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Prediction from Partial Data, Renormalization,
and Averaging
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We summarize and compare our recent methods for reducing the complexity of
computational problems, in particular dimensional reduction methods based on
the Mori–Zwanzig formalism of statistical physics, block Monte-Carlo meth-
ods, and an averaging method for deriving an effective equation for a nonlinear
wave propagation problem. We show that their common thread is scale change
and renormalization.
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1. INTRODUCTION

We begin by summarizing the “optimal prediction” schemes [6–11] for the
statistical estimation of the solutions of problems with too many variables
by the solutions of problems with fewer variables, making use of prior sta-
tistical knowledge. These schemes have a natural connection with methods
of irreversible statistical mechanics, as we explain.

How to reduce the number of variables in a problem while keeping salient
statistical features unharmed is also considered in various renormalization
group methods, and we show the identity between renormalization and pre-
diction in the simple example of a thermodynamic system at equilibrium; we
use this connection to derive a block Monte–Carlo algorithm as in [6].

The renormalization analysis here brings up an important observa-
tion. It is often implicitly assumed that to simplify a complex problem in
order to make computation feasible means to reduce the number of vari-
ables. This is too narrow a view. Instead, one should look for the most
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amenable problem in a class of equivalent problems, where “equivalence”
and “amenability” must be carefully defined in each case. In Sec. 6, a
more general scheme for generating equivalent problems through averag-
ing and scaling is used to find an effective equation for local means of the
Korteveg-deVries–Burgers equation.

In the present paper the various methods are presented in a unified
way designed to bring out their common features. In addition, the
Mori–Zwangig formalism, the key to the analysis of time-dependent
reduction methods, is presented as a special case of the moment-expansion
methods common to all nonlinear statistical methods. Although the spe-
cific examples have appeared before, we hope that this presentation will
contribute to answering the question: What do complexity reduction
schemes have in common, and how does one design such a scheme for a
particular given problem?.

2. PREDICTION: PRELIMINARIES

Consider a system of (in general nonlinear) ordinary differential
equations,

d

dt
ϕ(t) = R(ϕ(t)),

ϕ(0) = x,
(1)

where ϕ and x are n-dimensional vectors with components ϕi and xi , and
R is a vector-valued function with components Ri ; t is time. To each ini-
tial value x in (1) corresponds a trajectory ϕ(t)= ϕ(x, t). Such problems
arise in particular after spectral expansion of solutions of initial value
problems for partial differential equations.

Suppose that we are working with a computer on which only m of
the n components of the solution vector ϕ(t) can be effectively computed;
the problem has to be simplified. Assume for the moment (this assump-
tion will be modified as we go along) that a reasonable way to simplify
the problem is to pick a certain number m of coordinates of ϕ(t) and try
to compute them without computing all the coordinates. The set of values
of the uncomputed variables is to be represented by a probability density.
Specifically, assume that at time t = 0 the probability density of all the
components of the data, F(x1, x2, . . . , xn), is known, from previous mea-
surements or from general considerations of statistical mechanics:

F(y1, . . . , yn)dy=Prob(y1<x1 �y1 +dy1, . . . ), (2)

where dy=dy1 · · ·dyn and Prob denotes “probability”; the question is how
to use this prior knowledge in the evaluation of ϕ(t).
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Consider first the special case of a Hamiltonian system as in [10,
11]. There exists then a Hamiltonian function H =H(ϕ) such that for i
odd Ri , the ith component of the vector R in (1) satisfies Ri =∂H

/
∂ϕi+1

while for i even one has Ri =−∂H/
∂ϕi−1, with n, the size of the system,

even. Assume furthermore that F , the initial probability density, is F(ϕ)=
Z−1 exp(−H) (in physics this density appears naturally and is known as
the canonical density; the normalizing constant Z is the “partition func-
tion”). The measure defined by F is invariant, i.e. sampling the measure
and evolving the system in time commute.

Partition the vector x so that x̂ = (x1, x2, . . . , xm) (m must be even),
x̃ = (xm+1, . . . , xn) and x = (x̂, x̃), and similarly ϕ = (ϕ̂, ϕ̃),R = (R̂, R̃). In
general the first m components of R depend on all the components of ϕ,
R̂= R̂(ϕ)= R̂(ϕ̂, ϕ̃), or else the first m equations of (1) are independent of
the rest and the system is already reduced. Suppose we want to calculate
only the variables ϕ̂; we find that (d/dt)ϕ̂(t)= R̂(ϕ(t)) where the right-
hand side depends on the variables ϕ̃ which are unknown. A numerical
analyst who wants to approximate a solution usually starts by approximat-
ing the equation; a first way to do this is to replace the system (1) by:

d

dt
ϕ̂(t)=E[R(ϕ(t))|ϕ̂(t)],

ϕ̂(0)= x̂,
(3)

where E[R(ϕ)|ϕ̂] = ∫
Re−Hdϕ̃

/∫
e−Hdϕ̃ is the conditional expectation of

R given ϕ̂(t). We remind the reader that the conditional expectation of
R given ϕ̂ , the average of R over all values of ϕ̃, is the orthogonal
projection of R onto the subspace Γ̂ of functions of only ϕ̂ in the Hil-
bert space Γ defined by the inner produce (u, v)=expected value of uv=∫
u(x)v(x)F (x)dx. It is also the best approximation of R in Γ by a func-

tion of only ϕ̂. The conditional expectation is well defined because the
joint probability density of all the components of ϕ is known at each t

(being the invariant density F ).
We have shown in [9] that:

(i) The new system (3) is also Hamiltonian:

E

[
∂H

∂ϕi
|ϕ̂(t)

]
=

∫
∂H

∂ϕi
exp(−H)dϕ̃/∫

exp(−H)dϕ̃= ∂Ĥ

∂ϕi
, (4)

where i�m= the dimension of ϕ̂, and Ĥ =− log
∫

exp(−H)dϕ̃ is
the new Hamiltonian.

(ii) The new canonical density Z−1 exp(−Ĥ ) is invariant in the evo-
lution of the new, reduced, system.
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(iii) When the data are sampled from the canonical distribution, the
distribution of ϕ̂ in the new system is its marginal distribution in
the old system; equivalently, the partition function Z is the same
for the old system and for the new system.

The approximation (3) is already useful (see, e.g., [11, 18, 24]). In
physics a system in which the values of all the variables are drawn from
a canonical distribution is a system in thermal equilibrium; then in Eq.
(3) one has assumed that all the variables ϕ̂ one is not resolving are in
thermal equilibrium (which may be an acceptable assumption if the vari-
ables in ϕ̃ are, for example, varying very rapidly so that they approach
equilibrium quickly). The assignment of definite values x̂ to the variables
ϕ̂ at time t = 0 is tantamount to taking the system out of equilibrium at
t=0; if the system is ergodic it will then decay to equilibrium in time, so
that all the variables become randomized and acquire the joint density F .
This interpretation shows why the approximation cannot be accurate for
long times: Suppose we are given partial data at t=0; the predictive value
of these data will decrease in time; all averages of the ϕ̂ will approach
equilibrium averages. However, the reduced system (3) being Hamiltonian,
the averaged solutions it produces will oscillate forever.

We now turn to the derivation of more accurate prediction formulas,
following [9].

3. THE MORI–ZWANZIG FORMALISM

Consider again the system (1). Let L = ∑n
i=1Ri(x)∂i , (∂i = ∂/∂xi),

and consider the initial value problem for the linear partial differential
equation

∂

∂t
u(x, t) = Lu(x, t),

u(x,0) = g(x)
(5)

for the initial function g(x). This is the Liouville equation. One can ver-
ify that the solution of this equation is u(x, t)= g(ϕ(x, t)). In particular,
if g(x)= xi , the solution is u(x, t)= ϕi(x, t), the ith component of the
solution of (1). This linear partial differential equation is thus equivalent
to the nonlinear system (1) (and similarly, one can derive a linear func-
tional differential equivalent to a nonlinear partial differential equation,
see [20]).

We use the semigroup notation u(x, t)= (etLg)(x)= g(ϕ(x, t)), where
etL is the evolution operator associated with the operator L; One can
verify that etLL=LetL. Equation (5) becomes
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∂

∂t
etLg=LetLg= etLLg.

Suppose that the initial conditions x are sampled from a probability den-
sity F (note the we are no longer assuming that F is invariant nor that
the system is Hamiltonian). Given the initial values of the m coordinates
x̂, the distribution of the remaining n−m coordinates x̃ is the conditional
density, F conditioned by x̂. Given F , the functions ϕ(t) can be viewed as
stochastic processes on the space Γ with inner product given by the expec-
tation of the product (f, g)=E[fg].

We now transform the equations of motion into a form useful for the
prediction problem. This transformation uses the linearity of the Liouville
equation (5); this is why we introduced this equation. We define the pro-
jection operator P by Pg=E[g|x̂] (see above; note that the conditioning
variables are now the initial values of ϕ̂; we cannot find E[g|ϕ̂] without
knowing the probability density of the ϕ). The construction is essentially
the Mori–Zwanzig formalism of statistical physics [12, 17, 28, 32].

Consider a “resolved” coordinate ϕj (x, t)= etLxj (j �m) , and split
its time derivative, Rj (ϕ(x, t))= etLLxj , into a term that depends only on
ϕ̂(x, t) plus a remainder:

∂

∂t
etLxj = etLLxj = etLPLxj + etLQLxj , (6)

where Q= I − P . Define Rj (x̂)= (PRj )(x̂); the first term is etLPLxj =
R(ϕ̂(x, t)) and is a function of the resolved components only. Note that if
Q were zero we would recover something that looks like the crude approx-
imation of the previous section; however the conditioning variables are
now the initial values and not the instantaneous values of the ϕ̂(t); in gen-
eral we do not know without further work what the probability density of
the ϕ̂(t) may be. Another key difference between the system (3) and the
system obtained by setting Q= 0 in Eq. (6) is that the former is closed-
its solutions are well-defined functions ϕ̂= ϕ̂(x̂, t) and live in the range of
the operator P defined in the previous section, while here the situation is
more complex.

We further split the remaining term etLQLxj . This splitting will bring
it into a very useful form: a noise term, and a memory term whose kernel
depends on the correlations of the noise term. The fact that such a split-
ting is possible is the essence of “fluctuation-dissipation” theorems (see,
e.g., [23]). Let w(x, t)= etQLQLxj , i.e., w(x, t) be a solution of the initial
value problem:

∂
∂t
w(x, t)=QLw(x, t)=Lw(x, t)−PLw(x, t),

w(x,0)=QLxj . (7)
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An existence proof for Eq. (7) may be found in [13]. If Pf = 0, then
PetQLf =0 for all time t , i.e., etQL maps the null space of P into itself.

The evolution operators etL and etQL satisfy the Duhamel (also some-
times known as Dyson) formula [12]:

etL= etQL+
∫ t

0
e(t−s)LPLesQL ds.

Hence,

etLQLxj = etQLQLxj +
∫ t

0
e(t−s)LPLesQLQLxj ds. (8)

Let:

Jj (x, t)= etQLQLxj ,
Kj (x̂, t)=PLJj (x, t).

Collecting terms, we obtain the generalized Langevin equation:

∂

∂t
etLxj = etLRj (x̂, t)+

∫ t

0
e(t−s)LKj (x̂, s) ds+Jj (x, t)

or equivalently,

∂

∂t
ϕj (x, t)=Rj (ϕ̂(x, t))+

∫ t

0
Kj(ϕ̂(x, t− s), s) ds+Jj (x, t). (9)

The various terms in Eq. (9) have physical interpretations. The first
term on the right-hand side is the Markovian contribution to ∂tϕj (x, t)—it
depends only on the instantaneous value of the resolved ϕ̂(x, t). The sec-
ond term depends on x through the values of ϕ̂(x, s) at times s between 0
and t , and embodies a memory—a dependence on the past values of the
resolved variables. Finally, the third term, which depends on full knowl-
edge of the initial conditions x, lies in the null space of P and can be
viewed as noise with statistics determined by the initial conditions.

If what is desired is P ϕ̂(t), the conditional expectation of ϕ̂(t) given
x̂ (the best approximation in the sense of Γ to ϕ̂ given the partial data x̂),
then one can multiply Eq. (9) by P to obtain:

∂

∂t
Pϕj (x, t)=PRj (ϕ̂(x, t))+

∫ t

0
PKj (ϕ̂(x, t− s), s) ds. (10)

On the left-hand side of Eq. (10) is exactly what we want. How to evalu-
ate the first term on the right-hand-side requires further thought in each
particular problem.
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Equations (9) and (10) are identities; their solution is exactly equiva-
lent to the solution of the full problem (1) followed by averaging. In practice
these equations have to be solved approximately; the only advantage of these
equations is that they are a good starting point for approximations.

Note that even if the system we start with is Hamiltonian, the Lange-
vin Eq. (9) is not; the memory and the “noise” allow the system to forget
its initial values and decay to “thermal equilibrium”.

4. CORRELATIONS AND CLOSURES, APPROXIMATIONS

We now show that what the memory term hides is higher order corre-
lations of the stochastic processes ϕ(t), specifically, that the memory term
is a sum of convolutions of of the form C ∗ S, where C is a correlation
function of a “noise” (a stochastic process taking values in the null space
of P ) and S is a variable that describes the state of the system. We shall
use this remark to imbed the Mori–Zwanzig formalism in the usual frame-
work of nonlinear physics.

For simplicity, we restrict ourselves to cases where the operator L
is skew-symmetric, i.e, (Lu, v)= −(u,Lv), (remember (u, v)=E[uv]). The
skew-symmetry holds in particular for Hamiltonian systems with F the
canonical distribution, see [9, 12]). Pick an orthonormal basis {hk =
hk(x̂), k= 1, . . . } in the subspace of functions of only x̂ (for example, the
hk could be Hermite polynomials). Then, for any function ψ(x, t), one has
ψ=∑

k(ψ(x, t), hk)hk, and in particular,

P(LQesQLQLxj )=
∑

k

(LQesQLQLxj , hk)hk(x̂), (11)

where a factor Q has been inserted before the exponentials, harmlessly
because the operators that follow all live in the null space of P . The mem-
ory term now becomes

∫ t

0
e(t−s)LPLesQLQLxjds =

∫ t

0

∑

k

e(t−s)L(LQesQLQLxj , hk)hk(x̂)ds

=
∑

k

∫ t

0
(LQesQLQLxj , hk)hk(ϕ̂(t− s))ds. (12)

Now (LQesQLQLxj , hk) = −(esQLQLxj ,QLhk) by the symmetry of Q
and the assumed skew-symmetry of L; the right-hand side of Eq. (12)
is the sum of correlations of stochastic processes with values in the null
space of P , evaluated at time s, with functions hk of the state of the
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system at time t− s , as promised. The identity (12) reduces to more stan-
dard forms, for example to the Onsager relation between a response func-
tion and a correlation function, if one keeps only a small number of terms
in the expansion of P .

These remarks allow one to look at the Mori–Zwanzig formalism in
a broader perspective. The goal of the formalism is to calculate some vari-
ables [The variables ϕ̂(t)] without calculating all the variables, on the basis
of prior statistical information, just as in the kinetic theory of gases or
in turbulence theory one wishes to find mean properties of a flow with-
out calculating all the details of the flow. Equation (9) is thus analogous
to the Reynolds averaged equations in turbulence: it is an identity, but it
contains unknown quantities which must be found by other means. These
quantities are correlation functions for the full solution. One can find an
analogous equation for these correlation functions, but it depends then
on higher-order correlations. This sets up a hierarchy of equations, analo-
gous to the moment hierarchy in fluid mechanics or to the BBGKY hier-
archy in kinetic theory. The point of the formalism is that the particular
form of the Mori–Zwanzig equation makes it easier to guess suitable
approximations.

A number of approximation schemes have been proposed for use in
various settings (see [9, 16, 26, 27, 30]. The formalism is particularly use-
ful when one can say something in advance about the characteristic time
of the correlations in the memory term, i.e., about the length of time for
which the correlations are significant. For the sake of completeness we
summarize an example of such approximations (see [9]).

Suppose the characteristic time of the correlations is short. To ana-
lyze this situation, start from the Duhamel formula

etL= etQL+
∫ t

0
e(t−s)LPLesQL ds,

The zeroth order approximation of this relation is:

etQL∼= etL, (13)

in which one replaces the flow in the orthogonal complement of the range
of P by the real flow induced by L. Now consider the second-term in
Eq. (9):

∫ t

0
e(t−s)LPLesQLQLxj ds=

∫ t

0
e(t−s)LPLQesQLQLxj ds,
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where as above an extra Q has been inserted. Adding and subtracting
equal quantities, we find:

PLesQLQLxj =PLQesLQLxj +PLQ(esQL− esL)QLxj

a Taylor series yields:

esQL− esL= I + sQL+· · ·− I − sL−· · ·=−sPL+O(s2)

and therefore, using QP =0, we find:

∫ t

0
e(t−s)LPLesQLQLxj ds=

∫ t

0
e(t−s)LPLQesLQLxj ds+O(t3).

If P is approximated by a finite number of terms in an orthonormal
expansion, then

PLesQLQLxj =
∑

k

(LesQLQLxj , hk)hk(x̂).

If the correlations (LesQLQLxj , hk) and (LesLQLxj , hk) are significant
only over times of order t0 then one can check that the approximation
is of order t30 while it does not require the solution of the orthogonal
dynamics equation. One often makes an even more drastic approximation,
in which it is assumed that the correlations vanish for t �=0. Some applica-
tions of the particular short-memory approximation above have been pre-
sented in [30].

An interesting short-memory approximation can be derived as fol-
lows: write the memory term as:

∫ t

0
e(t−s)LPLssQLQLxjds =

∫ t

0
Le(t−s)LesQLQLxj ds

−
∫ t

0
e(t−s)LesQLQLQLxj ds, (14)

where the the commutativity of L and etL, and that of QL with etQL, have
been used. Make the approximation etQL≈etL at this point, and you find
that the memory term reduces to tPLQLxj . This result is surprising at
first glance: all that is left of the memory is the coefficient t . Partial differ-
ential equations with time-dependent coefficients appear elsewhere as well
in theories of non-Markovian processes (see [22]).
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5. CONNECTION WITH RENORMALIZATION

Consider again, as in Sec. 2, a Hamiltonian system with a canoni-
cal initial distribution. Suppose all the elements of the initial vector x are
drawn from that canonical distribution, i.e., no initial values for the vector
ϕ are known for sure even at time t = 0. By definition the system is now
in equilibrium initially, and no memory and noise are needed to bring it
to that equilibrium. The resulting problem is still interesting: if the system
is at equilibrium the dynamics will sample the equilibrium distribution,
and there are many problems in which such sampling is of interest. If we
are interested in calculating the average of a function g of only the vari-
ables ϕ̂, g=g(ϕ̂), then one can sample the reduced system d

dt
ϕ̂=E[R̂|ϕ̂] of

Sec. 3, with the reduced Hamitonian Ĥ , as we know that the probability
density of the variables ϕ̂ in the reduced system equals its marginal den-
sity in the full system.

Imagine now that the variables ϕ live on the nodes of a regular lattice.
Divide the nodes into regular subsets (i.e., they all have the same shape
and their union is the full lattice; for example, in the case of a one-dimen-
sional lattice, the subsets could be adjacent pairs of points). In each sub-
set pick one variable, in a fixed location within the shape of the subset, to
be a member of ϕ̂ and the remainder to be members of ϕ̃ (for more gen-
eral choices see [29]) . Then write H(0) =H and H(1) = Ĥ , eliminate the
members of ϕ̃ and renumber the members of ϕ̂ so that they occupy the
original lattice. We know (see Sec. 2) that the mapping from the old sys-
tem to the new system preserves probability and equivalently, the partition
function, and constitutes thus by definition a Kadanoff renormalization
group transformation [21]. This transformation can be repeated and gener-
ates a sequence of Hamiltonians H(0),H (1),H (2), . . . , and thus the condi-
tional expectations that defines the reduced Hamiltonian can be evaluated
recursively.

We know from Eq. (4) that for all i such that ϕi is in ϕ̂, we have

∂H(1)

∂ϕi
=E

[
∂H(0)

∂ϕi
|ϕ̂

]

(15)

with similar identities connecting H(n+1) and H(n) for any n�0. Consider
a translation invariant system, in which one can satisfy this identity for all
i by satisfying it for one value of i, say i = 1. Pick a basis, say {ψk, k=
1,2, . . . } in the space of functions of ϕ̂, expand H(n) in a series:

H(n)=
∑

k

a
(n)
k ψk(ϕ),
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write ψ ′
k = ∂

∂ϕ1
ψk, and differentiate the H(n) with respect to ϕ1; you find:

∂

∂ϕ1
H(n+1)=

∑

k

a
(n)
k Pψ ′

k(ϕ),

where P is as before the projection operator defined by conditional expec-
tation. A rearrangement of the terms and a trivial integration yield a
series expansion for H(n+1) in terms of the ψ ’s. Details, a generalization
to discrete variables, and examples, can be found in [6], with more coming
in [29]; a Monte–Carlo sampling of e−Ĥ is a block Monte–Carlo sampling
(see, e.g., [5, 25, 31]).

This construction was brought up to make a point. Consider a set
of variables in the plane, say they live on an n× n lattice with periodic
boundary conditions. If the system is far from a critical point sampling
with a small n will yield reasonable values for all quantities of interest.
Near a critical point a large array size n may be needed, and a dimen-
sional reduction like the one we just performed may be appropriate.

Suppose we carry out the construction just outlined and reduce n by
a factor of, say, 2. We can now get statistical information about the equi-
librium properties of the system of equations by working with n/4 vari-
ables. Note however that the amount of work per sweep of the array has
not necessarily gone down. There are fewer variables, but the Hamilto-
nian has generally become substantially more complex as it was renor-
malized and more “couplings” (terms in the series expansion for H ) have
been added. However, the overall work has decreased, because, as is well-
known, renormalization has taken us further from the critical point and
the correlation time of the sampling has decreased [21].

A moment’s reflection will show that what is important in the con-
struction is not the reduction in the number of variables but the fact that
the renormalization has picked out a more amenable problem in the class
of problems with equal averages for selected variables. This conclusion has
broad applicability. We now present an example where a generalization
of our prediction procedure leads to more amenable problems without an
explicit reduction in the number of variables.

6. SIMILARITY AND AVERAGING

We first briefly remind the reader of the fundamentals of similarity
theory [2]. Suppose a variable a is a function of variables a1, a2, . . . , am,
b1, b2, . . . , bk, where in some system of units a1, . . . , am have indepen-
dent units while the units of b1, . . . , bk, can be formed from the units
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of a1, a2, . . . , am. Then there exist dimensionless variables Π = a

a
α1
1 ···aαmm

,

Πi = bi

a
αi1
1 ···aαimm

, i = 1, . . . , k, where the αi, αik are integers, such that Π is

a function of the Πi :

Π=Φ(Π1, . . . ,Πk). (16)

This is just a consequence of the requirement that a physical relationship
be independent of the magnitude of the units of measurement. Suppose
the variables Πi are small, and suppose one assumes that the function Φ

(about which we know nothing at this stage) has a non-zero finite limit
as its arguments tend to zero; then Π∼ constant, and one finds a power
monomial relation between a and the ai . The resulting relation is invari-
ant under a group of scaling transformations generated by changes in the
units. A similar argument works if the Πi ’s are very large. If the func-
tion Φ does not have the assumed limit, it may happen that for Π1 small,
Φ(Π1)=Π

q

1Φ′(Π1)+· · · , where the dots denote lower order terms, q is a
constant, the other arguments of Φ have been omitted and Φ′ has a finite
non-zero limit. One can then obtain a power monomial expression for a in
terms of the ai and bi , with undetermined powers which must be found
by other means. The resulting power relation is an incomplete similarity
relation, and the corresponding group of transformations under which the
relationship is invariant is Barenblatt’s renormalization group. A relation
between Barenblatt’s RNG and more standard definitions of the RNG is
discussed in [14], see also the prescient paper [3].

Consider now the (non-dimensional) Korteveg-deVries–Burgers (KdVB)
equation

ut +uux = 1
R
uxx +uxxx (17)

with u(−∞)= 1, ux(−∞)= 0, u(+∞)= 0; R is the “Reynolds number”.
The problem of deriving an effective equation for the mean solution of
this equation was already considered in [1], where relations to Eddy mod-
eling in turbulence were also explored. For long times the solution of this
equation with these data becomes a traveling wave; for R�1 the traveling
wave has a monotonic profile, while for R>1 the profile is oscillatory, with
oscillations whose wave length is of order 1 [4]. At zero diffusion (R=∞)

the stationary asymptotic wave train extends to infinity on the left with a
singularity near the location where there would be a shock in the absence
of dispersion, and the left boundary conditions cannot be satisfied. For
finite R the wave train is damped as is the singularity, and the boundary
conditions can be satisfied. The solution of Eq. (3), shifted by −t/2, tends
to a steady state.
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Suppose we are interested only in local averages of u, e.g., in

ū(x)= 1
�

∫ x+�/2

x−�/2
u(s)ds,

where � is some predetermined length. Can we find an effective equation,
easier to solve than Eq. (17), whose solution is ū?

We draw now an analogy between the conditional expectations which
define the renormalized variables in the equilibrium Hamiltonian case and
averaging in space. Averaging over an increasing length scale corresponds
either to more renormalization steps or, equivalently, to renormalization
with a greater number of variables grouped together. We pick a class
of equations in which to seek the “effective” equation, the one whose
solutions best approximate the averages of the true solution in the mean
square sense; the choice of mean-square approximation in the KdVB case
corresponds to the use of L2 norms implied by the use of conditional
expectations in the Hamiltonian case, and the choice of a class of equa-
tions in which to look for the effective equation is analogous to the choice
of a basis for the representation of the Hamiltonian; the calculation of the
best coefficients in the chosen class of “effective” equations corresponds to
the evaluation of the coefficients in the series for the renormalized Hamil-
tonians. Note that in the Hamiltonian case we average the right-hand sides
of the equations and in the analogous KdVB case we attempt to average the
solutions; this must be so because in the KdVB case we do not have the
theorems which guarantee that averaging the right-hand sides produces
the correct statistics for the solutions. One expects that the effective equa-
tion would have smoother solutions than the original equation and would
require fewer mesh points to be properly approximated; in this sense the
number of variables is decreased, though we choose not to change the
scale of the averaged solution and thus have no analogue of the relabel-
ing of the variables in the Hamiltonian case.

We are looking here for an effective equation in the class of equations
of the same form as the original KdVB equation but with a new, unknown
coefficient ν replacing the coefficient 1/R. This coefficient is the effective
viscosity at scale �. The equation we will be solving is thus

vt +vvx =νvxx +vxxx,
where v obeys the same boundary conditions as u, and the problem is to
find the coefficient ν which minimizes the integral

I =
∫ +∞

−∞
|ū(x)−v(x)|2dx.
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The minimizing coefficient ν was determined numerically; the detailed pro-
cedure was presented in [7].

From scaling theory we know that

ν=Φ(R, �),

where Φ is an unknown dimensionless function, and we are interested in
the case where both R and � are large, We know a priori that we cannot
have complete similarity, because if we did, ν would be independent of R
for large R, an unlikely outcome. The numerical runs in [7] suggest

Φ(R, �)=R3/4Φ(�)

an incomplete similarity relation where Φ(�) tends to a constant non-
zero limit as �→ ∞. If this relation can be established with confidence,
it could be used to calculate averaged solutions when R is so large that
the full, unaveraged solution is out of numerical reach because the num-
ber of peaks in the full solution is too large. In Fig. 1 we display a full
solution, an averaged solution and the solution of of the effective equation
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Fig. 1. Full solution, averaged solution and renormalized solution of the KdVB equation.
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for a particular set of parameters. Note that the solutions of the effective
equation are very smooth and thus easy to compute.

7. CONCLUSIONS

We have demonstrated the specific relationship between prediction
methods and renormalization in a statistically stationary case and in a
problem whose solution was stationary in a moving frame. When the
time dependence is more complex one would want to compare the algo-
rithms generated by the Mori–Zwanzig formalism to dynamic renormaliza-
tion [15, 19]. However, dynamic renormalization has been derived only for
problems where one can assume that the noise that represents the effect of
one scale on another can be approximated by white noise- a special and
generally unrealistic assumption. A proper dynamic renormalization would
amount to a recursive implementation of the Mori–Zwanzig formalism,
and it is not known at present how to do this and indeed whether it can
be done. In this situation, the Mori–Zwanzig formalism is a good starting
point for finding useful amenable problems in time-dependent cases, and
current theories of dynamic renormalization must be viewed as mere heu-
ristic approximation of that formalism.

The most interesting aspect of the methods just described is their use-
fulness in various concrete problems, as will be described in particular in
our forthcoming publications.
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