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a b s t r a c t

Non-Euclidean plates are a subset of the class of elastic bodies having no stress-free

configuration. Such bodies exhibit residual stress when relaxed from all external

constraints, and may assume complicated equilibrium shapes even in the absence of

external forces. In this work we present a mathematical framework for such bodies in

terms of a covariant theory of linear elasticity, valid for large displacements. We propose

the concept of non-Euclidean plates to approximate many naturally formed thin elastic

structures. We derive a thin plate theory, which is a generalization of existing linear plate

theories, valid for large displacements but small strains, and arbitrary intrinsic geometry.

We study a particular example of a hemispherical plate. We show the occurrence of a

spontaneous buckling transition from a stretching dominated configuration to bending

dominated configurations, under variation of the plate thickness.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Elasticity theory, in its most fundamental formulations, describes the statics and dynamics of three-dimensional (3D)
elastic bodies. Such ‘‘fundamental’’ models are extremely complex, due to both high dimensionality and nonlinearity. This
intrinsic complexity has motivated over the years the development of simplified, or reduced models of elasticity. In
particular, models of lower spatial dimension have been developed to describe the mechanics of slender bodies, such as
columns, shells and plates. These models are based on various approximations, such as lateral inextensibility, small
deflections and small deformations. In particular, the Kirchhoff–Love assumptions (Love, 1906) allow the derivation of
reduced two-dimensional (2D) theories of plates. The Föppl–Von Kármán (FVK) plate equations are one of the successful
reduced descriptions of plates mechanics. It expresses the elastic energy of a deformed elastic plate as a sum of stretching
and bending energies of a 2D surface. The stretching energy, which accounts for in-plane deformations, is linear in the plate
thickness, h. The bending energy, which depends on the curvature of the deformed plate, is cubic in h. Other reduced 2D
theories usually bear the same structure, i.e. their energy is given by the sum of a stretching term and a bending term
(Koiter, 1966). The validity of the dimensional reduction from 3D to 2D models, based on the Kirchhoff–Love assumptions,
has been the subject of many scientific disputes (Koiter, 1970). Recently, the FVK theory has been derived from a 3D elastic
theory by means of an asymptotic expansion (Ciarlet, 1997). The stretching and bending terms in the FVK theory have also
been derived as two different vanishing thickness G-limits of the 3D elastic energy (Friesecke et al., 2006).

2D elastic theories distinguish between two types of thin bodies: plates and shells. Plates are elastic bodies that bear no
structural variation across their thin dimension, and possess a planar rest configuration. Shells are elastic bodies that bear
ll rights reserved.
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structural variations across their thin dimension, and as a result, possess a non-planar rest configuration. In both cases the
postulated existence of a stress-free, rest configuration is of paramount importance.

Recent technological developments have extended the range of mechanical structures that can be engineered and
constructed. Plates of nanometer scale thickness can be manufactured (Huang et al., 2007), responsive nano-structures are
being developed (Efimenko et al., 2005; Holmes and Crosby, 2007), and the use of shape memory materials that lead to
large shape transformations has been extended (Sidoroff and Dogui, 2007). In addition, the application of mechanics to
biological systems, such as in the study of plant mechanics and motility (Forterre et al., 2005) and the study of
mechanically induced cell differentiation (Park et al., 2004), is a rapidly developing field. Such developments have renewed
the interest in elasticity. Several recent theoretical works have focused on the onset of various mechanical instabilities and
the scaling of the generated patterns (Huang et al., 2007; Cerda and Mahadevan, 2003), and other thoroughly analyzed the
assumptions underlying some of the dimensionally reduced models (Friesecke et al., 2006).

The modeling of growing elastic bodies is an area in which current theories of elasticity face difficulties. Growing
tissues, such as leaves, exhibit very complex configurations even in the absence of external forces (Sharon et al., 2004).
Although leaves (and many other growing tissues) are relatively thin (compared to their lateral dimensions), there are no
reduced 2D elastic theories that model their shaping mechanisms. Another class of systems for which current theories do
not apply are elastic bodies undergoing irreversible plastic deformations. The main difficulty in applying elasticity theory
to growing bodies, or elastic bodies having undergone plastic deformations, is their lack of a stress-free configuration.
Specifically, in most models, the elastic energy density of a deformed body depends on the local elastic modulus and the
strain tensor. The latter is defined by the gradient of the mapping between a stress-free configuration and the deformed
configuration. It can be shown, for example, that a general growth process of an elastic material leads to a body that has no
stress-free configuration, thus exhibiting residual stress in the absence of external loading (Goriely and Ben-Amar, 2007).

To formulate an elastic theory for bodies that do not have stress-free configurations, one needs an alternative definition
of the strain tensor. At present, certain 3D formulations use the concepts of virtual configuration (Ben Amar and Goriely,
2005; Hoger, 1993) and intermediate configuration (Sidoroff and Dogui, 2002; Sidoroff, 1982) to describe natural growth
processes as well as plastic deformations leading to residual stress. The growth process in these theories is decomposed
into a growth step, which maps a stress-free configuration into a virtual configuration, and an elastic relaxation step, which
maps the virtual configuration into an elastic equilibrium configuration that contains residual stress. These theories use a
multiplicative decomposition of the deformation gradient into an elastic and a plastic part. Other theories decompose the
strain tensor additively (Green and Naghdi, 1971).

In the current work, we focus on the elastic response of the body after its ‘‘rest configuration’’ has been modified either
by growth or by plastic deformation. We do not consider the thermodynamic limitations on plastic deformations (which
are not relevant to naturally growing tissue). We assume that the distorted ‘‘rest configuration’’ (or virtual configuration) is
a known quantity. If an elastic body is capable of assuming the virtual configuration, then there exists a stress-free
configuration, which is unique; the solution to the elastic problem is then trivial. If, however, no elastic body can assume
the virtual configuration, then no stress-free configuration exists, and we face a non-trivial problem which exhibits residual
stress. We term such bodies as ‘‘non-Euclidean’’ because their internal geometry is not immersible in 3D Euclidean space.

We consider now two model examples of elastic structures that belong to the class of systems we have termed non-
Euclidean plates, and discuss qualitatively some of their properties. Consider an elastic square slab of lateral dimensions 2L,
and thickness h. Suppose we cut out from it a square segment of dimension L, leaving out a U-shaped structure (see Fig. 1a).
Next, the square is replaced by a trapezoid that has three edges of equal length L, and a fourth edge of longer size L0. Of
course, the trapezoid is too large to fit in the square slot. Suppose, however, that we forcefully insert the trapezoid into the
slot, gluing its three sides of length L to the corresponding edges of the U-shape. As a result, the U-shape will slightly open,
whereas the trapezoid will experience compression. This plane-stress configuration is shown schematically in Fig. 1b. If the
plates are sufficiently thin, the trapezoid is unable to sustain the compression and buckles out of plane to form a shape
qualitatively described in Fig. 1c.

We note the following points for this toy problem:
(1)
Fig.
the r
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plan
The 3D metric that describes the rest lengths of the compound body (U-shape plus trapezoid) is continuous.

(2)
 If x3 denotes the vertical coordinate (say, the distance from the bottom face), then all x3 ¼ const surfaces are identical. It

is this property that causes the body to remain flat (for sufficiently thick samples), and will later be used to rigorously
define non-Euclidean plates.
1. Schematic illustration of an unconstrained plate exhibiting residual stress. (a) The two elements composing the plate are shown side by side. (b) As

ed trapezoid is too large to fit into the square opening, it is compressed. (c) For a plate sufficiently thin, the induced compression exceeds the buckling

shold, and the trapezoid buckles out of plane. Note that there are many shapes that preserve all lengths along the faces of the plate, yet they cannot be

ar.
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(3)
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The body exhibits residual stress in the absence of external constraints: in Fig. 1b the body is in a state of non-trivial
plane-stress, identical for all x3 ¼ const sections. In the buckled state (Fig. 1c) symmetry is broken. The upper surface is
longer than the lower surface, hence at least one of them must be strained. It may easily be shown that the compound

body has no unstressed configuration.

(4)
 The problem is purely geometric: as both pieces (the confining U and the trapezoid) are made of the same material, the

stiffness of the material (Young’s modulus) has no effect on the equilibrium shape, and we expect to see the same
behavior for metals and rubbers (as long as the strains are sufficiently small and the stresses are below the yield stress).
(5)
 The toy problem presented here may easily be solved numerically using commercial software (In fact, a very similar
problem was addressed experimentally and analytically in Mora and Boudaoud, 2006). The treatment used for solving
such problems is limited to discrete geometric incompatibilities: two (or more) regular elastic problems that are
coupled through their boundary conditions are solved simultaneously. Plastic deformations and non-homogeneous
growth processes, however, cannot be mapped into such discrete geometries.
Recent experiments in torn plastic sheets (Sharon et al., 2002) and environmentally responsive gel discs (Klein et al., 2007)
have attracted attention to a specific class of non-Euclidean elastic bodies: thin bodies whose shaping mechanism is
essentially 2D. Growing leaves display such behavior, as their growth is believed to be nearly homogeneous across their
thin dimension, and inhomogeneous in the lateral dimensions. The gel discs reported in Klein et al. (2007) mimic a growing
thin 3D body shaped by a 2D growth process. In these experiments initially flat stress-free objects shrink according to a
pre-determined chemical gradient in their composition. The shrinking is homogeneous across the thickness, but
inhomogeneous in the lateral directions (see Fig. 2 for an example). The resulting body shows no structural variation across
its thin dimension, yet the lateral equilibrium distances, specified by the differential shrinking, define a 2D non-Euclidean
metric tensor. Thus, they cannot be preserved in any flat configuration of the disc. Such bodies may not be considered as
plates (due to their non-planar intrinsic geometry), nor as shells (as there are no structural variations across the thin
dimension). We name such bodies non-Euclidean plates.

The configurations of non-Euclidean plates in the absence of external forces are not flat (Fig. 2c and d), and may exhibit
multi-scale, and fractal-like configurations (Sharon et al., 2002; Klein et al., 2007). Finite element simulations devised to
describe such bodies (Marder and Papanicolaou, 2006; Audoly and Boudaoud, 2003) were able to obtain such multi-scale
configurations as energy minima. In both computational and theoretical works, it was assumed that the elastic energy can
be written as a sum of bending and stretching terms. The bending was measured with respect to a locally flat configuration
(as in the FVK plate model), and the stretching was evaluated with respect to a reference 2D metric tensor. None of these
works, however, was backed up with a theoretical justification for such assumptions.

In the present work we derive a reduced 2D elastic theory for non-Euclidean plates and discuss their characteristics. The
derivation starts from a model of a 3D covariant ‘‘incompatible’’ elasticity, that is, a model for 3D bodies whose intrinsic
metric cannot be immersed in a 3D Euclidean space. We advocate that the common definition of strains with respect to a
stress-free configuration is too restrictive. Instead, strains can be measured with respect to a reference metric tensor, which
is not necessarily immersible in 3D Euclidean space (incompatibility). When the strain tensor is defined with respect to a
metric tensor, growth (or any other metric prescription) is naturally decoupled from the elastic relaxation. The second
Cauchy–Piola stress tensor (which is linear in the strain for small strains), may be written explicitly in terms of the
difference between two metric tensors. In such a formulation residual stress appears inevitably as a result of the lack of
immersibility.

We apply this formulation to thin elastic plates, using the Kirchhoff–Love assumptions. When applied to ordinary plates,
our theory coincides with the Koiter (1966) plate theory. As in the FVK and Koiter theories, the energy of the plate is a sum of
stretching and bending terms. The bending term is cubic in h and quadratic in surface curvatures. The stretching term is
linear in h and depends on the difference between the 2D metric tensor of the configuration and the reference metric ḡ (in
Marder and Papanicolaou, 2006 it was termed ‘‘target metric’’). The covariant elasticity formulation, together with the
bending term measures deviations from a flat configuration, while the stretching term measures deviations from the 2D
reference metric (which may be non-flat). The resulting model is simple to use, and has an intuitive structure, which clarifies
the underlying physics. We end this paper with an application of the theory to a simple case of a hemispherical plate.
2. An initially flat disc shrinking differentially. (a) The peripheral areas (light grey) shrink significantly, while the center of the disc (dark grey) shrinks

erately. (b) In order to accommodate the center of the disc within the ‘‘too short’’ peripheral ring, the plate must buckle out of plane. While the newly

cribed lateral lengths are satisfied on average (over the thickness), the symmetry breaking causes the upper surface to be tensed, while the lower

ce is compressed. (c–d) Experimental realization of non-Euclidean plates, using environmentally responsive gels as described in Klein et al. (2007).

differential shrinkage prescribes a 2D geometry of constant positive Gaussian curvature K ¼ 0:11 cm�2. The thicknesses of the gels are hc ¼ 0:75 mm

hd ¼ 0:6 mm.
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2. Theoretical framework: covariant linear elasticity theory

In this section we derive the energy functional of a 3D elastic body as a function of its metric using general curvilinear
coordinates. We will show that the energy functional takes the following form:

EðgÞ ¼

Z
D

wðgÞ
ffiffiffiffiffiffi
jḡj

p
dx1 dx2 dx3 w ¼

1

2
Aijkleijekl,

where we use the Einstein summation convention and

Aijkl
¼ lḡijḡkl

þ mðḡikḡjl
þ ḡilḡjk

Þ eij ¼
1
2ðgij � ḡijÞ. (2.1)

Here gij is the metric tensor, ḡij is a symmetric positive-definite tensor, which we term the reference metric, and l;m are
elasticity (Lamè) constants; for tensors j � j denotes the determinant. This energy functional neglects terms that are of order
higher than quadratic in eij, which is the deviation of the metric from the reference metric. For bodies which possess a
stress-free configuration, ḡ may be called the rest metric and must comply with six additional differential constraints (the
vanishing of the Ricci curvature tensor). Precise definitions will be provided in the following subsections. For a thorough
treatment of bodies that have a stress-free configuration, the reader is referred to the recent introductory book by Ciarlet
(2005), which contains the mathematical background to the subject. A similar treatment, which we consider as a starting
point for our generalization, can be found in Koiter (1966). We derive the energy functional in a slightly different manner,
yet we try as far as possible to use the notations of Koiter (1966), later adopted in Ciarlet (2005).

2.1. ‘‘Incompatible’’ covariant 3D elasticity

When a body (a compact domain O � R3) is endowed with a regular set of material curvilinear coordinates
x ¼ ðx1; x2; x3Þ, it is also endowed with an induced metric tensor. Specifically, if r denotes the mapping from the domain of
parametrization, D � R3, into O (we call r the configuration of the body), then the endowed metric is gij ¼ qir � qjr. Here
and below we use roman lower-case letters, i; j; . . . for indices f1;2;3g; the operator qi denotes the partial derivative with
respect to xi. Any deformation of the body (carrying the coordinates along with every material point) will result in a
different metric tensor. A rigidity theorem states that if the induced metrics of two configurations rðxÞ 2 O and r̃ðxÞ 2 Õ
satisfy gijðxÞ ¼ g̃ijðxÞ for every x 2 D, then the two configurations can only differ by a rigid motion (a uniform translation
and a rigid rotation). Thus, the metric (provided that it is immersible in R3) uniquely defines the physical configuration of a
3D body.

Our main postulate, which may be viewed as a modification of the hyper-elasticity principle originally formulated by
Truesdell (1952), is
The elastic energy stored within a deformed elastic body can be written as a volume integral of a local elastic energy
density, which depends only on (i) the local value of the metric tensor and (ii) local metrial properties that are
independent of the configuration.
The tensors that characterize the material and the body—the elastic tensors—contain all the information about the elastic
moduli and the intrinsic geometry of the body. Truesdell’s hyper-elasticity principle is formulated in terms of the strain
tensor, which requires the existence of a stress-free reference configuration. In contrast, our postulate is formulated in
terms of the metric tensor. This obviates the need of a rest configuration, hence allows for residual stress.

Let w̃ be the energy density per unit volume. The total elastic energy is

E ¼

Z
D
w̃

ffiffiffiffiffiffi
jgj

p
dx1 dx2 dx3.

Our postulate states that the function w̃ depends on the metric g and on the coordinates x (through the elastic tensors), i.e.
w̃ ¼ w̃ðg; xÞ. We make the following additional assumptions:
(1)
 w̃ðg; xÞX0.

(2)
 For every x 2D there exists a unique metric ḡ ¼ ḡðxÞ such that w̃ðḡðxÞ; xÞ ¼ 0. We call ḡ the reference metric.
In the present work we consider the reference metric ḡ to be a known quantity, whereas the unknown is g, the ‘‘actual’’
metric of the configuration. It turns out to be more convenient to define the energy density per unit volume with respect to
the volume element induced by the reference metric. We therefore define w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgj=jḡj

p
w̃ as the new energy density. Note

that the previous assumptions on w̃ carry over to w, i.e.

wðg; xÞX0; wðg; xÞ ¼ 0 3 g ¼ ḡ.

If we additionally assume that wðg; xÞ is twice-differentiable with respect to g in the vicinity of ḡ, then for small deviations
of the metric g from the reference metric ḡ our assumptions imply that

w ¼ 1
2Aijkleijekl þ Oðe4Þ,



ARTICLE IN PRESS

E. Efrati et al. / J. Mech. Phys. Solids 57 (2009) 762–775766
where

eij ¼
1
2ðgij � ḡijÞ

is the deviation of the metric from the reference metric, and Aijkl can depend on ḡ but not on g.
Note that if there exists a rest configuration (ḡ is an immersible metric), then we may choose the coordinates x to be the

standard Cartesian coordinates on the undeformed configuration, thus setting ḡij ¼ dij. In such case we may define the
displacement vector u ¼ r � x to obtain

e ¼ 1
2ðg � IÞ ¼ 1

2ðð=rÞT=r � IÞ ¼ 1
2ð=uþ ð=uÞT þ ð=uÞT=uÞ,

where ð=rÞij ¼ qri=qxj. We therefore identify e as the Green–St. Venant strain tensor. The Frechet derivative of the energy
density w with respect to e is the contravariant second Piola–Kirchhoff stress tensor (Ciarlet, 2005)

Sij
¼

dw

deij
. (2.2)

For small strains we only need to determine the rank-four contravariant elasticity tensor Aijkl. Regardless of what ḡ is at any
given point p 2 O, we may always choose a re-parametrization x0 such that the reference metric with respect to the new
(local) system of coordinates satisfies ḡ0ij ¼ dij at p. If the medium is isotropic, then the tensor ðA0Þijkl at p is isotropic in the
Cartesian coordinates x0; hence must be of the form

ðA0Þijkl
¼ ldijdkl

þ mðdikdjl
þ dildjk

Þ (2.3)

for some constants l and m (Ciarlet, 2005). For a body with a reference rest configuration, we may identify these constants
as the Lamé coefficients.

It remains to transform the contravariant tensor A0, defined on the local Euclidean coordinates x0, back to the original
curvilinear coordinates x using the transformation rules for tensors,

Anmpq
¼ ðL�1

Þ
n
i ðL

�1
Þ
m
j ðL

�1
Þ
p
kðL

�1
Þ
q
l ðA
0
Þ
ijkl, (2.4)

where L ¼ dx0=dx is the Jacobian of the transformation (see Appendix A). As the strain tensor transforms with the Jacobian

gij � ḡij ¼ 2eij ¼ 2Lk
i L

l
je
0
kl ¼ Lk

i L
l
jðg
0
kl � dklÞ ¼ gij �Lk

i L
l
jdkl,

we obtain that Lk
i L

l
jdkl ¼ ḡij. Since all the orientation-preserving Cartesian coordinate transformations differ only by a

proper orthogonal rotation, this equation holds independently of the particular local Cartesian set x0. The only implication
of this calculation is that ḡ must be symmetric and positive-definite, i.e. it is indeed a metric. Yet, this metric is not required
to be immersible in R3, which is why we refer to our theory as ‘‘incompatible’’ elasticity.

If we now define the reciprocal reference metric by ḡjkḡki ¼ dj
i, and substitute (2.3) in (2.4), using the fact that

ðL�1
Þ
ik
ðL�1
Þ
jkdkl ¼ ḡij, we obtain expression (2.1) for the energy density. As described in Appendix A, differentiation and the

lowering and raising of indices are both defined with respect to the reference metric. It should be emphasized that Lj
i and

dij are not tensors in the sense defined in Appendix A (dij is Kronecker’s delta and not the lowered-index unit tensor).
Moreover, given a metric gij there exists a reciprocal metric tensor ðg�1Þ

ij which is a contravariant tensor of rank two and
satisfies ðg�1Þ

ijgjk ¼ di
k; however, it is not obtained by raising the indices of gij, i.e. ðg�1Þ

ijaḡikḡjlgkl ¼ gij. The reference
metric is the only tensor for which the inverse is obtained by raising both indices.

The equations of elastic equilibrium are obtained from the energy functional by a variational principle. We express the
energy as a functional of the metric tensor, g, yet variations of g must take into account that its components satisfy six
differential constraints, which are the vanishing of the Ricci curvature tensor. Alternatively, we may vary the configuration
r, in which case the induced variation in g trivially satisfies the six constraints. Thus,

dE ¼

Z
D

dw

deij
deij

ffiffiffiffiffiffi
jḡj

p
dx ¼

1

2

Z
D

Sijdgij

ffiffiffiffiffiffi
jḡj

p
dx

¼

Z
D

Sijqir � qjdr
ffiffiffiffiffiffi
jḡj

p
dx.

Integrating by parts, and using the fact that

qjqkr ¼ Gi
jkqir,

where

Gi
jk ¼

1
2ðg
�1Þ

il
ðqjgkl þ qkgjl � qlgjkÞ

are the Christoffel symbols associated with the configuration r, we obtain after straightforward algebra the following
boundary value problem:

r̄jS
ij
þ ðGi

jk � Ḡi
jkÞS

jk
¼ 0 in D,

Sijnj ¼ 0 on qD, (2.5)
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where

Ḡi
jk ¼

1
2ḡil
ðqjḡkl þ qkḡjl � qlḡjkÞ

are the Christoffel symbols associated with the reference metric, nj is the unit normal (in R3) to qD, and

r̄jS
ij
¼

1ffiffiffiffiffiffi
jḡj

p qjð
ffiffiffiffiffiffi
jḡj

p
Sij
Þ þ Ḡi

jkSjk

is the covariant derivative with respect to the reference metric (see Appendix A). As the elastic body is immersed in R3 the
six independent components of the symmetric Ricci curvature tensor of the metric g

Rli ¼
1
2ðg
�1Þ

kj qkqiglj � qkqjgli þ qjqlgki � qiqlgkj

� �
þ ðg�1Þ

kjgpq Gp
ljG

q
ki �Gp

kjG
q
li

� �
(2.6)

must all vanish. The three equations (2.5) together with the six immersibility conditions for g (2.6), form a set of nine
equations, for the six unknowns in g. There are two possible ways to resolve this seemingly over-determination. The first is
by noticing that the six independent components of the Ricci curvature tensor satisfy differential relations: their
derivatives are related through the second Bianchi identity. The second way of resolving this issue is by identifying the
immersion r as the three unknown functions, in which case the six equations in (2.6) are solvability conditions for the PDE
(2.5). However, as the equations in r are of higher order we need to supply additional conditions, namely set the position
and the orientation of the body, in order to obtain a unique solution for r.

Eq. (2.5) is our fundamental model for 3D elasticity. The only (yet fundamental) difference with standard models of
finite displacement elasticity is that the reference metric does not necessarily have an immersion in R3.
3. The elastic theory of non-Euclidean plates

We define a plate as an elastic medium for which there exists a curvilinear set of coordinates in which the reference

metric takes the form

ḡij ¼

ḡ11 ḡ12 0

ḡ21 ḡ22 0

0 0 1

0
B@

1
CA where q3ḡij ¼ 0. (3.1)

A plate is called even if the domain D � R3 of the curvilinear coordinates can be decomposed into D ¼S� ½�h=2;h=2�,
where S � R2 and h is constant. Thus an even plate is fully characterized by the metric of its mid-surface x3 ¼ 0. Let

dA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ḡ11ḡ22 � ðḡ12Þ

2
q

dx1 dx2

denote an area element on the mid-surface, and A ¼
R
S dA be the total area of the mid-surface. An even plate will be called

thin if h5
ffiffiffi
A
p

. A plate will be called non-Euclidean if the Ricci curvature tensor of its reference metric does not vanish. An
equivalent condition is that the mid-surface (considered as a 2D manifold) has a non-vanishing Gaussian curvature. A non-
Euclidean plate has no immersion with zero strain in R3, i.e. the equilibrium state of a non-Euclidean plate must be a
frustrated state exhibiting residual stress. This statement is rather intuitive: If the plate fully complies with its given 2D
metric, then it must assume a 3D form that violates the invariance along the thin direction. If, on the other hand, it remains
planar, then it cannot comply with a non-vanishing Gaussian curvature, hence it must contain in-plane deformations.
3.1. The reduced energy density

Although thin plates are 3D bodies, one would like to take advantage of their large aspect ratio and model them as 2D
surfaces, thus reducing the dimensionality of the problem. Ideally, one would hope to obtain a reduced 2D theory as an
assumption-free small-h limit of the 3D theory. Unfortunately, such an analysis is still lacking, and one must introduce
additional assumptions. We adopt the Kirchhoff–Love assumptions regarding the structure of the configuration metric g.
The standard formulation of the Kirchhoff–Love assumptions is
(1)
 The body is in a state of plane-stress (the stress is parallel to the deformed mid-surface).

(2)
 Points which are located in the undeformed configuration on the normal to the mid-surface at a point p, remain in the

deformed state on the normal to the mid-surface at p, and their distance to p remains unchanged.
The first assumption may be reformulated as

Si3
¼ 0.
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In our case, where no reference configuration exists, the second assumption may be rewritten as

gij ¼
gab 0

0 1

� �
or equivalently ei3 ¼ 0,

where following (Ciarlet, 2005; Koiter, 1966) greek indices a;b; . . . assume the values f1;2g. It is important to note that the
assumptions Si3

¼ 0 and ei3 ¼ 0 represent two different elastic problems—plane-stress versus plane-strain problems,
respectively. The two stand in contradiction for all la0. As a result, the two assumptions do not ‘‘commute’’, i.e. the order
in which the two assumptions are applied is crucial. The key assumption is the first one, Si3

¼ 0. It states that most of the
elastic energy is stored in lateral (in-plane) deformations of the various constant-x3 planes. Estimates of deviations from
this assumption may be found in John (1965). Let k1 and k2 be the principal curvatures of the mid-surface,
kmax ¼ maxðk1; k2Þ, and let L be the smallest lateral length scale appearing in the elastic equilibrium. It may be shown
that the plane-stress approximation holds for

kmaxh51 and h5L.

The second assumption, ei3 ¼ 0, is introduced only after we already have a reduced energy density, containing only plane-
stress contributions. It determines the actual 3D configuration the body assumes and the variation of the plane-stress along
the thin dimension. It enables us to relate the elastic energy density to geometric properties of the midplane which is
considered as a 2D surface. Following Koiter (1966) we denote by g the maximal plane-stress of the midplane and note that
adding terms of orders g2, hkmaxg and h2k2

max to the energy density would not modify the order of the approximation. Thus
the second assumption may be considered as a subsidiary assumption, used to bring the elastic energy density to the
simplest consistent form. Although the assumptions are physically plausible, reducing the 3D energy functional into a 2D
functional by means of G-convergence would set the current theory of firmer grounds.

We now exploit the modified Kirchhoff–Love assumptions to derive a reduced 2D model. Combining (2.2) and (2.1) and
using the tensorial rules for raising indices we get

Sij
¼ lḡijḡklekl þ 2mḡikḡjlekl ¼ lḡijek

k þ 2meij.

From the first assumption, S33
¼ 0, and the fact that ek

k ¼ eaa þ e3
3 and e33 ¼ e3

3 ¼ e33, follows that

e33 ¼ �
l

lþ 2me
a
a. (3.2)

We use (3.2) to rewrite the energy density (2.1) only in terms of the 2D strain,

w ¼
1

2
Aijkleijekl ¼

1

2
ðlei

ie
k
k þ 2mek

j e
j
kÞ ¼ m l

lþ 2me
a
ae

b
b þ e

a
be

b
a

� �
,

or equivalently

w ¼
1

2
Aabgdeabegd; Aabgd

¼ 2m l
lþ 2m

ḡabḡgd þ ḡagḡbd
� �

.

Note that as we contract the tensors A and A with symmetric tensors we only retain their symmetric part. So far we have
only used the first of the Kirchhoff–Love assumptions.

We now use the second assumption to express the energy functional as a 2D integral over the mid-surface, by
integrating w over the thin coordinate x3. As g33 ¼ q3r � q3r ¼ 1 and ga3 ¼ qar � q3r ¼ 0, we identify q3r ¼ N̂ as the unit
vector normal to the constant-x3 surfaces. Moreover, it can be shown that q3q3r ¼ 0, implying that N̂ ¼ N̂ðx1; x2Þ is the unit
normal to the mid-surface, and q3q3q3gab ¼ 0.

The most general form of the metric is therefore given by

gab ¼ aabðx
1; x2Þ � 2x3 babðx

1; x2Þ þ ðx3Þ
2cabðx

1; x2Þ. (3.3)

The tensors a; b; c can be identified as follows: we define the mid-surface

Rðx1; x2Þ ¼ rðx1; x2;0Þ,

and note that

q3gabjx3¼0 ¼ ½q3qar � qbr þ qar � q3qbr�x3¼0 ¼ �2qaqbR � N̂

and

q3q3gab

���
x3¼0
¼ 2qaN̂ � qbN̂,

which shows that a; b; c are the first, second and third fundamental forms of the mid-surface. I.e.

aab ¼ qaR � qbR; bab ¼ qaqbR � N̂; cab ¼ qaN̂ � qbN̂ ¼ ða�1Þ
gdbagbbd. (3.4)
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A metric of form (3.3) with a;b; c given by (3.4) corresponds to a 3D configuration of the form

rðx1; x2; x3Þ ¼ Rðx1; x2Þ þ x3N̂ðx1; x2Þ. (3.5)

Having deduced the x3 dependence of the metric in (3.3), we may integrate the energy density over the thin dimension,

w2D ¼
1

2

Z h=2

�h=2
Aabgdeabegd dx3

which reduces to

w2D ¼
h

2
Aabgde2D

abe
2D
gd þ

h3

24
Aabgd

ðbabbgd þ e2D
ab ða

�1Þ
mnbgmbdnÞ þ Oðh5

Þ,

where e2D
ab ¼

1
2ðaab � ḡabÞ is the strain evaluated at the mid-surface. Omitting terms of order five and higher in the thickness

h, and neglecting e with respect to the unit tensor yields the final form of the reduced 2D energy density,

w2D ¼
h

2
Aabgde2D

abe
2D
gd þ

h3

24
Aabgdbabbgd, (3.6)

where

Aabgd
¼

Y

1þ n
n

1� n ḡabḡgd þ ḡagḡbd
� �

.

We have introduced here the physical constants Y (Young’s modulus) and n (the Poisson ratio), defined by

2m ¼ Y

1þ n
and

l
2mþ l

¼
n

1� n
.

The total elastic energy is obtained by integration over the mid-surface

E ¼

Z
S

w2D

ffiffiffiffiffiffi
jḡj

p
dx1 dx2. (3.7)

We identify the two terms in (3.6) as stretching and bending terms, respectively, and write the total energy as

E ¼ hES þ h3EB,

where

ES ¼

Z
S

wS

ffiffiffiffiffiffi
jḡj

p
dx1 dx2 EB ¼

Z
S

wB

ffiffiffiffiffiffi
jḡj

p
dx1 dx2,

and

wS ¼
Y

8ð1þ nÞ
n

1� n
ḡabḡgd þ ḡagḡbd

� �
ðaab � ḡabÞðagd � ḡgdÞ,

wB ¼
Y

24ð1þ nÞ
n

1� n ḡabḡgd þ ḡagḡbd
� �

babbgd.

Comments:
1.
 The quantities ES and EB are called the stretching and bending contents (measures for the amount of stretching and
bending that do not vanish in the limit h! 0), and wS and wB are their respective densities. By application of the
Cayley–Hamilton theorem, the density of the bending content can be rewritten in the form

wB ¼
Y

24ð1þ nÞ
1

1� n
ðḡabbabÞ

2
� 2
jbj

jḡj

� �
.

2.
 A 2D configuration has zero stretching energy if and only if aab ¼ ḡab, i.e. if the 2D metric coincides with the reference
metric (such a configuration is an isometric immersion of ḡ). In this case ða�1Þ

ab
¼ ḡab and we identify the density of the

bending content as the density of the Willmore (1993) functional

wW ¼
Y

24ð1þ nÞ
4H2

1� n
� 2K

 !
, (3.8)

where K and H are the Gaussian and mean curvatures of the mid-surface.

3.
 The total energy (3.7) is a functional of the mid-surface immersion R, i.e. E ¼ EðRÞ. It has two terms: the stretching energy,

which scale linearly with h, and the bending energy, which scales like the third power of h. The equilibrium configuration
R� is the one that minimizes the energy functional. For thin plates, the total energy is dominated by the stretching term,
and we expect the equilibrium configuration to have a 2D metric very close to the reference metric ḡ. For thick plates, it is
the bending energy which is dominant, and equilibrium is expected to have a minimal amount of bending.
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3.2. The reduced equilibrium equations
As in the 3D case, we can derive the Euler–Lagrange equilibrium equations that correspond to the reduced energy
functional (3.7) in two alternative ways. The first uses independent variations of the six components of the symmetric
tensors aab and bab, adding three Lagrange multipliers to impose the three Gauss–Mainardi–Peterson–Codazzi (GMPC)
equations:

K ¼
jbj

jaj
¼

1

2
ða�1Þ

ab
ðqgG

g
ab � qbG

g
ag þ Gg

gdG
d
ab � Gg

bdG
d
agÞ,

q2ba1 þ Gb
a1bb2 ¼ q1ba2 þ Gb

a2bb1. (3.9)

The GMPC equations are the necessary and sufficient condition for aab and bab to be the first and second fundamental forms
of a surface in R3. It is noteworthy that the satisfaction of the GMPC equations is a sufficient condition for the immersibility
of a metric of the form (3.3) (Ciarlet, 2005). Again this mathematical result is rather intuitive: if the tensors aab and bab
satisfy the GMPC equations, then there exists a mid-surface Rðx1; x2Þ, for which they constitute the first two fundamental
forms. If such a surface exists then the explicit construction (3.5) ensures the existence of an immersion in R3 of the 3D
body.

The second and more natural path is to preform variations in the mid-surface R (Ciarlet, 2005; Koiter, 1966). Let us
define the reduced 2D stress and moment tensors by

sab ¼
qw2D

qe2D
ab
¼ hAabgde2D

ab ; mgd ¼
qw2D

qbgd
¼

h3

12
Aabgdbab.

Consider then a variation R! Rþ dR. To first order in dR we have

de2D
ab ¼

1
2ðqaR � qbdRþ qbR � qadRÞ,

dbab ¼ qaqbdR � N̂ þ qaqbR � dN̂ ¼ qaqbdR � N̂ � Gg
abN̂ � qgdR,

where from now on the Christoffel symbols Gg
ab are defined with respect to the 2D surface R (they are the restriction of Gi

jk

to the indices f1;2g). The resulting variation in the energy is

dE ¼

Z
S
ðsabde2D

ab þmabdbabÞ
ffiffiffī
g

p
dx1 dx2.

Integrating by parts gives the following equation:

0 ¼ r̄aðr̄bmab þ ðGa
db � Ḡa

dbÞm
dbÞ � sabbab �mabcab,

0 ¼ r̄bðs
ab þmmbða�1Þ

gabmgÞ þ ðGa
db � Ḡa

dbÞðs
db þmmbða�1Þ

gdbmgÞ þ ðr̄bmmb þ ðGm
db � Ḡm

dbÞm
dbÞða�1Þ

gabgm, (3.10)

and boundary conditions:

0 ¼ nanbmab,

0 ¼ nbðs
db þ ða�1Þ

mdbmamabÞ,

0 ¼ nbðr̄amab þ ðGb
ad � Ḡb

adÞm
adÞ,

where

r̄bVb
¼

1ffiffiffiffiffiffi
jḡj

p qbð
ffiffiffiffiffiffi
jḡj

p
Vb
Þ,

r̄bMab
¼

1ffiffiffiffiffiffi
jḡj

p qbð
ffiffiffiffiffiffi
jḡj

p
Mab
Þ þ Ḡa

bdMbd.

The three equations (3.10) (in the second equation a ¼ 1;2 is a free index), supplemented by the three GMPC equation (3.9),
form a boundary value problem for aab and bab as well as an integrability condition for R.

4. Example: a spherical plate annulus

4.1. Axially symmetric case

The reduced 2D equilibrium equations (3.10) are highly nonlinear equations in the six variables sab, mab. A tractable set
of equations may be obtained if, for example, symmetries are imposed. Let us set x1 ¼ r; x2 ¼ y (polar coordinates) and
consider a reference metric of the following form:

ḡabðr; yÞ ¼
1 0

0 F2
ðrÞ

 !
. (4.1)
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In this case, the Gaussian curvature of the mid-surface is K ¼ �Frr=F, where we now use subscripts to denote
differentiation. Recall that the corresponding 3D reference metric ḡij given by (3.1) can be immersed in R3 only if K ¼ 0.

We seek solutions in the form of a body of revolution

Rðr;yÞ ¼ ðfðrÞ cos y;fðrÞ sin y;cðrÞÞ.

For such configurations the GMPC equations are satisfied trivially. The first and second fundamental forms are given by

aab ¼
f2

r þ c2
r 0

0 f2

 !
and bab ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2

r þ c2
r

q crrfr �frrcr 0

0 fcr

 !
.

If we define cr ¼ frz (which implies that crrfr � crfrr ¼ f2
r zr), then, substituting the fundamental forms into the 2D

energy density (3.6), we obtain the following expression for the energy:

E ¼
pY

4ð1� n2Þ

Z
S

w2DFdr, (4.2)

where

w2D ¼ hwS þ h3wB

and

wS ¼ 2nðf2
r ð1þ z2

Þ � 1Þðf2=F2
� 1Þ þ ððf2

r ð1þ z2
Þ � 1Þ2 þ ðf2=F2

� 1Þ2Þ,

wB ¼
2n
3

1

ð1þ z2
Þ
ðffrzzr=F

2
Þ þ

1

3

1

ð1þ z2
Þ
ððfrzrÞ

2
þ ðfz=F2

Þ
2
Þ

are the densities of the stretching and bending contents. Note that the introduction of z yields an energy density that only
includes first-derivatives of f and z.

The minimum energy configuration balances the contributions from both stretching and bending terms. Upper bounds
on the minimum energy can be derived by considering the two extreme cases, which contain no stretching and no bending,
respectively. Consider first stretch-free configurations, wS ¼ 0, which occur when the 2D metric aab coincides with the 2D
reference metric, ḡab, i.e. when

f ¼ F and f2
r þc2

r ¼ f2
r ð1þ z2

Þ ¼ 1.

Thus, there exists a unique axially symmetric isometric immersion (however, infinitely many non-axisymmetric isometric
immersions may exist). The density of the bending content of this isometry reduces to

wB ¼ �
2n
3

Frr

F
þ

1

3

F2
rr

1�F2
r

þ
1�F2

r

F2

 !
,

which is the density wW of the Willmore functional. Integration of this density provides a first upper bound on the
equilibrium energy.

Consider next bending-free configurations, wB ¼ 0, obtained if and only if z ¼ 0. This implies that cr ¼ 0, i.e. a flat
radially symmetric surface. The density of the stretching content reduces to

wS ¼ 2nðf2
r � 1Þðf2=F2

� 1Þ þ ðf2
r � 1Þ2 þ ðf2=F2

� 1Þ2.

Note that there are infinitely many axially symmetric configurations for which the bending content vanishes. Finding the
configurations that minimizes the stretching energy is equivalent to solving the axially symmetric plane-stress problem,
which can be achieved numerically.

4.2. Numerical results

As an example, we consider the case where the 2D reference metric ḡab is that of a sphere, FðrÞ ¼ sin r, and the domain
is an annulus,

r 2 ½rmin; rmax� � ð0;p=2Þ.

The stretch-free configuration is a punctured spherical cap and its experimental realizations are shown in Fig. 2.
The minimizer of the energy functional (4.2) was computed numerically for the parameters n ¼ 0:5, rmin ¼ 0:1 and

rmax ¼ 1:1. The elastic modulus Y, which is immaterial to the equilibrium shape, was set such that the pre-factor pY=4ð1�
n2Þ equals one. As expected, for values of h above the buckling transition (hB � 0:3) the solution is that of a flat plate,
whereas for values of h under the buckling transition, the plate is close to spherical.

In Fig. 3 we plot the stretching energy (red circles), the bending energy (blue crosses) and the total energy (black
diamonds) versus the plate thickness h; all three energies were scaled by 1=h. Except for a narrow transition region near the
buckling threshold, the total energy is dominated by either the stretching energy or the bending energy. As one would
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Fig. 3. Energy scaling in positively curved discs. Total elastic energy, stretching energy and bending energy versus the thickness h, for non-Euclidean discs

with the reference metric and lateral dimensions that are described in the text. All three energies are divided by h. The three rendered configurations

correspond to (from right to left): a flat configuration, a weakly buckled configuration, just below the buckling threshold, and a fully buckled, almost

isometric configuration (color online).

Fig. 4. The buckling transition. The energy variation divided by the thickness, ðE� EflatÞ
s Þ=h (left), and spatial profile (right) near the buckling threshold as a

function of the thickness. Every profile in the right figure corresponds to an energy variation bearing the same color in the left figure. All configurations

are flatter than the center disc in Fig. 3 (note the difference in scales of the axis on the right).

E. Efrati et al. / J. Mech. Phys. Solids 57 (2009) 762–775772
expect, the bending energy drops to zero above the buckling threshold (large thickness). However, below the buckling
threshold, as h! 0, the stretching energy drops to zero much more rapidly than the bending energy. This last observation
is in fact surprising, as naively, one would expect equilibrium to be attained when both stretching and bending energy are
‘‘equally partitioned’’ (Venkataramani, 2004).

In Fig. 4 the spatial profile (a cross-section) of the elastic equilibrium configuration is shown. The transition from flat to
buckled configurations occurs continuously, hence the buckled states, close to the buckling threshold, are nearly planar.
This supports the validity of theories that assume small deflections from a plane (such as the FVK model) for predicting the
buckling threshold. As the thickness is further reduced, the plate approaches the stress-free (isometric) configuration very
fast. The assumption of small deflections from a plane fails for such configurations.

The minimal bending content, E0
B, of the stretch-free configuration, and the minimal stretching content, E1S , of the zero

bending configuration yield a crossover length scale: hC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1S =E0

B

q
. Linear analysis about a flat surface gives another length

scale, the buckling threshold thickness hB. We expect the scenario depicted in Fig. 3 to be valid for bodies in which these
two length scales are relatively close. However, there are reference metrics (specifically, hyperbolic), for which all isometric
immersions are convoluted, i.e. E0

B is very large. For such bodies one may obtain hC5hB. When this occurs, the transition
region may expand. For such bodies the scaling of the elastic equilibrium energy with the thickness will be very different
from the one appearing in Fig. 3.



ARTICLE IN PRESS

E. Efrati et al. / J. Mech. Phys. Solids 57 (2009) 762–775 773
5. Conclusion

Natural growth of tissue as well as the plastic deformation of solids are examples of local shaping mechanisms of elastic
bodies. In general, the local nature of such growth processes excludes the existence of stress-free configurations. This is the
main reason why current elastic theories cannot handle properly such shaping mechanisms. In this work we derived a
reduced 2D model for a class of thin plates with residual stresses, which we named ‘‘non-Euclidean plates’’. Such plates are
uniform across their thin dimension, but their 2D geometry is non-Euclidean. Their complicated 3D configurations cannot
be obtained from existing 2D models of elasticity. Our derivation is based on a covariant formulation of 3D linear elasticity.
It does not require the existence of a reference stress-free configuration, but only a 3D ‘‘reference metric’’ tensor, which is
determined by the growth. We use this formalism together with the Kirchhoff–Love assumptions to derive a 2D energy
functional. Like preceding theories, this functional decouples into bending and stretching terms. The bending term scales
like the third power of the thickness and depends on surface curvature. The stretching term scales linearly with the
thickness and increases with in-plane strain, which is nothing but the difference between the 2D metric tensor
of a configuration and the 2D reference metric. Our theory is valid for large rotations and displacements and arbitrary
intrinsic metrics.

The numerical results presented in Fig. 3 suggest that in the general case there is no equipartition between bending and
stretching energies. This in turn supports the treatment of very thin bodies as inextensible. Not only the equilibrium 3D
configuration is dominated by the minimization of the ‘‘small’’ bending energy term, but the total elastic energy is
dominated by it too. The estimate of what thickness should be considered as thin involves the introduction of a new length
scale hC , which is smaller than the buckling threshold thickness. The square of this new length scale, h2

C , is inversely
proportional to the minimum of the Willmore functional for the prescribed 2D geometry. This length scale differentiates
between two types of surface geometries. Surfaces which may be isometrically immersed with a moderate bending
content, for which hC is close to the buckling threshold thickness, will follow the shaping scenario and energy profile
described in Figs. 3 and 4. Surfaces for which all isometric immersions have high bending contents (as is the case for some
hyperbolic surfaces) may exhibit very different shaping scenarios and energetic landscapes.

The theory can be further elaborated and generalized to describe a wider range of growing bodies. We believe, however,
that already in its current stage, it is a powerful tool for studying the growth of leaves and other natural slender bodies.
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Appendix A. Tensors, vectors, scalars and the covariant derivative

As our treatment of elastic bodies involves the simultaneous use of two different metrics, we find it important to
provide a brief summary of differential geometry in the context of the current work. In the following treatment we do not
consider the most general setting but only 3D manifolds immersed in R3.

Let the immersed manifold O � R3 be the current configuration of an elastic body. A global parametrization of O is a
one-to-one map r : D! O from a domain D � R3. Let r0 : D0 ! O be a different global parametrization of the current
configuration. The composition h ¼ r0�1

	 r : D! D0 is called a coordinate transformation. The coordinate transformation
gradient, often denoted by Lj

i ¼ qx0j=qxi, is simply the Jacobian matrix of the transformation h, i.e. L ¼ qh=qx. The inverse
transformation gradient is ðL�1

Þ
i
j ¼ qxi=qx0 j.

A scalar is a function F : O! R. Given a parametrization r : D! O, a scalar F induces a function f : D! R defined by
fðxÞ ¼ FðrðxÞÞ. Given another parametrization r0 : D0 ! O with the coordinate transformation h : D!D0, the relation
between the induced functions f and f0 is f0ðx0Þ ¼ fðh�1

ðx0ÞÞ. By a slight abuse of terminology we also call the functions f
and f0 scalars.

A vector is a function V from the manifold O to the local tangent space of the manifold which in our case is R3,
V : O! R3. Note that we cannot perform vector operations on pairs of vectors defined at two different points in O, as they
belong to different tangent spaces (or equivalently different copies of R3). Given a parametrization we may construct a
basis ei ¼ qr=qxi for each tangent space. With respect to this basis we may write any vector as V ¼ Viei. The three functions
Vi : D! R are called the contravariant components of the vector V. Again by an abuse of terminology the triplet Vi; i ¼

1;2;3 is called a contravariant vector. It is easy to prove that under a coordinate transformation, a contravariant vector
transforms with the inverse transformation gradient, Vi

¼ ðL�1
Þ
i
jV
0 j, where the left-hand side is estimated at a point x while

the right-hand side is estimated at the corresponding point x0 ¼ hðxÞ.
We next define the dual vector space, namely the space of covariant vectors. However, as there are many ways to define

an inner product on the tangent space, there are just as many ways to define the dual vector space. The most natural inner
product is the inner product induced from R3. In such a case, we define a dual base ej by the condition ej � ei ¼ dj

i , where � is
the Euclidean product in R3. Any vector in the tangent space may now be decomposed with respect to this basis, V ¼ Vie

i.
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The triplet Vi is called a covariant vector. Under a coordinate transformation covariant vectors transform with the
transformation gradient Vi ¼ Lj

iV
0
j. The inner product in the local tangent space induces an inner product on the space of

contravariant vectors and the mapping of contravariant vectors to their covariant duals by

V �U ¼ ViUjei � ej ¼ gijU
iVj
¼ ViUjei � e

j ¼ ViUjd
j
i ¼ UjV

j,

where gij ¼ ei � ej is called the Euclidean metric of O with respect to the given coordinate system. The tensor gij transforms
covariantly in both indices, i.e. gij ¼ Lk

i L
l
jg
0
kl. We have identified each contravariant vector Vi with a (covariant) vector from

the dual space Vi ¼ gijV
j, which is called a covariant vector. The contraction of a covariant and a contravariant vector ViUi

yields a scalar. We may choose other inner products on the space of contravariant vectors, leading to different definitions of
the dual space. Let ḡij be a positive definite symmetric tensor, which transforms under a coordinate transformation by
ḡij ¼ Lk

i L
l
jḡ
0
kl (i.e. covariantly in both indices). The operation h; i : R3

�R3
! R given by hU;Vi ¼ ḡijU

iVj defines an inner
product on the space of contravariant vectors. For every contravariant vector there corresponds a covariant dual given by
Vj ¼ ḡijV

i. The tensor ḡ is called the covariant metric on O.
Given a parameterized manifold r : D! O one may easily prove that the gradient of a scalar Vi ¼ qif ¼ qf=qxi is a

covariant vector. However, in order to differentiate vectors we need to compare vectors that belong to different tangent
spaces. To do so we use parallel transport of one of the vectors to the point where the other vector is defined. To give only a
notion of what parallel transport is, we say that it will be transporting the vector along a ‘‘straight line’’, keeping a constant
angle between the line and the vector. Both concepts, angles between a curve and a vector, as well as ‘‘straight lines’’
(geodesics), are defined by the covariant metric tensor. Thus, while the differentiation of a scalar is independent of the
metric, the differentiation of a vector depends on the metric. It may be shown that the parallel transport procedure results
in the following definition of the covariant derivative:

r̄iV j ¼ qiV j � Ḡk
ijVk,

where

Ḡi
jk ¼

1
2ḡil
ðqjḡkl þ qkḡjl � qlḡjkÞ.

One may verify that r̄iVj transforms covariantly in both indices under a coordinate transformation. The covariant
differentiation of a contravariant vector is given by

r̄iV
j
¼ qiV

j
þ Ḡj

ikVk.

Note that Ḡi
jk is not covariant or contravariant in any of its components. Henceforth, we will use the term tensors to refer to

multi-dimensional arrays for which all indices transform covariantly or contravariantly, thus Ḡ is not a tensor. One may
easily verify that the multiplication or contraction of tensors results in a tensor. The differentiation of a tensor should be
treated as if the tensor is an external product of vectors and apply the covariant derivative through the Leibnitz product
rule. For example in the 2D case we have

r̄kMij ¼ qkMij � Ḡl
kjMil � Ḡl

kiMjl.

In general, when working with explicit parameterizations we need, in order to prove that a certain parameter is a tensor
(e.g. a scalar or a covariant vector), to prescribe it for all possible parameterizations, and show that it obeys the correct
transformation rules. This is the case for the current metric gij ¼ qir � qjr. It is defined for all possible parameterizations and
obeys the covariant transformation rules. As the reference metric coincides with the current metric (for a local stress-free
configuration), we have that ḡ is also a rank-two covariant tensor. However, some quantities are tensorial by definition, for
example Sij

¼ dw=deij, which is the derivative of a scalar with respect to a covariant tensor. For such quantities we may
determine their value for one (convenient) parametrization, and obtain their value for all other parameterizations through
the tensorial transformation rule. This is the case for the elastic tensor Aijkl, as may be observed in (2.4).
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