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Non-Euclidean plates and shells

Abstract An elastic theory of even non-Euclidean plates was recently proposed
to describe a class of thin elastic bodies that exhibit residual stress in the ab-
sence of external forces or constraints. This plate theory was derived from a three-
dimension theory of so-called incompatible elasticity; the terms non-Euclidean
and incompatible refer to the existence of a reference metric that cannot be im-
mersed in a three-dimensional Euclidean space. In this paper we generalize the
reduced two-dimensional theory to account for structural inhomogeneities across
the thickness, leading to intrinsic curvatures (non-Euclidean shells), as well as for
inhomogenieties in the thickness of the thin body (uneven non-Euclidean plates).
Two examples are discussed.

1 Introduction

In two recent publications [5,6], we proposed a theory for elastic bodies that do
not have a stress-free rest configuration, even in the absence of external constraints
(i.e., exhibit residual stress). Such bodies are ubiquitous in biological systems,
as well as in many manufactured materials (see for example [12,10,15]). Our
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model departs from the principles of hyper-elasticity [14], and assumes that the
local energy density vanishes if and only if the metric g (the right Cauchy-Green
deformation tensor) equals a “reference metric” ḡ. This reference metric is a body
property, which characterizes the intrinsic distances between material points; in
plants, for example, it is determined in the course of the growth process. A three
dimensional metric can be immersed in the physical (Euclidean) space only if
it is flat, namely, if the Riemann curvature tensor is identically zero. A lack of
stress-free configuration occurs when the reference metric is non-immersible. In
such case, the body is necessarily in a state of frustration, as it cannot satisfy
the reference metric everywhere simultaneously. In [5] the energy density was
assumed to be quadratic in the deviation of the actual metric form the reference
metric, resulting in a nonlinear elastic theory, which we named “three-dimensional
incompatible elasticity”. In the particular case where the reference metric ḡ is flat,
our theory coincides with standard nonlinear elasticity theories [3].

An important sub-class within the class of elastic bodies that exhibit residual
stress consists of thin, sheet-like bodies. Because of the metric incompatibility,
such bodies do not fall within the category of neither plates nor shells. The concept
of even non-Euclidean plates was introduced in [5], defined as thin elastic bodies
whose reference metric is invariant along the thin dimension, and whose thick-
ness is uniform. A reduced two-dimensional theory was then derived, based on
the Kirchhoff assumptions, resulting in an elastic energy that depends on the con-
figuration of the mid-plane. This energy functional resembles the Koiter energy
[11], with a stretching term which is linear in the plate thickness, and a bending
term which is cubic in the plate thickness. The notable difference with the Koiter
theory is that the stretching term measures the metric deviation from a non-flat
two-dimensional metric. The frustration results from the competition between the
stretching term, which favors bent configurations, and the bending term, which
favors flat configurations.

The elastic response of bodies undergoing differential growth has been con-
sidered previously, and recently in [2,8,4]. In [8] the deformation tensor is mul-
tiplicative decomposed into a growth process and an elastic relaxation. In [4] the
thin-plate limit is considered, leading to a Föppl-von Kármán-like plate theory.

In this paper we extend the treatment to thin elastic bodies of more general
structure, namely, beyond the even plate structure. In the more general case, where
the metric varies along the thin dimension, a natural curvature arises as in shells.
These are however non-Euclidean shells as the strain is still measured with respect
to an incompatible metric. Relying again on the Kirchhoff closure assumptions,
we derive a reduced two-dimensional model for thin elastic structures, which we
name “non-Euclidean shells”.

Two examples are provided. The first, motivated by experiments with thermo-
responsive gels [10], falls into the category of non-even plates. The second, moti-
vated by the snapping mechanism of the Venus flytrap [7], corresponds to a non-
Euclidean shell.

2 Three-dimensional “incompatible” elasticity

Let Ω be a bounded domain in R3; we denote points in Ω by x = (x1,x2,x3).
A configuration of a body whose domain of parametrization is Ω is a function
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f : Ω →R3. We require f to be differentiable, with a square integrable derivative,
and have a fixed orientation, say, det∇ f > 0. The metric on Ω induced by the
mapping f is a tensor g(x) with entries

gi j(x) = [(∇ f )T (∇ f )]i j =
∂ f
∂xi
· ∂ f

∂x j
, i, j = 1,2,3.

In the context of elasticity it is also known as the right Cauchy-Green deformation
tensor.

The principles of hyper-elasticity [14] state that to each configuration f corre-
sponds a stored elastic energy of the form,

E[ f ] =
∫

Ω

W (x, f (x),∇ f (x))dV, (1)

where W is the energy density and dV is an infinitesimal volume element. The
energy density is usually divided into a strain (“internal”) contribution, which only
depends on x and ∇ f (x), and a forcing (“external”) contirbution which depends on
x and f (x). In this paper we are concerned with unconstrained bodies, hence we
omit the explicit dependence of the energy density on the configuration, i.e., W =
W (x,∇ f (x)). This energy density is subject to a number of physical requirements,
such as to satisfy the material objectivity property (rotational invariance),

W (x,A) = W (x,QA), for all Q ∈SO(3) and A ∈ R3×3.

It is easily seen that the material objectivity condition translates into the require-
ment that W be expressible as a function of the metric tensor, namely, W =
W (x,g(x)).

The postulate underlying (linear and nonlinear) elasticity theories is that in the
absence of external forcing, the identity map f (x) = x corresponds to a state of
zero elastic energy (in nonlinear elasticity, the energy density is zero if and only
if the deformation tensor ∇ f is a rotation). In other words, the intrinsic geometry
of the body is Euclidean. Our approach for modeling bodies that exhibit residual
stress is to assume that their intrinsic structure is prescribed by a metric tensor
ḡ(x) (the reference metric) that is not necessarily Euclidean. The Green-St. Venant
strain tensor is proportional to the deviation of the actual metric from the reference
metric,

ε(x) =
1
2
(g(x)− ḡ(x)). (2)

Since ḡ(x) is viewed as the intrinsic metric at the point x, we assume that for given
x, the energy density W (x,g(x)) vanishes if and only if g(x) = ḡ(x). If we further
assume that W (x,g) is at least twice differentiable with respect to g in the vicinity
of ḡ(x), then we expect

W (x,g) =
1
2

Ai jkl
εi jεkl +O(ε4), (3)

where Ai jkl = Ai jkl(x) is an elastic tensor that depends on local material properties,
but does not depend on the configuration. Here and below the Einstein summation
convention is used. A simple calculation shows that for an isotropic material,

Ai jkl = λ ḡi jḡkl + µ

(
ḡikḡ jl + ḡil ḡ jk

)
, (4)
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where λ ,µ > 0 are Lamé coefficients and ḡi j are the entries of the reciprocal
reference metric ḡ−1. Combining eqs. (1)–(4), the elastic energy functional takes
the form [5]

E[ f ] =
∫

Ω

W (x,g(x))dV, (5)

where dV =
√
|ḡ|dx1dx2dx3, and

W (x,g) =
λ

2
ε

i
i ε

j
j + µε

i
jε

j
i +O(ε4). (6)

The raising and lowering of indices is with respect to the reference metric ḡ; for
example,

ε
i
j = ḡik

εk j.

(The fact that the volume element is determined by the reference metric conforms
with most models, as the Riemannian manifold with metric ḡ is the Lagrangian
system of coordinates; the only novelty is the fact that it is non-flat.) Omitting
terms of order higher than quadratic in the strain, we obtain a nonlinear elastic
theory applicable in the range of small strains.

The remarkable property of the energy functional (5), which distinguishes it
from standard models, is that it has no stress-free rest configuration if the refer-
ence metric is not flat. The energy density can vanish locally, but cannot vanish
everywhere simultaneously. The equilibrium state can be defined by the metric
g(x) that minimizes the weighted L2 distance, (5), from the reference metric ḡ,
under the constraint that g(x) be immersible in R3.

For this elastic problem to be well-posed, more restrictions have to be imposed
on the energy density W (x,g). A substantial amount of literature exists on this
matter. It is well-known, for example, that if W is a polyconvex function of ∇ f ,
then a minimizer exists [1,3]. Such conditions are important to ensure the well-
posedness of the model in the presence of large strains. For small strains, we may
assume that the energy density is quadratic in the strain.

One can further define the second Piola-Kirchhoff stress tensor,

si j =
∂W
∂εi j

= Ai jkl
εkl . (7)

The Euler-Lagrange equations that correspond to the above variational formula-
tion are

∇̄ jsi j +(Γ i
jk− Γ̄

i
jk)s

jk = 0 in Ω

si jn j = 0 on ∂Ω ,
(8)

where Γ i
jk and Γ̄ i

jk are the Christoffel symbols corresponding to the metrics g and
ḡ, respectively, and ∇̄ j is the covariant derivative associated with the reference
metric (see [5] for more details).
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3 Reduced two-dimensional models

We now turn our attention to thin bodies of the above class. Naturally, one would
like to take advantage of the nearly two-dimensional nature of the geometry, and
derive a model of reduced dimension, which only takes into account surface prop-
erties of the configuration (the surface could be, for example, the mid-surface of
the body). Such a reduced theory for non-Euclidean plates was developed in [5],
based on the Kirchhoff closure assumptions [9]. Formally, an even non-Euclidean
plate was defined as a body for which there exists a parametrization in which

Ω = S× [−t/2, t/2],

where S⊂ R2, and

ḡ(x1,x2,x3) =
(

ā(x1,x2) 0
0 1

)
, (9)

where ā ∈R2×2 is a two-dimensional reference metric. Such a body is considered
thin if the thickness t is much smaller than any other characteristic lenghscale. It
is easily seen that the three-dimensional metric ḡ is immersible in R3 if and only if
the two-dimensional metric ā has zero Gaussian curvature (ḡ is two-dimensional
to the extent that its Riemann curvature tensor depends on a single scalar curva-
ture). The “plate nature” of such a body is reflected by the fact that the internal
structure is independent of the thin direction. That is, such a body can be viewed
as a continuous stack of identical surfaces.

It should be noted that every three-dimensional metric can, provided that the
body is sufficiently thin, be brought to a semi-geodesic form,

ḡ(x1,x2,x3) =

ḡ11 ḡ12 0
ḡ21 ḡ22 0
0 0 1

 ,

where the entries ḡ11, ḡ12, ḡ21 and ḡ22 are functions of (x1,x2,x3), by first choosing
a surface S with an arbitrary parameterization, and then issuing geodesic lines
perpendicular to the surface to parametrize points off the surface.

Henceforth, we use lowercase Latin characters to denote indices of three-
dimensional tensors, e.g., i, j = 1,2,3, and Greek characters to denote indices of
two-dimensional tensors, e.g., α,β = 1,2. Thus, the semi-geodesic parametriza-
tion satisfies

ḡα3 = 0 and ḡ33 = 1.

To proceed, we adopt a generalization of the Kirchhoff assumptions. We first
note that the boundary conditions in (8) imply that

si3(x) = 0,

when x3 = ±t/2. The key assumption in the Kirchhoff theory is that throughout
the body, si3 is at most of order t2. In essence, this means that stress derivatives
remain bounded as t→ 0. Explicitly, substituting (2) and (4) into (7)

si3 = λ ḡi3ḡkl(gkl− ḡkl)+2µ ḡik(gk3− ḡk3) = O(t2). (10)
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For i = α = 1,2, using the fact that ḡα3 = 0 we obtain ḡαβ gβ3 = O(t2), which in
turns yields

gβ3 = O(t2). (11)

Thus, the actual metric is of the form

g(x1,x2,x3) =

g11 g12 0
g21 g22 0
0 0 g33

+O(t2),

where the entries gαβ and g33 are functions of (x1,x2,x3). Setting i = 3 in (10) we
get

s33 = λ ḡαβ (gαβ − ḡαβ )+(λ +2µ)(g33−1) = O(t2),

from which we obtain that

g33 = 1− λ

λ +2µ
ḡαβ (gαβ − ḡαβ )+O(t2), (12)

Substituting (11) and (12) into the energy density (6), we obtain

W =
1
2
Āαβγδ (gαβ − ḡαβ )(gαβ − ḡαβ )+O(t2), (13)

where

Āαβγδ =
Y

4(1−ν2)

[
ν ḡαβ ḡγδ +

1
2
(1−ν)(ḡαγ ḡβδ + ḡαδ ḡβγ)

]
,

and the Young modulus Y and the Poisson ratio ν are defined through the relations,

λ

λ +2µ
=

ν

1−ν
and Y = 2µ(1+ν).

So far, the fact that the body is thin was only used in the ansatz si3 = O(t2).
We now expand the αβ components of both the reference metric and actual metric
about the mid-surface,

ḡαβ (x1,x2,x3) = āαβ (x1,x2)+ ā′
αβ

(x1,x2)x3 +O(t2)

gαβ (x1,x2,x3) = aαβ (x1,x2)+a′
αβ

(x1,x2)x3 +O(t2).
(14)

We also introduce the two dimensional strain,

eαβ =
1
2
(aαβ − āαβ ),

and note that
ḡαβ = āαβ − āαγ āβδ ā′

γδ
x3 +O(t2),

where āαβ are the entries of ā−1. It follows that

Āαβγδ (x1,x2,x3) = Aαβγδ (x1,x2)+ x3 Bαβγδ (x1,x2)+O(t2), (15)
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where

Aαβγδ =
Y

4(1−ν2)

[
ν āαβ āγδ +

1
2
(1−ν)(āαγ āβδ + āαδ āβγ)

]
,

and B(x1x,2 ) comprises terms cubic in ā−1 and linear in a′.
To obtain a reduced two-dimensional energy density, we substitute the expan-

sions (14) and (15) into the three-dimensional energy density (13), an integrate
over the x3 coordinate. Odd powers of x3 cancel, and we remain with the follow-
ing reduced energy functional,

E =
∫

S
W(x1,x2)

√
|ā|dx1dx2, (16)

where the two-dimensional energy density is

W(x1,x2) =
t
2
Aαβγδ (aαβ − āαβ )(aγδ − āγδ )

+
t3

48
Aαβγδ (a′

αβ
− ā′

αβ
)(a′

γδ
− ā′

γδ
)

+O(t4, t3|e|).

(17)

As shown in [5,6], the two dimensional strain eαβ tends to zero as t → 0, which
is why we consider terms of order t3|e| as small compared to terms of order t3.

The tensor aαβ is the two-dimensional metric of the mid-surface. As is well
known, a two-dimensional metric does not uniquely determine the three-dimensional
configuration of a surface. A surface is uniquely determined by its first and second
fundamental forms, i.e, by its metric and curvatures; if r(x1,x2) is a surface in R3,
then its second fundamental form is given by the tensor

bαβ = ∂α ∂β r ·N,

where ∂α = ∂/∂xα , and N is the unit vector normal to the surface.
To connect between the tensor a′ and the second fundamental form, we expend

the configuration in powers of x3,

f (x1,x2,x3) = r(x1,x2)+ x3 r′(x1,x2)+O(t2).

Differentiating once, we obtain the first fundamental form,

gαβ = ∂α r ·∂β r + x3 (∂α r ·∂β r′+∂β r ·∂α r′)+O(t2)

gα3 = ∂α r · r′+O(t)

g33 = r′ · r′+O(t).

From the fact that gα3 = O(t2) follows that r′ is perpendicular to ∂α r, i.e., it is
proportional to the unit normal N,

r′(x1,x2) = r′(x1,x2)N(x1,x2).

From the expansion (14) of gαβ follows that

∂α r ·∂β r = aαβ ,
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and
r′(∂α r ·∂β N+∂β r ·∂αN) = a′

αβ
.

However,
∂α r ·∂β N = ∂β (∂α r ·N)−∂β ∂α r ·N =−bαβ ,

hence,
a′

αβ
=−2r′ bαβ .

Finally, from the expansion (14) of g33 follows that

(r′)2 = 1− ν

1−ν
āαβ (aβα − āβα) = 1+O(e), (18)

that is,
a′

αβ
=−2bαβ +O(e).

Substituting back into (17),

W(x1,x2) = WS(x1,x2)+WB(x1,x2)+O(t4, t3|e|), (19)

where
WS(x1,x2) =

t
2
Aαβγδ (aαβ − āαβ )(aγδ − āγδ )

WB(x1,x2) =
t3

24
Aαβγδ (bαβ − b̄αβ )(bγδ − b̄γδ ),

where−2b̄αβ = ā′
αβ

, and WS and WB are the respective densities of the stretching
and bending energies.

Comments

1. The reduced energy functional (16) with density (19) is very similar to Koiter’s
shell model [11]. There is a stretching term, which is linear in the thickness of
the body, and the bending term, which is cubic in the thickness. The tensors ā
and b̄ are the reference first and second forms; the energy density vanishes if
and only if a = ā and b = b̄. This is however possible only if the tensors ā and
b̄ satisfy the Gauss-Codazzi-Mainardi equations [13]. The notable difference
with Koiter’s theory is that these two requirements may be incompatible.

2. We have used the fact that the plate thickness is uniform (i.e., that the plate
is even) when identifying the normal stresses with si3. This remains approxi-
mately correct as long as thickness variations are moderate. An example of a
non-even plate is described in the next section.

3. The fact that O(e) term were neglected compared to O(1) terms is due to the
fact that for any isometric immersion with finite bending energy, E = O(t3),
from which follows that at equilibrium the stretching energy is at most O(t),
namely, ∫

S
Aαβγδ (aαβ − āαβ )(aγδ − āγδ )

√
|ā|dx1dx2 ≤Ct2. (20)

The weakness of this argument is that (20) only implies that e = O(t) in the
mean-square, and not pointwise. Thus, establishing our theory on firmer math-
ematical grounds requires a more delicate analysis.
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4 Examples

4.1 Non-Euclidean plates: thermo-responsive gels

Recent experiments in thermally responsive gel discs [10] provide a convenient
testing ground for elastic bodies that fall into the category of non-Euclidean plates.
In these experiments, initially flat stress-free objects shrink differentially upon
heating, according to a pre-determined chemical concentration in their compo-
sition. The shrinking is homogeneous across the thickness, but inhomogeneous
in the lateral directions. Such bodies are therefore plates, because their reference
metric is constant along the thin direction.

Specifically, if we denote by η(x1,x2) the degree of shrinking, then the refer-
ence metric has an isothermal (or conformal) structure,

ḡi j = η
2(x1,x2)δi j,

with x ∈ S× [−t/2, t/2]. This reference metric is not exactly of the form (9) as
ḡ33 6= 1.

One could repeat the analysis of the previous section, deriving a reduced two
dimensional model for a reference metric of this type. From the condition that
si3 = 0 follows that gα3 = O(t2) and

g33 = η
2− λ

λ +2µ
(g11 +g22−2η

2)+O(t2).

The rest of the analysis remains more or less verbatim, up to (18), where we obtain
that

(r′)2 = η
2 +O(e),

which implies that
a′

αβ
=−2ηbαβ +O(e).

Thus, we end up with a reduced energy density (16) with a density of the form
(19), where

WS(x1,x2) =
ηt
2

Aαβγδ (aαβ − āαβ )(aγδ − āγδ )

WB(x1,x2) =
(ηt)3

24
Aαβγδ bαβ bγδ

(a factor of η emerges as
√
|ḡ|= η

√
|ā|. Thus, the only difference with the plate

model derived in [5] is that t 7→ ηt, i.e., the thickness is no longer spatially uni-
form.

4.2 Non-Euclidean shells: the Venus flytrap

Let the domain of parametrization of the mid-surface be S = [0,R]× [0,2π) (with
periodicity with the x2 direction), and consider a particular surface given by

r(x1,x2) =
1√
K

(
sin
√

Kx1 cosx2,sin
√

Kx1 sinx2,cos
√

Kx1
)

, (21)
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which is a spherical cap of Gaussian curvature K > 0. It is easily verified that the
first and second fundamental forms of this surface are

acap =
(

1 0
0 1

K sin2√Kx1

)
,

and

bcap =−

(√
K 0

0 1√
K

sin2√Kx1

)
.

If we set ā = acap and b̄ = bcap then a stress-free rest configuration exists, given
by (21). A stress-free rest configuration exists also if we rather set b̄ = −bcap, in
which case the equilibrium solution is a spherical cap with opposite orientation.
In either case, we are within the realm of ordinary, Euclidean shells.

Suppose next, that the reference metric and curvatures are given by

ā = acap and b̄ = θ bcap,

where θ is a constant. Unless θ =±1, ā and b̄ do not satisfy the Gauss-Codazzi-
Mainardi compatibility conditions, and the system is a non-Euclidean shells. For
sufficiently thin shells, we expect the equilibrium configuration to be very close to
an isometric immersion (the maximum deviation scales like O(t), and is concen-
trated in a layer of size O(t1/2) near the boundary [6]. As pointed up above, there
are two such isometries that retain the axisymmetry of the geometry. The one that
is more stable is the one that has a lower bending content, i.e., it depends on the
sign of the constant θ .

Let θ > 0. Then, provided that the body is sufficiently thin, the global equilib-
rium configuration is close to the isometric immersion (21). Suppose then that θ is
continuously varied, and eventually changes sign. Despite the fact that (21) is no
longer (close to) the absolute energy minimizer, it remains a local minimum, i.e.,
it is meta-stable. The extent of meta-stability depends both on the thickness (the
thinner the shell is, the more stable is the meta-stable state), and on the parameter
θ of the reference curvature. It is natural to expect that at a critical value of θ < 0
(which depends on t) the solution (21) becomes unstable, leading to a transition to
the second solution (of opposite mean curvature). For thin shells, we expect this
transition to be fast.

Such a mechanism is believed to govern the motion of the well-known Venus
flytrap, a carnivorous plant which captures insects by closing a pair of lobes. The
closing (or snapping) of the lobes is triggered when an insect stimulates the sur-
face of the lobes. Recent work [7] analyzes the snapping mechanism in terms of
geometric and elastic properties of the lobes. In essence, the trapping mechanism
is based on a bistability of the type discussed above. The stimulus triggers changes
in the geometry of the lobe from being concave to being convex. The rapidity of
the trap is due to the fact that it is an elastic response to a loss of stability. In this
context, we note that for the trap to be efficient, the thickness of the lobes has
to be within some intermediate range. A too thick lobe would imply a bending
dominated response, i.e., a continuous tracking of the (slow) geometrical changes.
A too thin lobe, in the other hand, would render the meta-stable energy wells too
deep for allowing transitions. This should not be viewed as a thorough study of the
Venus flytrap; we only point out that the snapping mechanism could be interpreted
within the framework of non-Euclidean shells.
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5 Conclusions

We have presented here a theory for thin elastic bodies that do not possess a stress-
free rest state due to a geometric incompatibility. We have named such bodies
non-Euclidean plates and shell. The essential ingredient is a three-dimensional
elasticity theory in which the strain is measured with respect to a reference metric,
which is a material property. A lack of stress-free rest configuration occurs when
this reference metric is non-flat. The reduction to quasi-two-dimensional theories
is done using the Kirchhoff assumption whereby stresses along the thin axis are
vanishingly small in the limit of a thin body. We obtain a Koiter-like energy func-
tional, with a stretching energy in which the strain is relative to a two-dimensional
reference metric. Incompatibility occurs when the first and second reference forms
do not satisfy the Gauss-Codazzi-Mainardi equations. For uneven plates, we re-
cover the model in [5] with, however, a non-uniform thickness. The potential uses
of our model in both physical and biological sciences were demonstrated by ana-
lyzing two model systems.
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