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Optimal prediction methods compensate for a lack of resolution
in the numerical solution of complex problems through the use of
prior statistical information. We point out a relation between op-
timal prediction and the statistical mechanics of irreversible pro-
cesses, and use a version of the Mori–Zwanzig formalism to pro-
duce a higher-order optimal prediction method.

1. Introduction

M any problems in science and engineering are described by
nonlinear equations whose solutions are too complicated

to be properly resolved. The problem of predicting the evolution
of systems that are not well resolved has been addressed by the
present authors and others in (1–4). Nothing can be predicted
without some knowledge about the unresolved (“subgrid”) de-
grees of freedom. In the optimal prediction methods of refs.
1–4, it is assumed that one possesses, as one often does, prior
statistical information about the system in the form of an in-
variant measure; what is sought is a mean solution with respect
to this prior measure, compatible with the information initially
at hand as well as with the limitations on the computing power
one can bring to bear.

In principle, finding the mean solution requires the solution
of a Liouville equation: an equation for a probability measure
on the space of solutions. To solve the Liouville equation is
in general even harder than to solve the original problem. In
optimal prediction methods, one calculates means with respect
to the invariant measure conditioned by the available data. This
approximation yields a reduced set of equations for a system of
“collective variables.” A rigorous analysis can be found in ref. 5.

The simplest version of this idea, first-order optimal predic-
tion, generates an approximating system of ordinary differential
equations and works well for a time that depends on the number
of collective variables and on the temperature, i.e., the variance
of the initial data. Even though this approximation is optimal,
in a sense explained below, it eventually exhibits errors, because
the influence of partial initial data on the distribution of the so-
lutions weakens in time if the system is ergodic, and this loss of
information is not captured in full (see ref. 4).

The present paper is a step toward higher-order optimal pre-
diction methods that are accurate for longer times. We point out
a relation between underresolved computation and nonequilib-
rium statistical mechanics; this relation suggests that methods
used in the latter are applicable also to the former. Of partic-
ular interest is the work of Mori (6) and Zwanzig (7) (see also
ref. 8), which relates the evolution of macroscopic variables to
microscopic dynamics. The Mori–Zwanzig theory gives rise to a
generalized Langevin equation for a set of collective variables; if
one observes the evolution of a system through a projection on
a subset of its degrees of freedom, the evolution of the selected
variables can be viewed as the sum of a deterministic part and a
random, “noisy” part; the randomness reflects one’s ignorance
of unresolved degrees of freedom. This theory has been known
for decades in the context of transport theory, but its relevance
to underresolved differential equations is a novel idea.

The standard Mori–Zwanzig theory has been given a nonlin-
ear generalization by Zwanzig (7). First-order optimal predic-
tion coincides with Zwanzig’s generalization when random and

non-Markovian “memory” effects are small. Zwanzig’s equation
is an identity, and allows, at least in principle, a better assess-
ment of the errors in various approximations.

In Section 2, we derive the generalized Langevin equation and
compare it with first-order optimal prediction. Our derivation is
more general than Zwanzig’s and not limited to Hamiltonian
dynamics. In Section 3, we apply the theory to the nonlinear
Schrödinger equation that was studied in refs. 2 and 4, and we
derive expressions for the noise and the memory kernel by per-
turbative methods. We show that the inclusion of memory effects
predicts the loss of information in long time numerical inte-
grations. The analogy between irreversible statistical mechanics
and underresolved computation is the main contribution of the
present paper.

2. Phase Variables and the Mori–Zwanzig Formalism
Consider a problem of the form

du
dt
= R�u�; [2.1]

where R and u are n-dimensional vectors (n may be infinite),
with components Ri and ui, and t is the time. When n is finite,
2.1 is a system of ordinary differential equations.

We denote the phase space (the vector space in which u re-
sides) by á ; in classical statistical physics, this phase space is the
n = 6` dimensional space of coordinates and momenta, �qi; pi�,
where ` is the number of particles. A solution of Eq. 2.1 is
defined when an initial value u�t = 0� = u0 is given; to each ini-
tial condition u0 corresponds a trajectory, ��t� = ��u0; t�. From
now on, we omit the subscript 0; u (without argument or sub-
script) is always the initial state of the system, and ��u; t� is the
state of the system at time t.

A phase variable A is a function on á , in general vector-
valued; when A has m components, we denote them by Ai,
i = 1; : : : ;m. A phase variable varies when its argument varies
in time, so that a phase variable whose value at t = 0 was A�u�
acquires at time t the value A���u; t��. One can also take a
“Heisenberg” or “Lagrangian” point of view and introduce a
time-dependent phase variable StA, where St is a time evolution
operator for phase variables, defined through the relation

�StA��u� = A���u; t��: [2.2]

(Remember that in this equation u is an initial state.) Differ-
entiation of 2.2 with respect to time and use of the identity
R���u; t�� = ∇u��u; t� · R�u� yields

∂

∂t
�StA��u� =

∑
i

Ri���u; t��
∂A

∂ui
���u; t��

=
∑
i

Ri�u�
∂�StA�
∂ui

�u� = LStA�u�;
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where L, the Liouvillian, is the linear differential operator L =∑
i Ri�u� ∂∂ui . Thus the phase variable StA can be calculated in

either of two ways: (i) for each u integrate the equations of
motion d

dt
��u; t� = R���u; t�� with initial condition ��u; 0� = u

up to time t and evaluate the phase variable A at the point
��u; t�; or (ii) solve the equation

∂

∂t
StA = LStA
S0A = A:

(In the physics literature St is represented symbolically by etL.)
One can check, from the equivalence of the ways of updating

StA, that St�AB� = �StA��StB�, that Stf �A� = f �StA�, and
that St commutes with the Liouvillian, StL = LSt , where the
equality has to be interpreted by considering how each side acts
on phase variables.

Suppose that the initial data u are drawn from a probability
distribution µ0; each initial datum gives rise to a solution of Eq.
2.1 and the measure µ0 evolves into a measure µt at time t. The
evolution of µt is defined by the condition∫

á

B���u; t��µ0�du� =
∫

á

B�u�µt�du�

for all sufficiently smooth phase variables B. We assume that
the measure µ0 is invariant under the flow 2.1: µt = µ0. Given
a phase variable B, we denote by E�B� the expected value of B
with respect to the invariant measure µ0,

E�B� =
∫

á

B�u�µ0�du�:

In this setting, u and A�u� can be viewed as random variables.
We now prepare the tools for following a small number of

phase variables without calculating the rest. A key quantity is
the conditional expectation E�B�A�, where both A and B are
phase variables; it satisfies:

1. E�B�A� is a function of A;
2. E�B�A� is linear in B:

E�αB1 + βB2�A� = α E�B1�A� + β E�B2�A�:
3. E�B�A� is the best approximation of B by a function of A:

E��B − E�B�A��2� � E��B − f �A��2� [2.3]

for all functions f . We may regard 0B = E�B�A� as the or-
thogonal projection of B on the space of functions of A.

4. For all functions f of A,

E�f �A��B − E�B�A��� = 0:

5. For all functions f of A,

E�f �A�B�A� = f �A�E�B�A�:
See Chung (9).

We now follow the Mori–Zwanzig procedure (8), as modified
in ref. 7 and reformulated by us in terms of conditional expec-
tations: we split the time derivative of StA into its projection on
the span of functions of A plus a complement:

∂

∂t
StA = StLA = St E�LA�A� + St �LA− E�LA�A�� : [2.4]

In the first term on the right hand side, E�LA�A� is the projec-
tion of the rate of change of A onto the span of functions of A;
we denote it by 2�A�. Thus, the first term is

St2�A� = 2�StA�:

To understand the second term, consider an evolution oper-
ator, St⊥, for an arbitrary phase variable, F , which is defined by
the following equation:

∂

∂t
St⊥F = LSt⊥F − E�LSt⊥F �A�
S0
⊥F = F:

; [2.5]

Note that

∂

∂t
E�St⊥F �A� = E

[
∂

∂t
St⊥F

∣∣∣∣A]
= E

[
LSt⊥F − E�LSt⊥F �A��A

] = 0: [2.6]

If F is orthogonal to the span of functions of A, then
E�St⊥F �A� = 0 for all times t. For this reason, St⊥ is re-
ferred to as the solution operator of the orthogonal dynamics.
We have no general way of solving Eq. 2.6; a solution in a
special case will be described below.

The evolution operators St and St⊥ satisfy the Dyson formula
(8):

StB = St⊥B +
∫ t

0
St−s E�LSs⊥B�A�ds;

for all phase variables B, as can be checked by differentiation.
In the physics literature, this equation is written in the symbolic
form

etL = et�I−0 �L +
∫ t

0
e�t−s�L0Les�I−0 �L ds;

which holds when L and 0 are linear operators and the expo-
nentials can be properly defined. With the help of the Dyson
formula the second term on the right hand side of 2.4 can be
written as:

St⊥F +
∫ t

0
St−s E�LSs⊥F �A�ds;

where

F = LA− E�LA�A�:
The phase variable E�LSt⊥F �A� is a function of A that varies in
time because St⊥F changes; we denote this function by K�t;A�.

Putting all the terms together, we obtain the generalized
Langevin equation

∂

∂t
StA = 2�StA� +

∫ t

0
K�s; St−sA�ds + St⊥F: [2.7]

Eq. 2.7 is an identity between phase variables that may be
vector-valued; it is a starting point for our approximations.

The various terms in Eq. 2.7 have suggestive interpretations.
The first term on the right-hand side is a function only of StA
and can be interpreted as the self-interaction of the variables
StA; it is the Markovian contribution to ∂

∂t
StA. The second

term depends on u through the values of SsA at all times s
between 0 and t, and embodies a non-Markovian memory; the
kernel K�t;A� is the memory function. Finally, an evaluation
of the third term, St⊥F , requires a full knowledge of u; with our
assumptions, this term can be viewed as random, with statis-
tics determined by the distribution of initial data. The expected
value of St⊥F conditioned by the initial data vanishes for all t
(see 2.6). Thus, St⊥F is uncorrelated with any function of A;
this is a weaker property than statistical independence of St⊥F
and A.
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3. First-Order Optimal Prediction
We now relate the generalized Langevin equation (2.7) to the
first-order optimal prediction schemes of refs. 1–4. As before,
u = �u1; : : : ; un�T , the equations of motion are

∂

∂t
��u; t� = R���u; t��

��u; 0� = u;

the initial conditions u are drawn from an invariant measure
µ0, and we choose a vector of phase variables, A = A�u� =
�A1; : : : ;Am�T .

The first-order optimal prediction scheme approximates the
expectation value of StA�u� = A���u; t�� by a vector-valued
function of time, v�t� = �v1; : : : ; vm�T that satisfies

d

dt
v�t� = 2�v�t��

v�0� = A�u�;
[3.1]

where as before 2�A� = E�LA�A�. A comparison between 2.7
and 3.1 shows that first-order optimal prediction is obtained
from the generalized Langevin equation by dropping the sec-
ond and third terms; conditions under which this is legitimate
are discussed in refs. 1–5. Formula 2.3 in the previous section
guarantees that no Markovian approximation of StA by a sys-
tem of m equations can be more accurate, in the mean square
sense, than first-order optimal prediction.

Consider the special case in which we follow the first m com-
ponents of u, that is, A�u� = Pmu, m + n, where Pm extracts
the first m components of u: Pmu = �u1; : : : ; um�T . Thus, we
have LA�u� = PmR�u� and StA�u� = Pm��u; t�. In this case the
function 2�v� reduces to

2�Pmu� = E�PmR�u��Pmu�; [3.2]

where, if the measure µ0 has a probability density f0�u1; : : : ; un�,
we have by definition

E�R�u��Pmu� =
∫

R�u1; : : : ; un� f0�u1; : : : ; un�dum+1 · · ·dun∫
f0�u1; : : : ; un�dum+1 · · ·dun

:

Formula 3.1 with 2�v� given by 3.2 can be contrasted with the
Galerkin approximation in terms of m variables, which has the
form

d

dt
v = PmR�v1; : : : ; vm; 0; : : : ; 0�;

where the argument of R is a vector of size n whose first m
components are those of v and the rest are zero.

First-order optimal prediction takes a particularly sim-
ple form when Eq. 2.1 is Hamiltonian. Assume that u =
�q1; : : : ; qn; p1; : : : ; pn�T , and that Eq. 2.1 can be written in the
form:

d

dt
qi =

∂H

∂pi
d

dt
pi = −

∂H

∂qi
;

where H�q;p� is the Hamiltonian. Assume that the invariant
measure is the canonical measure whose density is

f0�q1; : : : ; qnyp1; : : : ; pn� = Z−1e−H;

where Z is a normalization factor. Let the reduced description
be in terms of the Q = �Q1; : : : ;Qm� and P = �P1; : : : ;Qm�,
m + n. The optimal prediction equations for the Qi are:

d

dt
Qi = E

[
d

dt
qi

∣∣∣∣Q;P]

=
∫
∂H
∂pi
e−H dpm+1 · · ·dpn dqm+1 · · ·dqn∫
e−H dpm+1 · · ·dpn dqm+1 · · ·dqn

= ∂

∂Pi
(�Q;P�;

where

(�Q;P� = − log
∫
e−H dpm+1 · · ·dpn dqm+1 · · ·dqn

is the reduced, or renormalized, Hamiltonian. Similarly,

d

dt
Pi = E

[
d

dt
pi

∣∣∣∣Q;P] = − ∂

∂Qi

(�Q;P�:

The reduced Hamiltonian ( is minus the logarithm of the
weighted phase space volume constrained by the known values
of the Q and P .

Examples of first-order optimal prediction have been pre-
sented in refs. 2–4. They yields good results for short times
and/or m not too small and/or for systems at low temperature.
However, in problems that are so severely underresolved that
m components of a solution vector describe the solution poorly,
first-order optimal prediction does not yield an accurate esti-
mate of the mean solution at high temperature and long times;
the subsequent terms in Eq. 2.7 must be taken into account. In
the following section, we show that by taking memory into ac-
count, one can indeed represent a mean solution accurately and
in particular observe the irreversible loss of information that oc-
curs in underresolved approximations.

4. Example: A Nonlinear Schrödinger Equation
We consider the model problem:

ıut = −uxx +
1
4
�3�u�2u+ u∗3�;

on �0; 2π�, with periodic boundary conditions (see refs. 2–4.
Here u∗ denotes the complex conjugate of u and subscripts de-
note differentiation. The equation is of Schrödinger type, and
admits the Hamiltonian

H = 1
2

∫ 2π

0

[
�ux�2 +

1
16
�u4 + 6�u�4 + �u∗�4�

]
dx:

We use spectral variables; the unknowns are the complex
Fourier coefficients u = �ukyk = 0; 1;−1; : : :� : We write the
Hamiltonian as

H = H�u� = H0 +H1;

where H0�u� is quadratic in u,

H0�u� = π
∑
k

ωk
∣∣uk∣∣2 ;

with dispersion relation ωk = k2, and

H1�u� =
π

16

∑
k1;k2
k3;k4

�uk1
uk2
uk3
uk4
+ 6u−k1

u−k2
u∗k3
u∗k4

+u∗k1
u∗k2
u∗k3
u∗k4
� δk1;−k2−k3−k4

:
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Define the Poisson brackets:

�A;B� = ı

π

∑
j

(
∂A

∂uj

∂B

∂u∗j
− ∂B

∂uj

∂A

∂u∗j

)
:

Then:

�uk; uk′ � =
{
u∗k; u

∗
k′
} = 0;

{
uk; u

∗
k′
} = ı

π
δk;k′ :

The evolution of u is then described by Hamilton’s equations,

d

dt
uk = �H;uk� = Rk�u� = −ıωkuk

− ı
4

∑
k1;k2;k3

(
u∗k1
u∗k2
+ 3u−k1

u−k2

)
u∗k3

δk;−k1−k2−k3
: [4.1]

The operator L that governs the evolution of phase variables is
given by

L =
∑
k

[
Rk�u�

∂

∂uk
+ R∗k�u�

∂

∂u∗k

]
= L0 + L1; [4.2]

where

L0 = −ı
∑
k

ωk

(
uk

∂

∂uk
− u∗k

∂

∂u∗k

)
;

and

L1 = −
ı

4

∑
k;k1;k2;k3

(
u∗k1
u∗k2
+ 3u−k1

u−k2

)
u∗k3

δk;−k1−k2−k3

∂

∂uk

+ ı
4

∑
k;k1;k2;k3

(
uk1
uk2
+ 3u∗−k1

u∗−k2

)
uk3

δk;−k1−k2−k3

∂

∂u∗k
:

We choose as invariant measure the canonical measure whose
density is proportional to:

f0�u� = e−H�u�/T ;
where T , the temperature, specifies the variance of the sam-
ples u.

The Langevin equation (2.7) allows us to derive equations
for a phase variable A (i.e., a set of collective variables) that
describes large-scale properties of the solution. A reasonable
choice of collective variables is the set of Fourier components
below some cutoff m, i.e, A = Pmu = �u−m; : : : ; um�T . Let
B be an arbitrary phase variable; the conditional expectation
E�B�A� = E�B�Pmu� that enters Eq. 2.7 is in general hard to
evaluate except when f0 is Gaussian. Following ref. 4, we adopt
a perturbative approach and perform a power series expansion
in powers of H1, the nonquadratic part of the Hamiltonian;
we then average with respect to the Gaussian measure with
density proportional to e−H0/T . By Wick’s theorem all the con-
ditional moments of u can be expressed as combinations of the
conditional means and covariances,

E0�uk�Pmu� =
{
uk if

∣∣k∣∣ � m
0 otherwise

;

E0�uku∗q�Pmu� =


uku

∗
q if

∣∣k∣∣ ; ∣∣q∣∣ � m
�πωk�−1T δk;q if

∣∣k∣∣ ; ∣∣q∣∣ , m
0 otherwise

:

(See refs. 2 and 3.)

The Langevin equation (2.7) becomes

d

dt
StPmu = 2�StPmu� +

∫ t

0
K �s; St−sPmu� ds + St⊥F;

where

2�Pmu� = E�LPmu�Pmu�; F = LPmu− E�LPmu�Pmu�;
and

K�s; Pmu� = E�LSs⊥F�Pmu�: [4.3]

These expressions can be calculated perturbatively, as we now
describe.

The Markovian term, already calculated to first order in ref. 4,
has components

2k�Pmu� 8 −ı �ωk + C�uk

− ı
4

∑
|k1|;|k2|;|k3|�m

(
u∗k1
u∗k2
+ 3u−k1

u−k2

)

3 u∗k3
δk;−k1−k2−k3

; [4.4]

where

C = 3T
2π

∑
|k|,m

1
ωk
:

The constant C is a frequency shift that, in the present case, is
all that distinguishes first-order optimal prediction from a simple
truncation of the Fourier expansion (see ref. 4). This frequency
shift is a decreasing function of the number m of resolved modes
and decreases like 1/m.

We now expand the noise St⊥F as we expanded L in 4.2:

St⊥Fk 7 S
t
⊥;0�I − 0 �L0uk + St⊥;0�I − 0 �L1uk

+
∫ t

0
St−s⊥;0�I − 0 �L1S

s
⊥;0�I − 0 �L0uk; [4.5]

where St⊥;0 is the solution operator “orthogonal” to the flow
induced by L0; St⊥;0F is a solution of

∂

∂t
St⊥;0F = L0S

t
⊥;0F − E�L0S

t
⊥;0F�Pmu�;

S0
⊥;0F = L0Pmu− E�L0Pmu�Pmu�:

Expression 4.5 simplifies considerably if one notes that the
subspace of phase variables that depend only on the uk,

∣∣k∣∣ � m,
is closed under the action of L0; as a result �I−0 �L0uk = 0 for
all

∣∣k∣∣ � m, so the first and the third terms on the right hand
side of 4.5 vanish. A similar argument yields that �I −0 �L00 =
0, from which it follows that St⊥;0�I − 0 � = �1− 0 �St0, where St0
is the evolution operator generated by L0 which transforms uk
into uk e−ıωkt . Thus, to leading order the noise equals:

St⊥Fk 7 �I − 0 �St0L1uk

7 − ı
4

∑
k1;k2;k3

u∗k1
u∗k2
u∗k3
eı�ωk1+ωk2+ωk3 �t δk;−k1−k2−k3

+ ı

4

∑
|k1|;|k2|;|k3|�m

u∗k1
u∗k2
u∗k3
eı�ωk1+ωk2+ωk3 �t δk;−k1−k2−k3
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− 3ı
4

∑
k1;k2;k3

uk1
uk2
u∗k3
eı�ωk3−ωk1−ωk2 �t δk+k3;k1+k2

+ 3ı
4

∑
|k1|;|k2|;|k3|�m

uk1
uk2
u∗k3
eı�ωk3−ωk1−ωk2 �t δk+k3;k1+k2

+ ıCuke−ıωkt : [4.6]

Finally, we evaluate the memory kernel, 4.3. Recall that
E�St⊥F�Pmu� = 0; from Eq. 4.8, it follows that to the accuracy
with which we are calculating E�L0S

t
⊥F�Pmu� = 0, and so the

leading order term in the memory kernel E�L1S
t
⊥F�Pmu� is

quadratic in L1 and equals

Kk�t; Pmu� = κk�t�uk

+
∑

�k1�;�k2 �;�k3��m
φk+k1

�t�eık2
1 tu∗k1

3
(
u∗k2
u∗k3
+ u−k2

u−k3

)
δk+k1;−k2−k3

+
∑

�k1�;�k2 �;�k3��m
ψk−k1

�t�

3 e−ık
2
1 tuk1

uk2
u∗k3

δk−k1;k2−k3
;

+ 3
16

∑
�k1 �;�k2 ��m

�j1 �;�j2 �;�j3 ��m;�k3 �,m

�uj1uj2 + 3u∗−j1u
∗
−j2�

3 uj3uk1
uk2

3 δk3;−j1−j2−j3δk+k3;k1+k2
e�ωk3−ωk1−ωk2 �t

+ 3
16

∑
�k2 �;�k3 ��m

�j1 �;�j2 �;�j3 ��m;�k1 �,m

�uj1uj2 + 3u∗−j1u
∗
−j2�

3 uj3u
∗
k2
u∗k3

3 δk1;−j1−j2−j3δk;−k1−k2−k3
e�ωk1+ωk2+ωk3 �t

− 6
16

∑
�k2 �;�k3 ��m

�j1 �;�j2 �;�j3 ��m;�k1 �,m

�u∗j1u∗j2 + 3u−j1u−j2�

3 u∗j3uk2
u∗k3
δk1;−j1−j2−j3δk+k3;k1+k2

3 e�ωk3−ωk1−ωk2 �t [4.7]

where

κq�t�=
9T 2ı

2π2

∑
�k1�;�k2 �,m

1
k2

1

1
k2

2

3

[
sin��q+ k1 + k2�2t� cos�k2

1t� cos�k2
2t�

+ ı cos��q+ k1 + k2�2t� sin�k2
1t� sin�k2

2t�
]
;

φq�t� =
9Tı
4π

∑
�k�,m

1
k2 sin

[(�q+ k�2 + k2) t] ; [4.8]

and

ψq�t� =
9Tı
2π

∑
�k�,m

1
k2 sin

[(�q+ k�2 − k2) t] :
Thus, the memory kernel consists (to leading order in L1) of a
combination of terms that are either linear, cubic, or quintic in
the resolved uk.

To evaluate E�StPmu�Pmu�, we average 2.7 with respect to
the invariant measure conditioned by Pmu. The noise term
drops out. We approximate E�R�StPmu��Pmu� by 2�v�t�� and
E�K�s; St−sPmu��Pmu� by K�s; v�t − s��; with this approximation
we find

d

dt
v�t� = 2�v�t�� +

∫ t

0
K�s; v�t − s��ds: [4.9]

We now show that the memory term is capable of reproducing
the decay that first-order optimal prediction misses. To do so,
we apply the scheme 4.9 to the most underresolved problem
within its reach, where A consists solely of the mean value u0 of
u, i.e., m = 0. The goal is to compute the time evolution of u0
averaged over all functions initially sampled from the invariant
measure, having in common only their mean. We approximate
2, K, by the expressions 4.4 and 4.7. For m = 0 and T = 1, Eq.
4.9 for v0�t� 8 E�Stu0�u0� is

d

dt
v0�t� = −ı

π

2
v0�t� −

ı

4
[�v∗0�t��2 + 3�v0�t��2

]
v∗0�t�

+
∫ t

0
κ0�s�v0�t − s�ds +

∫ t

0
φ0�s�v∗0�t − s�

3
[�v∗0�t − s��2 + �v0�t − s��2

]
ds: [4.10]

One should note the various sources of error in this approxima-
tion, in particular the approximate evaluation of the Markovian
term, which is not likely to be accurate when m = 0, and the
use of a perturbation series which is not likely to be accurate
for long times.

The memory kernels κ0�t� and φ0�t� have infinite support in
time and exhibit recurrent behavior. We truncate these kernels
at time t = 0:9, chosen so as to produce a reasonable decay; this
is consistent with our limited objectives. We will show in later
work that when the number of collective variables is larger, a
truncation of the memory is harmless.

In Fig. 1 we compare the true mean of u0 computed by a
Monte-Carlo method, the mean of u0 as computed by first-order
optimal prediction, and the mean of u0 as computed from Eq.
4.10 and a truncated kernel K. As expected, and in agreement
with the results in ref. 4, first-order optimal prediction eventu-
ally fails to capture the relaxation of the means towards their
equilibrium values. The inclusion of memory is crucial for cap-
turing this relaxation.

5. Discussion
First-order optimal prediction, as presented in earlier publica-
tions, loses accuracy in time; it loses accuracy more rapidly when
the number of collective variables is small or when the uncer-
tainty in the initial data, as measured by the temperature, is
large; we have shown that the loss of accuracy is less severe
than in numerical schemes that make no use of information
contained in a prior invariant measure.

In the present paper, we have shown that the loss of accuracy
in time is analogous to the loss of information in irreversible sta-
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Fig. 1. The evolution of the real part of u0. The circles represent an average
over an ensemble of 104 solutions which was propagated from a sampled initial
ensemble, conditioned only by the value of u0. The solid line was obtained by
integrating the integro-differential equation 4.10 with κ0(t) and φ0(t) truncated at
t = 0:9. Finally, the dotted line was obtained by integrating the first-order optimal
prediction equations (κ0(t) = φ0(t) = 0 in 4.10).

tistical mechanics: The measure conditioned by the partial initial
data converges, in an ergodic system, to the invariant measure,
which represents thermal equilibrium. First order optimal pre-
diction takes this effect into account only to the extent possible
by the limited number of degrees of freedom that it retains. A
formalism of Mori–Zwanzig type shows that the decay is rep-
resented by a non-Markovian term; an inclusion of this term
produces mean results that can be faithful to the true means for
longer times even in severely underresolved situations.

The generalized Langevin equation (2.7) shows that the path
to higher accuracy in optimal prediction for underresolved prob-
lems lies in a more faithful representation of the initial statistics.
In the present paper, we have included these higher statistics
through a Mori–Zwanzig formalism and a perturbation scheme,
which is too laborious for general use but drives our point home.
Practical schemes for higher-order optimal prediction, based on
a sampling strategy, will be presented in subsequent work.
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