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.ilABSTRACTWe study the existen
e of solutions to the orthogonal dynami
s equa-tion, whi
h arises in the Mori{Zwanzig formalism in irreversible statisti-
al me
hani
s. This equation generates the random noise asso
iated witha redu
tion in the number of variables. If L is the Liouvillian, or Liederivative asso
iated with a Hamiltonian system, and P an orthogonalproje
tion onto a 
losed subspa
e of L2, then the orthogonal dynami
sis generated by the operator (I � P )L. We prove the existen
e of 
las-si
al solutions for the 
ase where P has �nite-dimensional range. In thegeneral 
ase, we prove the existen
e of weak solutions.Re
eived January 14, 2004 1



2 D. GIVON, O. H. HALD AND R. KUPFERMAN Isr. J. Math.1. Introdu
tionThe Mori{Zwanzig formalism is a 
entral paradigm in irreversible statisti
alme
hani
s [11, 20, 4℄. It is a formal pro
edure whereby a dynami
al system isreformulated as a lower-dimensional system for a sele
ted set of variables (the\resolved" variables); the resulting system, whi
h is often 
alled a generalizedLangevin equation, has memory (
ontains an integral over past values of theresolved variables) and 
ontains a time-dependent fun
tion, often interpreted as\noise", whi
h depends on the full initial data, and solves an auxiliary equa-tion known as the orthogonal dynami
s equation. Within an appropriateprobabilisti
 setting, the noise fun
tion 
an be viewed as a random pro
ess.This formalism has an adjoint version whi
h des
ribes the evolution of marginalprobability measures [12℄. The Mori{Zwanzig formalism has re
ently re
eivedrenewed attention within the 
ontext of variable redu
tion and sto
hasti
 mod-eling [1, 2, 10, 9℄.The key element in the Mori{Zwanzig pro
edure is a proje
tion operator.Fun
tions that depend on all the 
oordinates of the system are proje
ted onto asubspa
e of fun
tions that depend only on the resolved variables; the proje
tionis an orthogonal proje
tion in the L2 sense. There is freedom in the 
hoi
e ofproje
tion, or equivalently, in the 
hoi
e of the subspa
e onto whi
h fun
tions areproje
ted. Most 
ommon is the proje
tion onto the spa
e of fun
tions that arelinear in the resolved variables. Another possibility is to proje
t fun
tions ontothe subspa
e of all fun
tions of the resolved variables; within the probabilisti
setting this 
orresponds to a 
onditional expe
tation [20, 1℄; this proje
tion 
anbe viewed as optimal, but may be diÆ
ult to 
ompute. There exists a rangeof intermediate 
hoi
es that 
an be viewed as in
reasingly high-dimensionalapproximations of the 
onditional expe
tation.The validity of the Mori{Zwanzig formalism relies on the well-posedness ofthe orthogonal dynami
s equation, whi
h has always been taken for granted.The existen
e of solutions, i.e., the existen
e of a noise pro
ess, is however asubtle issue, whi
h we address in the present paper. Our main results may besummarized as follows: if the range of the proje
tion is a �nite-dimensionalsubspa
e of L2, as is the 
ase in most of the statisti
al me
hani
s literature(see, e.g., [4℄), then the existen
e of 
lassi
al solutions may be proved. Ourproof is 
onstru
tive, based on a redu
tion of the orthogonal dynami
s to anintegral equation of Volterra type. In the more general 
ase, for example, whenthe proje
tion is a 
onditional expe
tation, we only prove the existen
e of weaksolutions. The proof 
losely follows the lines of Friedri
hs' existen
e proof for
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 hyperboli
 systems [6℄.The paper is organized as follows. In Se
tion 2 we present the Mori{Zwanzigformalism: we introdu
e the Hamiltonian dynami
s, the 
orresponding proba-bility spa
e, various proje
tion operators, the orthogonal dynami
s, and derivethe generalized Langevin equation. In Se
tion 3 we address in general the exis-ten
e of the orthogonal dynami
s. In parti
ular, we provide a simple example,whi
h demonstrates how solutions may fail to exist in 
ertain 
ases. The ex-isten
e of orthogonal dynami
s for the 
ase where the range of the proje
tionoperator is �nite dimensional is proved in Se
tion 4. The existen
e of weaksolution for general proje
tions is proved in Se
tion 5.2. The Mori{Zwanzig formalismConsider a Hamiltonian system,(2:1) dqidt = �H�pi ; dpidt = ��H�qi ;where q = (q1; : : : ; qn)T and p = (p1; : : : ; pn)T are n-dimensional ve
tors andH = H(q; p) is the Hamiltonian. Supplemented with 2n initial 
onditions,q(0), p(0), Hamilton's equations (2.1) govern the traje
tory of a point in a 2n-dimensional Eu
lidean spa
e, � = R2n .We rewrite equations(2.1) in a slightly more abstra
t form: let points in �be denoted by a 2n-dimensional ve
tor, x = (x1; : : : ; x2n)T , where ea
h of the
omponents xi is either a position or a momentum 
oordinate; let x2i�1 = qiand x2i = pi. Hamilton's equations indu
e a 
ow map, 't: � 7! �, whi
hmaps every initial value x to its evolute 't(x) at time t. Equations(2.1) 
an berewritten as a di�erential equation for 't(x):ddt'ti(x) = bi('t(x))'0i (x) = xi i = 1; 2; : : : ; 2n;where b(x) = (b1(x); : : : ; b2n(x))T is the Hamiltonian ve
tor �eld, b: � 7! R2n .Hamiltonian ve
tor �elds are in
ompressible,(2:2) 2nXi=1 �ibi(x) = 0;and as a result preserve the Lebesgue measure in �; we use �i to denote thepartial derivative with respe
t to the i-th variable. In parti
ular, Hamiltonian
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s preserve any absolutely 
ontinuous measure, �(dx) = %(x)dx, if thedensity %(x) is a fun
tion of the Hamiltonian. An invariant (probability) mea-sure of parti
ular interest in statisti
al me
hani
s is the 
anoni
al measure,whi
h 
orresponds to a probability density of %(x) = Z�1e��H(x), where � > 0is the inverse temperature and Z is a normalization 
onstant.Hamiltonian dynami
s have an equivalent formulation in terms of an evolutionequation for fun
tions on � [14℄. By adopting this alternative framework oneobtains a linear evolution equation on an in�nite-dimensional spa
e. Let L bethe di�erential operator(2:3) L = 2nXi=1 bi(x)�i;known as the Liouvillian, or the Lie derivative asso
iated with the ve
tor �eldb(x), and 
onsider the linear di�erential equation(2:4) ddtut(x) = Lut(x)u0(x) = g(x)for some fun
tion g: � 7! R. Equation (2.4) is known as the Liouville equa-tion. Its solution is ut(x) = g('t(x)) as we verify:ddtg('t(x)) = 2nXi=1 �ig('t(x))bi('t(x))= 2nXi=1 �ig('t(x)) 2nXj=1 �j'ti(x) � bj(x)= 2nXj=1 bj(x)�j[g('t(x))℄= Lg('t(x));where the identity bi('t(x)) = P2nj=1 �j'ti(x) � bj(x) = L'ti(x) is an immediate
onsequen
e of the semigroup property 't('s(x)) = 's('t(x)); di�erentiateboth sides with respe
t to s and set s = 0. The 
ow map 't(x), x �xed,
onstitutes a family of 
hara
teristi
 
urves for the hyperboli
 system (2.4).We introdu
e the semigroup notation [13℄,g('t(x)) = (etLg)(x);where etL is the evolution operator asso
iated with the Liouville equation (2.4).It is easily veri�ed that etLL = LetL. In the parti
ular 
ase where g is the i-th
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oordinate, g(x) = �i(x) = xi, the solution is (etLg)(x) = �i('t(x)) = 'ti(x),the i-th 
omponent of the traje
tory.Given a measure � on �, fun
tions g 
an be viewed as random variables,and etLg 
an be viewed as a random fun
tion, or a sto
hasti
 pro
ess. Let�(dx) = %(x)dx be a probability measure, where the density %(x) is a fun
tionof H(x); we assume that %(x) is 
ontinuous and stri
tly positive for all x 2 �.The expe
ted value of a fun
tion g with respe
t to the measure � is given byE [g℄ = Z� g(x)%(x)dx:We endow the spa
e of fun
tions on � with the inner produ
t,(f; g) = E [fg℄;whi
h makes it a Hilbert spa
e L2 = L2(R2n ; �). By the in
ompressibility 
on-dition (2.2) and the invarian
e of the measure, the operator L is skew-symmetri
in this Hilbert spa
e: (Lf; g) = �(f; Lg), for all f; g in the domain of L.Non-equilibrium statisti
al me
hani
s is based on the premise that one 
annotsolve the full system of equations(2.1), but 
an only follow the evolution of asmaller set of variables (the \resolved" 
oordinates). The remaining variables(the \unresolved" 
oordinates) are 
onsidered as random. For 
on
reteness,we 
onsider the 
ase where the resolved variables are the �rst 2m 
oordinatesx̂ = (x1; : : : ; x2m). Let ~x = (x2m+1; : : : ; x2n) denote the ve
tor of unresolved
oordinates; thus x = (x̂; ~x). Similarly, let '̂t(x) = ('t1(x); : : : ; 't2m(x)) denotethe traje
tories of the 2m 
oordinates of the solution that we fo
us on.The Mori{Zwanzig formalism uses a proje
tion operator, P , whi
h proje
tsfun
tions in L2 onto a subspa
e of fun
tions that depend only on the resolvedvariables x̂, i.e., fun
tions on R2m . Let f 2 L2; most widely in use is the linearproje
tion,(2:5) (Pf)(x̂) = 2mXi;j=1 a�1ij (f; xi)xj ;where the a�1ij are the entries of the 2m� 2m matrix whose inverse has entriesaij = (xi; xj). This is an orthogonal proje
tion of fun
tions in L2 onto thesubspa
e of linear fun
tions of the resolved 
oordinates x̂.More generally, let L̂2 � L2 denote the spa
e of fun
tions that depend onlyon x̂. We may pi
k a set of fun
tions in L̂2, say h�(x̂), � = 1; 2; : : : ;M ; for
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onvenien
e we make them orthonormal, (h�; h�) = Æ�� . We de�ne a proje
tion(2:6) (Pf)(x̂) = MX�=1(f; h�)h�(x̂);to whi
h we refer as a �nite-rank proje
tion. Finally, we 
onsider the pro-je
tion of f onto the span of all fun
tions in L̂2, given by(2:7) (Pf)(x̂) = R f(x̂; ~x)%(x̂; ~x)d~xR %(x̂; ~x)d~x ;where d~x = dx2m+1 � � �dx2n. In the 
ontext of probability theory, Pf is the
onditional expe
tation of f given x̂, usually denoted by E [f jx̂℄ (see, e.g.,Chung [3℄). It is the best least-square approximation of f by a fun
tion of x̂:E jf(x) � E [f jx̂℄j2 � E jf(x) � g(x̂)j2for all fun
tions g 2 L̂2. Note that sin
e L̂ is separable, it follows that thereexists an orthonormal set of fun
tions, fh�(x̂)g1�=1, su
h that(Pf)(x̂) = 1X�=1(Pf; h�)h�(x̂) = 1X�=1(f; h�)h�(x̂):Thus, the 
onditional expe
tation is the limit of a �nite-rank proje
tion asM !1 and the h� span L̂2.Let P be any of the above three proje
tions. The Mori{Zwanzig formalismstarts by splitting the time derivative of the resolved 
omponents of the traje
-tory 'tj(x) = etL�j(x), j = 1; 2; : : : ; 2m, into an expression that depends onlyon '̂t(x) plus a remainder:(2:8) ddtetL�j = etLL�j = etLbj = etLPbj + etLQbj;where Q = I � P . We de�ne R = Pb, whi
h is a ve
tor �eld in R2m . The �rstterm on the right-hand side, etLRj, is 
onsequently a fun
tion of the resolved
omponents of the solution: (etLPbj)(x) = Rj('̂t(x)).The formalism pro
eeds by splitting the remaining term, etLQbj, as follows.An auxiliary evolution operator, etQL, a
ting on fun
tions in the null spa
e ofP is introdu
ed: wt(x) = etQLg(x) is de�ned as the solution of the orthogonaldynami
s equation:(2:9) ddtwt(x) = QLwt(x)w0(x) = g(x)



Vol. xx, 2004 EXISTENCE OF ORTHOGONAL DYNAMICS 7with Pg = 0. Assuming that etQL is well-de�ned, the evolution operators etLand etQL satisfy the Dyson formulaetL = Z t0 e(t�s)LPLesQLds+ etQL;whi
h 
an be viewed as an appli
ation of Duhammel's prin
iple. Thus the se
ondterm on the right-hand side of (2.8) takes the formetLQbj = Z t0 e(t�s)LPLesQLQbjds+ etQLQbj :De�ning F t: R2n 7! R2m and Kt: R2m 7! R2m with 
omponents,F tj = etQLQbj ; Ktj = PLF tj ;equation (2.8) redu
es to the generalized Langevin equationddtetL�j = etLRj + Z t0 e(t�s)LKsj ds+ F tj ;or, in a more transparent form,(2:10) ddt'tj(x) = Rj('̂t(x)) + Z t0 Ksj ('̂t�s(x))ds+ F tj (x):Equation (2.10) is an identity between fun
tions. Its right-hand side has a
onventional interpretation. The �rst term depends only on the instantaneousvalue of the resolved variables, and is therefore 
alled the Markovian ve
tor�eld. The se
ond term depends on x only through the value of '̂s(x) at times sbetween 0 and t; it therefore embodiesmemory e�e
ts. The third term dependson the full knowledge of the initial 
onditions x; it is viewed as a noise termwith statisti
s determined by the initial 
onditions. The orthogonal dynami
s(2.9) 
an therefore be viewed as the noise generator for the generalized Langevinequation (2.10).While the Mori{Zwanzig formalism is usually presented based on a 
anoni
almeasure, it is also of interest to 
onsider it within a mi
ro-
anoni
al framework,i.e., assuming that the total energy of the system is given, so that the dynami
stake pla
e on an energy manifold. The geometri
al ba
kground needed for su
ha formulation is presented in the Appendix.
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e of orthogonal dynami
s: general 
onsiderationsThe Mori{Zwanzig formalism relies on the well-posedness of the auxiliary evolu-tion operator etQL, de�ned by (2.9). Note that etQL a
ts on Qbj , whi
h belongsto the orthogonal 
omplement of the range of the proje
tion P . We introdu
ethe following subspa
es of L2:
M = �u 2 L2 : Pu = u	 ; M? = �u 2 L2 : Pu = 0	 :The Mori{Zwanzig formalism relies on the assumption that QL is the genera-tor of a semigroup in M? (for general referen
es on semigroup theory see [13,15, 5℄). Sin
e L itself is a generator of a unitary semigroup, then by Stone'stheorem [18℄ it is not only skew-symmetri
, but also skew-adjoint in L2. Theproje
tion operators P and Q are self-adjoint operators in L2, from whi
h itimmediately follows that PLP and QLQ are skew-symmetri
 operators in L2,hen
e PL and QL are skew-symmetri
 in M and M? respe
tively. Resortingagain to Stone's theorem, the existen
e of orthogonal dynami
s boils down tothe question whether QL is a skew-adjoint operator in M?.Naively, it may seem that the 
omposition of a (self-adjoint) proje
tion anda skew-adjoint operator is always skew-adjoint. This is the 
ase when A is abounded, skew-symmetri
 operator and Q is an orthogonal proje
tion. Then,QAQ has an extension QAQ whi
h is skew-adjoint and the semigroupexp(tQAQ) is unitary in L2. This may fail for unbounded operators as thefollowing example shows.Example: Consider the Hilbert spa
e L2(R) and let (Au)(x) = (d=dx)u(x)with domain D(A) = W 1;20 (R� ) �W 1;20 (R+) � L2(R) (this domain 
oin
ideswith the set of absolutely 
ontinuous fun
tions in L2(R) that vanish at theorigin, and whose derivative is in L2(R)). A dire
t 
al
ulation shows that Ais a 
losed, skew-symmetri
 operator whi
h has a skew-adjoint extension withdomain W 1;2(R). Let Q be the orthogonal proje
tion:(Qu)(x) = � 0; x < 0,u(x); x � 0.Then QAQ is also skew-symmetri
 on W 1;20 (R�)�W 1;20 (R+), but has no skew-adjoint extension as its de�
ien
y indexes are not equal [19℄. In parti
ular, QAdoes not generate a semigroup on the range of Q.While the skew-adjointness of QL in M? turns out to be a subtle issue whenP is the 
onditional expe
tation (2.7), it is possible to show, under quite general
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onditions, that PL is skew-adjoint in M , or equivalently, generates a unitarysemigroup in M . This is interesting be
ause QL = L � PL is then the sumof two skew-adjoint operators. This does not imply anything for QL, however,sin
e L and QL are de�ned on di�erent subspa
es.Spe
i�
ally, let L be as in (2.3) and let f 2 D(L) \M , i.e., f = f(x̂). Then,(Lf)(x) = 2nXj=1 bj(x)�jf(x̂) = 2mXj=1 bj(x)�jf(x̂);and (PLf)(x̂) = 2mXj=1(Pbj)(x̂)�jf(x̂) = 2mXj=1Rj(x̂)�jf(x̂);where, as before, Rj = Pbj is the Markovian ve
tor �eld.PL generates a semigroup in M for the same reason that L generates asemigroup in L2|be
ause the equation(3:1) ddtut(x̂) = PLut(x̂) = 2mXj=1Rj(x̂)�jut(x̂)is hyperboli
 and 
an be solved by the method of 
hara
teristi
s. Indeed, let t(x̂) be the 
ow map asso
iated with the ve
tor �eld R:(3:2) ddt tj(x̂) = Rj( t(x̂)); 0j (x̂) = xj ; j = 1; 2; : : : ; 2m:Then ut(x̂) = u0( t(x̂))solves (3.1). To 
omplete the argument it is ne
essary to determine under what
onditions the ODEs (3.2) have a solution. In most 
ases of interest, the fun
-tions bj(x) are di�erentiable and the proje
tion P preserves di�erentiability,hen
e the fun
tions Rj(x̂) are di�erentiable and (3.2) has a unique (lo
al) solu-tion. Note, moreover, that if % = %(H), thenH(x̂) = Z �(H(x))d~x;with �(H) = R1H %(s)ds, is a 
onstant of motion for solutions of (3.2).
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e of orthogonal dynami
s: �nite rank proje
tionIn this se
tion we show the existen
e of orthogonal dynami
s for the 
ase wherethe proje
tion P is given by the �nite-rank proje
tion (2.6), i.e., has �nite-dimensional range. Our proof is 
onstru
tive and is based on a redu
tion of(2.9) to a Volterra equation.Theorem 4.1: Let h� 2 L̂2, � = 1; 2; : : : ;M , be an orthonormal set, h� 2
D(L). For any fun
tion g 2 M? the orthogonal dynami
s equation (2.9) has aunique solution on any bounded time interval.Proof: We start by rewriting the orthogonal dynami
s equations (2.9) in thefollowing equivalent form:ddtwt(x)� Lwt(x) = �PLwt(x);w0(x) = g(x);where g belongs to the null spa
e of P . Using Duhammel's prin
iple with theleft-hand side as an inhomogeneous term, we obtain the integral equationwt(x) = etLw0(x)� Z t0 e(t�s)LPLws(x)ds:Substituting the expli
it expression (2.6) for the proje
tion, we have(4:1) wt(x) = etLw0(x)� MX�=1Z t0 
�(s)e(t�s)Lh�(x̂)ds;where 
�(s) = (Lws; h�):Given the fun
tions 
�(t), (4.1) is an expli
it representation of wt(x) in termsof the solution operator etL of the Hamiltonian dynami
s.To �nd the 
oeÆ
ient fun
tions 
�(s) we apply L on both sides of (4.1), andtake an inner produ
t with ea
h of the basis fun
tions h�, � = 1; 2; : : : ;M . Thisyields the Volterra equation(4:2) 
�(t) = f�(t)� MX�=1Z t0 H��(t� s)
�(s)ds;with a kernel matrixH��(t) = (LetLh� ; h�) = �(etLh� ; Lh�) = �(h� ; Le�tLh�) = �H��(�t);
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ing ve
torf�(t) = (LetLw0; h�) = �(w0; Le�tLh�):The problem of solving the orthogonal dynami
s (2.9) has been thus redu
edto that of solving the Volterra equation (4.2). Note that both the for
ing f�(t)and the kernel H��(t) are auto
orrelation fun
tions with respe
t to the Liouvil-lian time evolution etL. These quantities 
an be 
al
ulated by averaging over a
olle
tion of experiments or numeri
al simulations, with initial 
onditions drawnfrom the equilibrium distribution.By the unitarity of the evolution operator etL it follows thatjH��(t)j � kh�kkLh�k; jf�(t)j � kw0kkLh�k:Sin
e, as a result of the 
ontinuity of the semigroup etL, H��(t) and f�(t) are
ontinuous fun
tions of time, then there exist solutions to (4.2) on any boundedtime interval (see, e.g., [7℄ for a general referen
e on the Volterra equation).
5. Existen
e of weak solutionsHen
eforth we 
onsider P to be the 
onditional expe
tation (2.7). We prove theexisten
e of a weak solution to the orthogonal dynami
s (2.9). The main resultsare stated in Theorem 5.11 and Corollary 5.12. Our approa
h follows Friedri
hs'
onstru
tion of weak solutions for a symmetri
 hyperboli
 system [6℄ (see alsoJohn [8℄). For Friedri
hs' method to be appli
able, we �rst need to show that L2fun
tions in the null spa
e of P 
an be approximated, within this subspa
e, bysmooth fun
tions with 
ompa
t support. This is done in Lemmas 5.1 and 5.2.Throughout this se
tion it is assumed that the ve
tor �eld b(x) is di�erentiable,and that the density %(x) is 
ontinuous and stri
tly positive.We prove the existen
e of solutions on a �nite time interval [0; T0℄; T0 maybe taken arbitrarily large. Fun
tions wt(x) are de�ned on the domain R =[0; T0℄� R2n , whi
h is bounded by the two surfa
esS = f0g � R2n ; T = fT0g � R2n :Following standard notations, we denote by C(R) the set of 
ontinuous fun
tionson R, and by Ck(R), k = 1; 2; : : : ;1, the set of k times di�erentiable fun
tions.We denote by C
(R) and Ck
 (R) the sub-
lasses of fun
tions that have 
ompa
tsupport in the x variables; spe
i�
ally, u 2 Ck
 (R) if it is in Ck(R), and in
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ompa
t. Given a fun
tionu 2 Ck(R), we denote by Su and Tu its restri
tion to the surfa
es S and T ,respe
tively. Clearly, Su 2 Ck(S) and Tu 2 Ck(T ). The same holds for Ckrepla
ed by Ck
 .We endow the spa
es C1
 (R), C1
 (S), and C1
 (T ) with the inner produ
ts(u1; u2)R = ZR ut1(x)ut2(x)%(x)dxdt;(v1; v2)S = ZS v1(x)v2(x)%(x)dx;(w1; w2)T = ZT w1(x)w2(x)%(x)dx:The 
orresponding norms are denoted by k � kR, k � kS , and k � kT , respe
tively.These spa
es 
an be 
ompleted into Hilbert spa
es, L2(R), L2(S), and L2(T ).Lemma 5.1: The spa
e of fun
tionsC1
;0(R) = fu 2 C1
 (R) : Su = Tu = 0gis dense in L2(R).Proof: C1
 (R) is dense in L2(R) by de�nition. Fun
tions in C1
 (R) 
an furtherbe approximated by fun
tions in C1
;0(R) as is well known (see [16℄).Consider now the 
onditional expe
tation, P , whi
h is a proje
tion operatoron L2(R2n). Sin
e L2(S) and L2(T ) are isomorphi
 to L2(R2n), the proje
tionis automati
ally de�ned on these spa
es. On L2(R) we de�ne, with a slightabuse of notation, P to a
t pointwise in time:(Pu)t(x̂) = R ut(x̂; ~x)%(x̂; ~x)d~xR %(x̂; ~x)d~x :It is easily veri�ed that P is an orthogonal proje
tion on a 
losed subspa
e ofL2(R).The orthogonal dynami
s (2.9) takes pla
e in the null spa
e of P , hen
e weintrodu
e the following spa
es:L2?(R) = L2(R) \N (P );L2?(S) = L2(S) \N (P );L2?(T ) = L2(T ) \N (P ):The following approximation lemma is analogous to Lemma 5.1. It states thatfun
tions in L2?(R) 
an be approximated by smooth fun
tions of 
ompa
t sup-port within this subspa
e.
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e of fun
tions C1
;0(R) \ L2?(R) is dense in L2?(R).Proof: Let u 2 L2?(R). Sin
e L2?(R) � L2(R), then by Lemma 5.1 thereexists, for all � > 0, a fun
tion v 2 C1
;0(R) su
h thatsupp v � [0; T0℄� [�b; b℄� � � � � [�b; b℄ � [0; T0℄� R2n ;for some b > 0, and ku � vkR � �=3. There is, however, no guarantee thatv 2 L2?(R); we 
an only dedu
e that the proje
tion of v on L2?(R) is small,kPvkR = kP (u� v)kR � ku� vkR � �=3:On the other hand, (I � P )v 2 C1(R) \ L2?(R), but will, in general, not have
ompa
t support.We next de�ne g(x̂) = Z %(x̂; ~x)d~x;whi
h is a positive, di�erentiable fun
tion of x̂, andf(x̂; a) = Zjxij�a %(x̂; ~x)d~x;whi
h is a di�erentiable, in
reasing fun
tion of a, with f(x̂; 0) = 0. Sin
elima!1 f(x̂; a) = g(x̂), then it follows that for every x̂ there exists an a = A(x̂)su
h that f(x̂; a) = 12g(x̂). Then we setR = maxjxij�bA(x̂) + b(here we use the fa
t that A(x̂) is a 
ontinuous fun
tion of x̂, whi
h follows fromthe impli
it fun
tion theorem).Let now �(~x) be a non-negative C1(R2(n�m)) fun
tion with 
ompa
t support,0 � �(~x) � 1, and �(~x) = 1 if jxij � R, i = 2m+ 1; : : : ; 2n. By our 
hoi
e of Rit follows that for all x̂ su
h that jxij � b, i = 1; : : : ; 2m,(P�)(x̂) = R �(~x)%(x̂; ~x)d~xR %(x̂; ~x)d~x � Rjxij�R %(x̂; ~x)d~xR %(x̂; ~x)d~x � 12 ;hen
e ���� �(~x)(P�)(x̂) ���� � 2:Finally, 
onsider the fun
tionwt(x̂; ~x) = vt(x̂; ~x)� (Pv)t(x̂) �(~x)(P�)(x̂) :
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e w 2 L2?(R). It has 
ompa
t support in R as Pv has
ompa
t support in the (t; x̂) variables and � has 
ompa
t support in the ~xvariables; sin
e all the fun
tions are also smooth we have w 2 C1
;0(R)\L2?(R).It remains to show that w approximates u. Indeed,ku� wkR � ku� vkR + kv � wkR� �3 + 


Pv � �P�


R� �3 + 2 � �3 :This 
ompletes the proof.We are going to prove the existen
e of a (weak) solution u 2 L2?(R) to theorthogonal dynami
s equationEut(x) = � ddt �QL�ut(x) = 0;with u0 2 L2?(S). Sin
e the 
ow �eld b(x) is 
ontinuous, then L, whi
h is a �rst-order di�erential operator, maps C1
 (R) into C
(R). Note, however, that Qudoes not ne
essarily have 
ompa
t support even if u does. Hen
e, the operatorE maps C1
 (R) \ L2?(R) into C(R) \ L2?(R). Weak solutions are de�ned withrespe
t to a weak extension of the operator E. We 
onstru
t operators ~E; ~S,whi
h we show to be extensions of E; S (
alled weak extensions), and provethat for every g 2 L2?(S) there 
orresponds a u 2 L2?(R) su
h that ~Eu = 0 and~Su = g. The de�nition of ~E; ~S is based on the following adjointness formula:Lemma 5.3: The identity(5:1) (v; Ew)R + (Ev;w)R + (Sv; Sw)S � (Tv; Tw)T = 0holds for all v; w 2 C1
 (R) \ L2?(R).Proof: This is an immediate 
onsequen
e of the skew-symmetry of QL inC1
 (R2n) \ L2?(R2n):(v; Ew)R = ZR vt(x)h ddtwt(x)�QLwt(x)i%(x)dxdt= ZR n ddt [vt(x)wt(x)℄� wt(x) ddtvt(x)� vt(x)[QLwt(x)℄o%(x)dxdt= (Tv; Tw)T � (Sv; Sw)S � ZR wt(x)h ddtvt(x)�QLvt(x)i%(x)dxdt= (Tv; Tw)T � (Sv; Sw)S � (Ev;w)R:



Vol. xx, 2004 EXISTENCE OF ORTHOGONAL DYNAMICS 15The weak extensions ~E; ~S of the operators E; S are de�ned on a spa
eL2?;w(R), whi
h we de�ne next:De�nition 5.4: The spa
e L2?;w(R) 
onsists of all fun
tions v 2 L2?(R) forwhi
h there exist fun
tions f 2 L2?(R) and g 2 L2?(S), su
h that the relation(5:2) (v; Ew)R + (f; w)R + (g; Sw)S = 0holds for all w 2 C1
 (R) \ L2?(R) for whi
h Tw = 0.By de�nition L2?;w(R) � L2?(R); by the adjointness formula (5.1), v 2C1
 (R) \ L2?(R) satis�es (5.2) with f = Ev and g = Sv, thus we have thefollowing hierar
hy: C1
 (R) \ L2?(R) � L2?;w(R) � L2?(R):The following two lemmas are needed to establish that the mappings v 7! fand v 7! g are uniquely de�ned, and extend the operators E; S.Lemma 5.5: Equation (5.2) is satis�ed for v = 0 only if f = 0 and g = 0.Proof: Let v = 0 and suppose that (5.2) is satis�ed for some f 2 L2?(R) andg 2 L2?(S). Sin
e (5.2) holds for all w 2 C1
 (R) \ L2?(R) for whi
h Tw = 0,it 
ertainly holds if we further restri
t w to satisfy Sw = 0. In this 
ase, weremain with (f; w)R = 0for all w 2 C1
;0(R)\L2?(R). By Lemma 5.2 this set is dense in L2?(R), thereforef = 0. Lifting now the restri
tion on Sw, (5.2) redu
es to(g; Sw)S = 0for all w 2 C1
 (R) \ L2?(R) whi
h satisfy Tw = 0. It is easy to see that therestri
tion of C1
 (R) \ L2?(R) fun
tions to the surfa
e t = 0 is dense in L2?(S),hen
e g = 0.Lemma 5.6: Let v 2 L2?;w(R); then the fun
tions f; g in (5.2) are uniquely andlinearly determined by v.Proof: Suppose that (5.2) is satis�ed by two sets of fun
tions f1; g1 and f2; g2:(v; Ew)R + (f1; w)R + (g1; Sw)S = 0;(v; Ew)R + (f2; w)R + (g2; Sw)S = 0:
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ting one from another we get(0; Ew)R + (f1 � f2; w)R + (g1 � g2; Sw)S = 0;for all w 2 C1
 (R) \ L2?(R) whi
h satisfy Tw = 0. By the previous lemma thisimplies f1 = f2 and g1 = g2. The linearity of v 7! f and v 7! g is an immediate
onsequen
e of the bilinearity of the inner produ
t.Corollary 5.7: Let v 2 L2?;w(R): the linear mappings v 7! f , v 7! g,whi
h we denote by f = ~Ev and g = ~Sv, are weak extensions (the so-
alledFriedri
hs extension) of the operators E and S in the sense that(5:3) (v; Ew)R + ( ~Ev;w)R + ( ~Sv; Sw)S = 0for all w 2 C1
 (R) \ L2?(R) for whi
h Tw = 0.Next, we de�ne a strong extension of the operators E and S:De�nition 5.8: The spa
e L2?;s(R) 
onsists of all fun
tions v 2 L2?(R), forwhi
h there exist fun
tions f 2 L2?(R), g 2 L2?(S), and a sequen
e of fun
tionsvn 2 C1
 (R) \ L2?(R), Tvn = 0, su
h that(5:4) limn!1 kvn � vkR = 0; limn!1 kEvn � fkR = 0; limn!1 kSvn � gkS = 0:Lemma 5.9: If v 2 L2?;s(R) then v 2 L2?;w(R), i.e.,C1
 (R) \ L2?(R) � L2?;s(R) � L2?;w(R) � L2?(R):Proof: Let v 2 L2?;s(R) and vn be a sequen
e in C1
 (R) \ L2?(R), Tvn = 0,satisfying (5.4). For all w 2 C1
 (R) \ L2?(R) for whi
h Tw = 0, the adjointnessformula (5.1) reads(vn; Ew)R + (Evn; w)R + (Svn; Sw)S = 0:Taking the limit n!1 we have(v; Ew)R + (f; w)R + (g; Sw)S = 0;whi
h by De�nition 5.4 implies that v 2 L2?;w(R) with ~Ev = f and ~Sv = g.Thus, the mappings v 7! f , v 7! g in De�nition 5.8 are extensions of theoperators E, S; they are 
alled strong extensions and are denoted by f = �Ev,g = �Sv.We next derive a so-
alled energy inequality, whi
h holds for all fun
tions inL2?;s(R):
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 > 0 su
h that for all v 2 L2?;s(R),(5:5) kvk2R + k �Svk2S � 
2k �Evk2R:Proof: Consider �rst v 2 C1
 (R) \ L2?(R), Tv = 0. For all 0 � t � T0 we haveddtkvT0�tk2L2(R2n) = �2�vT0�t; ddtvT0�t�L2(R2n)= �2 �vT0�t; EvT0�t +QLvT0�t�L2(R2n)= �2 �vt; Evt�L2(R2n)� 2kvT0�tkL2(R2n)kEvT0�tkL2(R2n)� kvT0�tk2L2(R2n) + kEvT0�tk2L2(R2n);where we have used the skew-symmetry of QL in C1
 (R2n) \ L2?(R2n) in thepassage from the se
ond to the third line.Rewriting this di�erential inequality as(5:6) ddt �eT0�tkvT0�tk2L2(R2n)� � eT0�tkEvT0�tk2L2(R2n)and integration over [0; T0℄ gives(5:7) kSvk2S � eT0kEvk2R:Integrating (5.6) over [0; t℄, followed by a se
ond integration over [0; T0℄, yieldson the other hand(5:8) kvk2R � (eT0 � 1)kEvk2R:Combining (5.7) and (5.8) we obtain (5.5) with 
2 = 2eT0 � 1. This inequalityholds for all v 2 L2?;s(R) by the very de�nition of this spa
e and the 
orre-sponding operators �E and �S.We are now in measure to prove the main theorem from whi
h follows theexisten
e of weak solutions to the orthogonal dynami
s equation.Theorem 5.11: For all f 2 L2?(R) and g 2 L2?(S) there exists a fun
tionu 2 L2?;w(R) for whi
h ~Eu = f; ~Su = g:Proof: Consider the set of fun
tions v 2 C1
 (R) \ L2?(R) for whi
h Tv = 0,endowed with the inner produ
t(v; w)H = (Ev;Ew)R:
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orresponding norm is denoted by k � kH (note that Ev = 0 implies bythe energy inequality (5.5) that v = 0). The Hilbert spa
e obtained by the
ompletion of this spa
e is denoted by H .Let vn 2 C1
 (R)\L2?(R), Tvn = 0, be a Cau
hy sequen
e in H . By de�nition,kEvn �Evmk2R = kvn � vmk2H ! 0;whereas by the energy inequality (5.5)kvn � vmk2R + kSvn � Svmk2S � 
2kEvn � Evmk2R ! 0:Sin
e L2?(R) and L2?(S) are 
omplete spa
es, there exist v; f 2 L2?(R) andg 2 L2?(S) su
h that vn ! v, Evn ! f , Svn ! g, and Tvn = 0, i.e., v 2 L2?;s(R)with f = �Ev and g = �Sv. Moreover, v 
an be identi�ed with the limit in H ofthe Cau
hy sequen
e vn, whi
h implies that H � L2?;s(R) and(v; w)H = ( �Ev; �Ew)R:Let f 2 L2?(R) and g 2 L2?(S) be given and 
onsider the linear fun
tional on
H given by �(w) = �(f; w)R � (g; �Sw)S :We show that this fun
tional is bounded, i.e., � 2 H � (the dual spa
e of H ):For all w 2 C1
 (R) \ L2?(R), Tw = 0,j�(w)j � j(f; w)Rj+ j(g; �Sw)S j� kfkRkwkR + kgkSk �SwkS�qkfk2R + kgk2Sqkwk2R + k �Swk2S� 
qkfk2R + kgk2Sk �EwkR� 
onst kwkH ;where Cau
hy{S
hwarz has been used in the passage from the �rst to the se
ondline, and the energy inequality has been used in the passage to the fourth line.Thus, �(w) is a bounded fun
tional that 
an be extended to the whole H .By the Riesz representation theorem there exists a v 2 H su
h that�(w) = (v; w)Hfor all w 2 H , that is,( �Ev; �Ew)R + (f; w)R + (g; �Sw)S = 0:
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e this holds, in parti
ular, for all w 2 C1
 (R) \ L2?(R) for whi
h Tw = 0,it follows by De�nition 5.4 that u = �Ev 2 L2?;w(R), with ~Eu = f and ~Su = g.This 
ompletes the proof.Corollary 5.12 (Existen
e of weak solutions): Let g 2 L2?(S); then thereexists a weak solution u 2 L2?;w(R) to the orthogonal dynami
s, su
h that~Eu = 0 and ~Su = g. Expli
itly,(u;Ew)R + (g; Sw)S = 0for all w 2 C1
 (R) \ L2?(R) for whi
h Tw = 0.A
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ro-
anoni
al ensembleIn this appendix we des
ribe how to adapt the Mori{Zwanzig formalism fora mi
ro-
anoni
al ensemble, where the invariant measure is 
on
entrated on alevel set of the Hamiltonian (an \energy shell").Assume that the Hamiltonian H is C1(R2n). A

ording to Sard's theorem[17℄ H has only a null set of singular values. Let 
 be a regular value of H, andde�ne M = fx 2 R2n : H(x) = 
g. M is an orientable manifold with measuredP , indu
ed by the Lebesgue measure on R2n . Re
all that the Lebesgue measure
an be 
onstru
ted using a volume, whi
h is a 2n-form in R2n . The indu
edmeasure on M is 
onstru
ted using a (2n � 1)-form de�ned on the tangentbundle of M ; it is the Lebesgue 2n-form, with one of its arguments �xed to bethe unit ve
tor normal to M , divided by jrHj. The indu
ed measure dP is themi
ro-
anoni
al measure. It is invariant under the Hamiltonian 
ow.Let b: M 7! TM be the Hamiltonian ve
tor �eld, where TM is the tangentbundle of M ; the equations of motion are:ddt't(m) = b('t(m));'0(m) = m:
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e H is a 
onstant of motion, m 2M implies 't(m) 2M for all t.We next introdu
e the equivalent Liouville dynami
s. For every f 2 C1(M)let df denote its di�erential form. The di�erential operator L: C1(M) 7!C1(M), de�ned by Lf(m) = df(m) � b(m);is the Liouvillian, of the Lie derivative asso
iated with the ve
tor spa
e B. One
an show that the Liouville equationddtut(m) = (Lut)(m)u0(m) = g(m)has for solution ut(m) = g('t(m)), i.e., that the Hamiltonian traje
tories 't(m)are the 
hara
teristi
 
urves for the Liouville equation.The spa
e C1(M) is endowed with an inner produ
t,(f; g) = Z fgdP;and 
an be 
ompleted into a Hilbert spa
e L2(M). It is straightforward to showthat the Lie derivative L is skew-symmetri
 with respe
t to this inner produ
t.To 
arry out the Mori{Zwanzig de
omposition it is ne
essary to 
hoose theresolved variables, and de�ne a proje
tion operator whi
h maps fun
tions inL2(M) into a 
losed subspa
e of fun
tions of the resolved variables. We showhere how to de�ne a proje
tion whi
h is the 
onditional expe
tation given theresolved variables. We demonstrate it for a single resolved variable g 2 C1(M).The generalization to several variables is straightforward.Let g 2 C1(M) by given. By Sard's theorem, if 
 is a regular value of g, thenM
 = fm 2 M : g(m) = 
g is an orientable sub-manifold of M , with indu
edmeasure dP
. The 
onditional expe
tation of a fun
tion f 2 L2(M) given g isE[f jg℄(m) = Rg�1(g(m)) fdPg(m)Rg�1(g(m)) dPg(m) :Referen
es[1℄ A. Chorin, O. Hald and R. Kupferman,Optimal predi
tion and the Mori{Zwanzigrepresentation of irreversible pro
esses, Pro
eedings of the National A
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ien
es of the United States of Ameri
a 97 (2000), 2968{2973.
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