DYNAMICS 17Lemma 5.10: There exists a number  > 0 suh that for all v 2 L2?;s(R),(5:5) kvk2R + k �Svk2S � 2k �Evk2R:Proof: Consider �rst v 2 C1 (R) \ L2?(R), Tv = 0. For all 0 � t � T0 we haveddtkvT0�tk2L2(R2n) = �2�vT0�t; ddtvT0�t�L2(R2n)= �2 �vT0�t; EvT0�t +QLvT0�t�L2(R2n)= �2 �vt; Evt�L2(R2n)� 2kvT0�tkL2(R2n)kEvT0�tkL2(R2n)� kvT0�tk2L2(R2n) + kEvT0�tk2L2(R2n);where we have used the skew-symmetry of QL in C1 (R2n) \ L2?(R2n) in thepassage from the seond to the third line.Rewriting this di�erential inequality as(5:6) ddt �eT0�tkvT0�tk2L2(R2n)� � eT0�tkEvT0�tk2L2(R2n)and integration over [0; T0℄ gives(5:7) kSvk2S � eT0kEvk2R:Integrating (5.6) over [0; t℄, followed by a seond integration over [0; T0℄, yieldson the other hand(5:8) kvk2R � (eT0 � 1)kEvk2R:Combining (5.7) and (5.8) we obtain (5.5) with 2 = 2eT0 � 1. This inequalityholds for all v 2 L2?;s(R) by the very de�nition of this spae and the orre-sponding operators �E and �S.We are now in measure to prove the main theorem from whih follows theexistene of weak solutions to the orthogonal dynamis equation.Theorem 5.11: For all f 2 L2?(R) and g 2 L2?(S) there exists a funtionu 2 L2?;w(R) for whih ~Eu = f; ~Su = g:Proof: Consider the set of funtions v 2 C1 (R) \ L2?(R) for whih Tv = 0,endowed with the inner produt(v; w)H = (Ev;Ew)R:



18 D. GIVON, O. H. HALD AND R. KUPFERMAN Isr. J. Math.The orresponding norm is denoted by k � kH (note that Ev = 0 implies bythe energy inequality (5.5) that v = 0). The Hilbert spae obtained by theompletion of this spae is denoted by H .Let vn 2 C1 (R)\L2?(R), Tvn = 0, be a Cauhy sequene in H . By de�nition,kEvn �Evmk2R = kvn � vmk2H ! 0;whereas by the energy inequality (5.5)kvn � vmk2R + kSvn � Svmk2S � 2kEvn � Evmk2R ! 0:Sine L2?(R) and L2?(S) are omplete spaes, there exist v; f 2 L2?(R) andg 2 L2?(S) suh that vn ! v, Evn ! f , Svn ! g, and Tvn = 0, i.e., v 2 L2?;s(R)with f = �Ev and g = �Sv. Moreover, v an be identi�ed with the limit in H ofthe Cauhy sequene vn, whih implies that H � L2?;s(R) and(v; w)H = ( �Ev; �Ew)R:Let f 2 L2?(R) and g 2 L2?(S) be given and onsider the linear funtional on
H given by �(w) = �(f; w)R � (g; �Sw)S :We show that this funtional is bounded, i.e., � 2 H � (the dual spae of H ):For all w 2 C1 (R) \ L2?(R), Tw = 0,j�(w)j � j(f; w)Rj+ j(g; �Sw)S j� kfkRkwkR + kgkSk �SwkS�qkfk2R + kgk2Sqkwk2R + k �Swk2S� qkfk2R + kgk2Sk �EwkR� onst kwkH ;where Cauhy{Shwarz has been used in the passage from the �rst to the seondline, and the energy inequality has been used in the passage to the fourth line.Thus, �(w) is a bounded funtional that an be extended to the whole H .By the Riesz representation theorem there exists a v 2 H suh that�(w) = (v; w)Hfor all w 2 H , that is,( �Ev; �Ew)R + (f; w)R + (g; �Sw)S = 0:



Vol. xx, 2004 EXISTENCE OF ORTHOGONAL DYNAMICS 19Sine this holds, in partiular, for all w 2 C1 (R) \ L2?(R) for whih Tw = 0,it follows by De�nition 5.4 that u = �Ev 2 L2?;w(R), with ~Eu = f and ~Su = g.This ompletes the proof.Corollary 5.12 (Existene of weak solutions): Let g 2 L2?(S); then thereexists a weak solution u 2 L2?;w(R) to the orthogonal dynamis, suh that~Eu = 0 and ~Su = g. Expliitly,(u;Ew)R + (g; Sw)S = 0for all w 2 C1 (R) \ L2?(R) for whih Tw = 0.Aknowledgement: We would like to thank S. Agmon, M. Ben-Artzi, P.Cherno�, A. Chorin, C. Evans, Y. Karshon, Y. Last and A. Pazy for helpfuldisussions and omments. This work was supported in part by the AppliedMathematial Sienes subprogram of the OÆe of Energy Researh of the USDepartment of Energy under Contrat DE-AC03-76-SF00098, and in part by theNational Siene Foundation under Grant DMS98-14631. R.K. was supportedby the Israel Siene Foundation founded by the Israel Aademy of Sienes andHumanities and by the Alon Fellowship.Appendix A. Flow on manifolds: the miro-anonial ensembleIn this appendix we desribe how to adapt the Mori{Zwanzig formalism fora miro-anonial ensemble, where the invariant measure is onentrated on alevel set of the Hamiltonian (an \energy shell").Assume that the Hamiltonian H is C1(R2n). Aording to Sard's theorem[17℄ H has only a null set of singular values. Let  be a regular value of H, andde�ne M = fx 2 R2n : H(x) = g. M is an orientable manifold with measuredP , indued by the Lebesgue measure on R2n . Reall that the Lebesgue measurean be onstruted using a volume, whih is a 2n-form in R2n . The induedmeasure on M is onstruted using a (2n � 1)-form de�ned on the tangentbundle of M ; it is the Lebesgue 2n-form, with one of its arguments �xed to bethe unit vetor normal to M , divided by jrHj. The indued measure dP is themiro-anonial measure. It is invariant under the Hamiltonian ow.Let b: M 7! TM be the Hamiltonian vetor �eld, where TM is the tangentbundle of M ; the equations of motion are:ddt't(m) = b('t(m));'0(m) = m:



20 D. GIVON, O. H. HALD AND R. KUPFERMAN Isr. J. Math.Sine H is a onstant of motion, m 2M implies 't(m) 2M for all t.We next introdue the equivalent Liouville dynamis. For every f 2 C1(M)let df denote its di�erential form. The di�erential operator L: C1(M) 7!C1(M), de�ned by Lf(m) = df(m) � b(m);is the Liouvillian, of the Lie derivative assoiated with the vetor spae B. Onean show that the Liouville equationddtut(m) = (Lut)(m)u0(m) = g(m)has for solution ut(m) = g('t(m)), i.e., that the Hamiltonian trajetories 't(m)are the harateristi urves for the Liouville equation.The spae C1(M) is endowed with an inner produt,(f; g) = Z fgdP;and an be ompleted into a Hilbert spae L2(M). It is straightforward to showthat the Lie derivative L is skew-symmetri with respet to this inner produt.To arry out the Mori{Zwanzig deomposition it is neessary to hoose theresolved variables, and de�ne a projetion operator whih maps funtions inL2(M) into a losed subspae of funtions of the resolved variables. We showhere how to de�ne a projetion whih is the onditional expetation given theresolved variables. We demonstrate it for a single resolved variable g 2 C1(M).The generalization to several variables is straightforward.Let g 2 C1(M) by given. By Sard's theorem, if  is a regular value of g, thenM = fm 2 M : g(m) = g is an orientable sub-manifold of M , with induedmeasure dP. The onditional expetation of a funtion f 2 L2(M) given g isE[f jg℄(m) = Rg�1(g(m)) fdPg(m)Rg�1(g(m)) dPg(m) :Referenes[1℄ A. Chorin, O. Hald and R. Kupferman,Optimal predition and the Mori{Zwanzigrepresentation of irreversible proesses, Proeedings of the National Aademy ofSienes of the United States of Ameria 97 (2000), 2968{2973.
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