
Evaluation of the multiplane method for efficient simulations of reaction networks

Baruch Barzel,1 Ofer Biham,1 and Raz Kupferman2

1Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
2Institute of Mathematics, The Hebrew University, Jerusalem 91904, Israel

�Received 15 March 2007; published 17 August 2007�

Reaction networks in the bulk and on surfaces are widespread in physical, chemical, and biological systems.
In macroscopic systems, which include large populations of reactive species, stochastic fluctuations are neg-
ligible and the reaction rates can be evaluated using rate equations. However, many physical systems are
partitioned into microscopic domains, where the number of molecules in each domain is small and fluctuations
are strong. Under these conditions, the simulation of reaction networks requires stochastic methods such as
direct integration of the master equation. However, direct integration of the master equation is infeasible for
complex networks, because the number of equations proliferates as the number of reactive species increases.
Recently, the multiplane method, which provides a dramatic reduction in the number of equations, was intro-
duced �Lipshtat and Biham, Phys. Rev. Lett. 93, 170601 �2004��. The reduction is achieved by breaking the
network into a set of maximal fully connected subnetworks �maximal cliques�. Lower-dimensional master
equations are constructed for the marginal probability distributions associated with the cliques, with suitable
couplings between them. In this paper, we test the multiplane method and examine its applicability. We show
that the method is accurate in the limit of small domains, where fluctuations are strong. It thus provides an
efficient framework for the stochastic simulation of complex reaction networks with strong fluctuations, for
which rate equations fail and direct integration of the master equation is infeasible. The method also applies in
the case of large domains, where it converges to the rate equation results.

DOI: 10.1103/PhysRevE.76.026703 PACS number�s�: 05.10.�a, 82.65.�r

I. INTRODUCTION

Reaction networks commonly appear in physical, chemi-
cal, and biological systems, where reactions may take place
in the bulk or on a surface. When the surface or bulk system
is macroscopic, the populations of reactive species are typi-
cally large and the law of large numbers applies. Thus, fluc-
tuations in the concentrations of the reactants and in the re-
action rates become negligible. As a result, these reaction
networks can be analyzed using rate equation models, which
account for the average concentrations and ignore fluctua-
tions.

In some cases, the system is partitioned into small do-
mains, such that the reactants cannot diffuse between them.
The populations of reactive species in each domain become
small and their fluctuations cannot be ignored. As a conse-
quence, rate equations fail, and the simulation of these reac-
tions requires stochastic methods such as direct integration
of the master equation �1�. The master equation takes into
account the discrete nature of the reactants as well as the
fluctuations. It is expressed in terms of the probabilities of
having a given set of population sizes of the reactive species
in a given domain. In certain cases, such as radioactive de-
cay, an analytical solution based on generating functions is
available �2�. In other cases, numerical methods are required.
For simple reaction networks that involve few reactive spe-
cies, numerical integration of the master equation is useful
and efficient �3–5�. However, as the number of reactive spe-
cies increases, the number of variables in the master equation
quickly proliferates �6,7�, making the direct integration in-
feasible.

Here we focus on networks in which reactions take place
between pairs of species, and the reaction products may be

reactive or nonreactive. Such networks may be described by
graphs: each reactive species is represented by a node; the
reaction between a pair of species is represented by an edge
that connects the corresponding nodes. Typically, these net-
works are sparse, namely, most pairs of species do not react
with each other. For such sparse networks, the recently in-
troduced multiplane method provides a dramatic reduction in
the number of equations �8�. The method is based on break-
ing the network into a set of maximal fully connected sub-
networks �maximal cliques�. It involves an approximation, in
which the correlations between pairs of species that react
with each other are maintained, while the correlations be-
tween nonreacting pairs are neglected. The result is a set of
lower-dimensional master equations, one for each clique,
with suitable couplings between them. For sparse networks,
the cliques are typically small and mostly consist of two or
three nodes. This method thus enables the simulation of large
networks much beyond the point where the master equation
becomes infeasible.

The multiplane method has already been used in the simu-
lation of complex chemical networks on dust grains in inter-
stellar clouds �8�, where rate equations fail �9–12�, while
direct integration of the master equation is impractical �6,7�.
The multiplane method is also required for the simulation of
genetic networks in cells, where the master equation �13–15�
and Monte Carlo simulations �16–18� are not applicable for
large networks.

In this paper we analyze the multiplane method and ex-
amine its validity. This is done by comparing the results with
those from the complete master equation. The comparison is
done both for the probability distributions and for the first
and second moments, which represent the population sizes of
reactants and reaction rates, respectively. It is shown that the
multiplane method provides accurate results for both the
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population sizes and reaction rates. For concreteness, we use
below the terminology of surface reactions. In this context,
the small domains are taken to be dust grains �assumed to be
spherical, for simplicity�, and the reactants are atoms or mol-
ecules that enter the system as incoming flux from the sur-
rounding gas phase �below we use the words atoms and mol-
ecules interchangeably�. The reactants and reaction products
leave the system by thermal desorption. The reactions that
take place on a grain are driven by diffusion of reactants on
its surface until they encounter each other and react. In spite
of this specific terminology, the multiplane method can be
adapted to other contexts, such as reactions in a solution,
protein interactions in a living cell and birth-death processes
in population dynamics. Here we focus on the calculation of
steady-state solutions and thus do not expand on birth-death
processes, which may exhibit absorbing states.

The paper is organized as follows. In Sec. II we briefly
review the rate equation and master equation methods, pre-
senting them for a simple reaction network. In Sec. III we
describe the multiplane method. In Sec. IV we test the per-
formance of the multiplane method. An analysis of the
method in the limits of small and large grains is presented in
Sec. V. In Sec. VI we show how to apply the method to more
complex networks. In Sec. VII we briefly describe its appli-
cations in interstellar chemistry and in genetic networks. The
main findings are summarized and discussed in Sec. VIII.

II. THE RATE EQUATIONS AND THE MASTER
EQUATION

Consider a small grain, exposed to fluxes of three differ-
ent atomic species, denoted by X1, X2, and X3. The adsorbed
atoms on the grain reside in adsorption sites. The number of
sites, S, is proportional to the surface area of the grain. The
incoming flux of Xi, i=1,2 ,3, is given by f i �s−1� atoms per
site. Thus, the flux of atoms per grain is Fi= f iS �s−1�. The
adsorbed atoms may desorb due to thermal excitations. The
desorption rate of the Xi species from the grain is denoted by
Wi �s−1�. While residing on the grain, the atoms diffuse on
the surface via hopping between adjacent sites. The hopping
rate of Xi atoms is given by ai �hops s−1�. It is convenient to
define the sweeping rate Ai=ai /S, which is approximately
the inverse of the time it takes an adsorbed Xi atom to visit
nearly all the adsorption sites on the grain surface �19�. A
more accurate expression for Ai in the case of spherical
grains appears in Ref. �20�, where it is shown to be reduced
by a logarithmic factor.

The diffusion process enables adsorbed atoms to encoun-
ter each other and react. Here we consider a simple reaction
network that includes the reactions X1+X2→X4 and
X1+X3→X5, where the X4 and X5 molecules are the reaction
products. The graph that illustrates this network is shown in
Fig. 1�a�.

A. The rate equations

The rate equations that describe the network of Fig. 1�a�
take the form

d�N1�
dt

= F1 − W1�N1� − �A1 + A2��N1��N2�

− �A1 + A3��N1��N3� ,

d�N2�
dt

= F2 − W2�N2� − �A1 + A2��N1��N2� ,

d�N3�
dt

= F3 − W3�N3� − �A1 + A3��N1��N3� , �1�

where �Ni� is the average population size of Xi atoms on a
grain. The first terms on the right-hand side of Eq. �1� rep-
resent the incoming fluxes of Xi atoms. The second terms
represent the desorption of Xi atoms, which is proportional to
the Xi population on the grain. The remaining terms account
for the reactions between adsorbed atoms. The production
rates of X4 and X5 molecules per grain �in units of s−1� are
given by R4= �A1+A2��N1��N2� and R5= �A1+A3��N1��N3�.
For simplicity, we assume that nonreactive product species
desorb into the gas phase immediately upon formation.

For large grains, Eqs. �1� account correctly for the reac-
tion rates. However, in the limit of small grains, some of the
average population sizes �Ni� may become small. In this
case, the discrete nature of the adsorbed atoms and molecules
becomes important, and the fluctuations cannot be ignored.
As a result, the reaction rates obtained from the rate equa-
tions �1� are incorrect and stochastic methods are needed.

We also consider a related network, shown in Fig. 1�b�, in
which X3 is the product of the reaction between X1 and X2
�namely, X3 and X4 are the same species�. The rate equations
that describe this system are the same as in Eq. �1� except
that in the third equation one needs to add the term
�A1+A3��N1��N3�. The production rate of X5 is still given by
R5 defined above.

B. The master equation

The dynamical variables of the master equation are the
probabilities P�n1 ,n2 ,n3� of having a population of ni atoms

X2

X1

X3

X4 X5

(a)

X2

X1

X3

X3 X5

(b)

FIG. 1. Graphic representations of two reaction networks that
involve three reactive species. The nodes represent reactive species
and the edges represent reactions between pairs of species. The
reaction products are specified near the edges. In these networks
there are two cliques: one consists of X1 and X2 and the other
consists of X1 and X3. �a� The reaction products X4 and X5 are
nonreactive; �b� the product of the reaction between X1 and X2 is the
reactive species X3.
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of species Xi on the grain. The master equation takes the
form

Ṗ�n1,n2,n3� = �
i=1

3

Fi�P�. . . ,ni − 1, . . . � − P�n1,n2,n3��

+ �
i=1

3

Wi��ni + 1�P�. . . ,ni + 1, . . . �

− niP�n1,n2,n3�� + �A1 + A2���n1 + 1��n2

+ 1�P�n1 + 1,n2 + 1,n3� − n1n2P�n1,n2,n3��

+ �A1 + A3���n1 + 1��n3 + 1�P�n1 + 1,n2,n3 + 1�

− n1n3P�n1,n2,n3�� , �2�

where ni=0,1 ,2 , . . .. The first term in Eq. �3� describes the
effect of the incoming flux. The probability P�. . . ,ni , . . . � in-
creases when an Xi atom is adsorbed on a grain that already
has ni−1 adsorbed Xi atoms. This probability decreases when
an Xi atom is adsorbed on a grain that includes ni atoms of
species Xi. The second term accounts for the desorption pro-
cess. The third and fourth terms describe the reactions that
take place on the grain.

In numerical simulations the master equation is truncated
in order to keep the number of equations finite. A convenient
way to achieve this is to assign upper cutoffs on the popula-
tion sizes of the reactive species, ni

max, i=1, . . . ,J, where J is
the number of reactive species.

In the network of Fig. 1�a�, the average population size of
Xi on a grain is given by the first moment

�Ni� = �
n1=0

n1
max

�
n2=0

n3
max

�
n3=0

n3
max

niP�n1,n2,n3� . �3�

The production rates per grain of X4 and X5 molecules can be
obtained from the mixed second moments of P�n1 ,n2 ,n3�,
according to R4= �A1+A2��N1N2� and R5= �A1+A3��N1N3�,
where

�NiNj� = �
n1=0

n1
max

�
n2=0

n3
max

�
n3=0

n3
max

ninjP�n1,n2,n3� . �4�

In a network of J reactive species, the number of equa-
tions to be solved is

NE = �
i=1

J

�ni
max + 1� . �5�

The truncated master equation is valid if the probability to
have a population larger than the assigned cutoff is negli-
gible. Note that NE grows exponentially with the number of
reactive species. This limits the applicability of the master
equation to simple networks, making it impractical in the
case of complex networks which involve many reactive spe-
cies �6,7�.

III. THE MULTIPLANE METHOD

The recently introduced multiplane method provides a
dramatic reduction in the number of equations �8�. It thus

enables efficient simulations of complex reaction networks.
Below we describe the method using the network of Fig.
1�a�. Note that in this network the species X1 participates in
both reactions. Since the species X2 and X3 do not react with
each other, one may assume that for a given population size
of X1, their population sizes are almost conditionally inde-
pendent. Under this assumption, the probability distribution
of the population sizes can be approximated by �8�

P�n1,n2,n3� = P�n1�P�n2	n1�P�n3	n1� , �6�

where P�ni 	n1� is the conditional probability that there will
be ni atoms of species Xi given that there are n1 atoms of
species X1 on the grain.

In order to derive the multiplane equations, we first insert
Eq. �6� into the master equation �3�, and trace over the popu-
lation size of X3. Using the facts that �n3

P�n3 	n1�=1 and that

�n3
Ṗ�n3 	n1�=0, one obtains

Ṗ�n1,n2� = F1�P�n1 − 1,n2� − P�n1,n2��

+ F2�P�n1,n2 − 1� − P�n1,n2��

+ W1��n1 + 1�P�n1 + 1,n2� − n1P�n1,n2��

+ W2��n2 + 1�P�n1,n2 + 1� − n2P�n1,n2��

+ �A1 + A2���n1 + 1��n2 + 1�P�n1 + 1,n2 + 1�

− n1n2P�n1,n2�� + �A1 + A3���n1 + 1��N3�n1+1

�P�n1 + 1,n2� − n1�N3�n1
P�n1,n2�� , �7�

where �N3�n1
=�n3

n3P�n3 	n1�. A similar procedure, tracing
over the population size of X2, leads to the equation

Ṗ�n1,n3� = F1�P�n1 − 1,n3� − P�n1,n3��

+ F3�P�n1,n3 − 1� − P�n1,n3��

+ W1��n1 + 1�P�n1 + 1,n3� − n1P�n1,n3��

+ W3��n3 + 1�P�n1,n3 + 1� − n3P�n1,n3��

+ �A1 + A3���n1 + 1��n3 + 1�P�n1 + 1,n3 + 1�

− n1n3P�n1,n3�� + �A1 + A2���n1 + 1��N2�n1+1P�n1

+ 1,n3� − n1�N2�n1
P�n1,n3�� . �8�

These are, in fact, two master equations, one for P�n1 ,n2�
and the other for P�n1 ,n3�. These two master equations are
coupled through the conditional averages �Nj�n1

where j
=2,3. The conditional average that is evaluated in each one
of these master equations is then used, essentially as a rate
constant, in the other master equation. The multiplane equa-
tions are solved by direct numerical integration using stan-
dard steppers such as the Runge-Kutta algorithm. At each
time step, the probability distributions P�n1 ,n2� and P�n1 ,n3�
are updated. The conditional averages �Nj�n1

are then evalu-
ated and used in the next time step.

The number of equations is significantly reduced as we
replace the three-dimensional set of equations for
P�n1 ,n2 ,n3� by two-dimensional sets for P�n1 ,n2�, and
P�n1 ,n3�. The number of equations in the three-dimensional
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set is given by Eq. �5� with J=3. The number of equations in
each one of the two-dimensional sets is �n1

max+1��ni
max+1�,

i=2,3.
The multiplane method enables one to calculate the aver-

age population sizes �Ni� of all the species, as well as the
reaction rates, expressed in terms of the second moments
�NiNj�. Consider, for example, the population size �N1� of the
X1 species. It can be expressed in two ways, namely,

�N1� = �
n1=0

n1
max

�
ni=0

ni
max

n1P�n1,ni� �9�

where i=2 or 3. In the first case �Ni� is evaluated from
P�n1 ,n2�, and in the second case it is evaluated from
P�n1 ,n3�. A nice property of the multiplane method is that
the results are identical, as can be seen from Eq. �6�. The
difference is merely in the order in which N2 and N3 are
traced out. The multiplane method also provides the reaction
rates. For example, the production rate of the X4 species �Fig.
1�a�� is given by

R4 = �A1 + A2� �
n1=0

n1
max

�
n2=0

n2
max

n1n2P�n1,n2� . �10�

Note that, in the derivation of the multiplane equations,
certain dependencies were neglected. Still, the dependence
between all pairs of species that react with each other is
maintained through the conditional averages, �Ni�n1

. These
conditional averages are essential in order to maintain the
desired correlations. If the conditional moments �Ni�n1

, in the
multiplane equations �7� and �8�, are replaced by �Ni� for i
=2,3, these equations are reduced, by proper summations, to
the rate equations �1�. In this case all the correlations are lost.

IV. SIMULATIONS AND RESULTS

To examine the multiplane method we have performed
simulations of the reaction networks shown in Fig. 1. The
results were compared to those obtained from the complete
master equation. In Fig. 2�a� we present the average popula-
tion sizes of the X1 �circles�, X2 �squares�, and X3 �triangles�
species on a grain vs the number of adsorption sites, S, for
the network of Fig. 1�a�, obtained from the multiplane equa-
tions under steady-state conditions. In the simulations
throughout the paper, we chose to use the parameters W1
=10−3, a1=10, W2=10−3, a2=1, W3=10−5, and a3
=10−1 �s−1�. This choice reflects the mobilities and desorp-
tion rates in the network of H, O, and OH that appears in
interstellar grain chemistry �21�. The production rates of
X4 �+� and X5 ��� molecules on a grain, vs S, obtained from
the multiplane equations, are shown in Fig. 2�b�. The results
are in excellent agreement with the master equation �solid
lines�. The rate equations �dashed lines� provide accurate re-
sults for large grains, but for small grains they show signifi-
cant deviations. We have performed extensive simulations of
this system, using a wide range of parameters, and found that
the consistency of the multiplane method and the complete
master equation is always maintained. In the simulations pre-

sented above the fluxes were F1=10−8S, and F2=F3
=0.01F1.

Note that, with the parameters specified above, the incom-
ing flux of X1 atoms is much larger than the fluxes of X2 and
X3. It is often the case in chemical networks that there exists
a dominant species, which is more abundant and more reac-
tive than the other species �such as hydrogen in interstellar
grain chemistry�. One could speculate that the dominance of
X1 is the reason for the remarkable agreement between the
multiplane results and the master equation results. In order to
show that this is not the case, and that the multiplane equa-
tions are generically applicable, we examine some other pa-
rameters. In particular, we consider the case in which the flux
of X1 is much lower than the fluxes of X2 and X3, namely,
F2=F3=10−8 and F1=0.01F2. The population sizes and reac-
tion rates obtained for this choice of fluxes are shown in
Figs. 3�a� and 3�b�, respectively. Clearly, the excellent agree-
ment between the multiplane method and the master equa-
tion is maintained in this case as well as in all other sets of
parameters that we have examined.

It turns out that the multiplane method applies even when
one of the species in one clique is a product of a reaction that
is included in another clique. To demonstrate this fact we
consider the network of Fig. 1�b� in which X3 is the product
of the reaction between X1 and X2. This feature may give rise
to some sort of correlation between the population sizes of
X2 and X3. The question is whether such correlations may
reduce the applicability of the multiplane method.

The multiplane equations describing the network of Fig.
1�b� are the same as Eqs. �7� and �8�, except that in the last
term of the second equation, P�n1+1 ,n3�, is replaced by
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FIG. 2. �a� Population sizes of the X1 �circles�, X2 �squares�, and
X3 �triangles� species per grain vs the number of adsorption sites, S,
on the grain, obtained from the multiplane equations, for the net-
work shown in Fig. 1�a�. The results are in perfect agreement with
the master equation �solid lines� and the rate equations �dashed
lines�. �b� Production rates of X4 ��� and X5 ��� molecules per
grain vs S, obtained from the multiplane equations. The results are
in perfect agreement with the master equation �solid lines�. For
small grains, the rate equation results �dashed lines� for the reaction
rates exhibit large deviations. Here, X1 is the dominant species.
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P�n1+1 ,n3−1�. In Fig. 4�a� we present the population sizes
of the X1 �circles�, X2 �squares�, and X3 �triangles� species on
a grain vs S under steady-state conditions, obtained from the
multiplane method for the network of Fig. 1�b�. The produc-
tion rates of the X3�+� and X5��� species are shown in Fig.
4�b�. Even in this case, the multiplane results are in perfect
agreement with the master equation �solid lines�. The rate
equations �dashed lines� are accurate for large grains but de-
viate for small grains. Here we chose F1=10−8, F2=0.01F1,
and F3=0, namely, X3 molecules are not accreted from the
gas phase, and are produced only on the grain.

Figures 2–4 demonstrate the usefulness of the multiplane
method for the simulation of reaction networks on small

grains. In particular, it is shown that the multiplane equations
provide accurate results for the population sizes of reactants,
given by the first moments �Ni�, i=1,2 ,3, and for the reac-
tion rates, expressed in terms of the second moments �N1N2�
and �N1N3�.

The multiplane method includes only the marginal prob-
ability distributions P�n1 ,n2� and P�n1 ,n3�. However, using
Eq. �6� one can construct an approximation of the complete
probability distribution P�n1 ,n2 ,n3�. This approximation
takes the form

PMP�n1,n2,n3� =
P�n1,n2�P�n1,n3�

P�n1�
, �11�

where the marginal probability distributions P�n1 ,n2�,
P�n1 ,n3�, and P�n1� on the right-hand side are those obtained
from the multiplane method. In order to examine the accu-
racy of this approximation, we introduce the deviation dis-
tance

� = �
n1,n2,n3

	P�n1,n2,n3� − PMP�n1,n2,n3�	 , �12�

which is evaluated under steady-state conditions of the mas-
ter equation and the multiplane equations, where
P�n1 ,n2 ,n3� is the distribution obtained from the master
equation. We have evaluated � for a range of grain sizes
between S=102 and 106. It was found that in all cases �
�1. More explicitly, it varies between �
10−4 and 
10−5.
This indicates that the reconstructed probability distribution
PMP�n1 ,n2 ,n3� provides a very good approximation of
P�n1 ,n2 ,n3�.

While the second moments, which involve pairs of spe-
cies in the same clique, account for their reaction rate, such
moments for species from different cliques have no direct
physical interpretation. Still, they can be used as an addi-
tional test for the accuracy of PMP�n1 ,n2 ,n3�. Clearly, one
may not expect the multiplane method to provide accurate
results for such moments because the corresponding correla-
tions are neglected. In Fig. 5�a� we show the moment �N2N3�
vs grain size as obtained from the multiplane equations for
the reaction network of Fig. 1�a� ���. Surprisingly, the re-
sults are in agreement with those of the master equation
�solid line�. The corresponding rate equation results for
�N2��N3� are also shown �dashed line�. In Fig 5�b� we show
the moment �N2N3� vs grain size, as obtained from the mul-
tiplane equations ��� for the network in Fig. 1�b�. In this
network, the species X3 is the result of the reaction between
X1 and X2, enhancing the correlations between them. Indeed,
the results of the multiplane method deviate from the master
equation results �solid line� in the regime of small grains.
However, for large grains the results of the multiplane
method and the master equation coincide and agree with
those of the rate equations �dashed line�. In general, we find
that for higher moments of the form �N1

aN2
bN2

c�, a ,b ,c
=1,2 , . . ., that involve species from more than one clique, the
multiplane method is not reliable in the limit of small grains.
For large grains the multiplane and master equation results
coincide.
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FIG. 3. Population sizes �a� and production rates �b� per grain vs
S for the network of Fig. 1�a�. The multiplane results �symbols� are
in perfect agreement with the master equation �solid lines�. The rate
equation results �dashed lines� deviate significantly for small grains.
Here the species X1 is dominated by X2 and X3.
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FIG. 4. Population sizes �a� and production rates �b� per grain vs
S, for the network of Fig. 1�b� in which X3 is the reaction product of
X1 and X2. The multiplane results �symbols� are in perfect agree-
ment with the master equation �solid lines�. The rate equations
�dashed lines� are also shown.
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V. ANALYSIS OF THE METHOD

A. The limit of small grains

Consider the probability distribution P�n1 ,n2 ,n3� in the
limit of small grains, where the average population sizes sat-
isfy �Ni��1 for i=1,2 ,3. In this limit, �Ni� can be expressed
by �Ni���i�, where �i�1 is a constant that depends on the
parameters and ��1 is proportional to the grain size S. In
this case, P�0,0 ,0� is the highest probability while
P�1,0 ,0�, P�0,1 ,0�, and P�0,0 ,1� are of order �. The prob-
ability P�0,1 ,1� of having a pair of X2 and X3 atoms reside
simultaneously on the grain is of order �2. The probabilities
P�1,1 ,0� and P�1,0 ,1� of having pairs of atoms of species
that react with each other reside simultaneously on the grain
are reduced due to the reactions and vary as �3. Under these
circumstances, the average population sizes satisfy

�N1� � P�1,0,0� + O��2� ,

�N2� � P�0,1,0� + O��2� ,

�N3� � P�0,0,1� + O��2� , �13�

while the second moments that determine the reaction rates
satisfy

�N1N2� � P�1,1,0� + O��4� ,

�N1N3� � P�1,0,1� + O��4� . �14�

Using these relations, one can show that, in the limit of small
grains, to first order in �, the population sizes of X2 and X3
are statistically independent, namely,

P�n2,n3� � P�n2�P�n3� + O��3� . �15�

To show this relation, one needs to examine three states of
�N2 ,N3�, namely, �n2 ,n3�= �0,0�, �0,1�, and �1,0�. In all other
cases, P�n2 ,n3� varies as a quadratic or a higher degree of �.
As an example, we show that P�N2=0 ,N3=0�
� P�N2=0�P�N3=0�, to leading order in �. To this end, we
evaluate the left-hand side

P�N2 = 0,N3 = 0� = P�0,0,0� + P�1,0,0� + O��2� , �16�

and the right-hand side

P�N2 = 0�P�N3 = 0� = �1 − P�N2 = 1� + O��2���1 − P�N3 = 1�

+ O��2�� = P�0,0,0� + P�1,0,0� + O��2� . �17�

Clearly, the relation �15� is satisfied. This result justifies the
applicability of Eq. �6� in the limit of small grains.

The calculation of mixed second moments for pairs of
species that belong to different cliques, such as �N2N3�, in-
volves probabilities such as P�N2=1 ,N3=1� for states in
which species that do not react with each other reside simul-
taneously on the grain. It can be shown that these probabili-
ties do not satisfy the relation of Eq. �15�. This result is
consistent with the fact that the multiplane method does not
provide accurate results for this moment, as already observed
in Fig. 5�b�.

These results further support the conclusion that the mul-
tiplane method is suitable for the calculation of moments
confined to a single clique and is unsuitable for moments that
combine different cliques. To test this conclusion in detail we
define the ratio

	�n1,n2,n3� =
PMP�n1,n2,n3�

P�n1,n2,n3�
, �18�

which is equal to 1 where the multiplane method is accurate
and deviates from 1 elsewhere. In Fig. 6�a� we display the 40
highest probabilities P�n1 ,n2 ,n3� obtained from the master
equation for the network of Fig. 1�b� in descending order.
The results are for a small grain of S=500 adsorption sites,
for which the population sizes of adsorbed species are ex-
ceedingly small. The probabilities drop off very rapidly, im-
plying that the first and second moments are indeed domi-
nated by the few highest probabilities. In Fig. 6�b� we show
the parameter 	, for the same set of probabilities. It is con-
firmed that the multiplane method is valid only for the largest
probabilities. Beyond the first few entries, 	 begins to fluc-
tuate. In Fig. 6�c� we show an enlarged plot of 	, including
the first 17 probabilities. In this graph the probabilities are
labeled. It is found that, for those probabilities associated
with states in which only species from a single clique reside
simultaneously on a grain, the multiplane method is in ex-
cellent agreement with the master equation. For states in
which species from different cliques reside simultaneously
on the grain, significant deviations are obtained. The first
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FIG. 5. �a� Second moment �N2N3� of P�n1 ,n2 ,n3� vs S, ob-
tained from the multiplane method ��� for the network shown in
Fig. 1�a�. This moment is not related to any reaction rate, thus the
multiplane method is not designed to approximate it well. Still, it
turns out that the results are in good agreement with the master
equation �solid line�. The rate equation results for the corresponding
term �N2��N3� are also shown �dashed line�. �b� Moment �N2N3� vs
S for the network shown in Fig. 1�b�. The multiplane results ���
deviate from those of the master equation �solid line� in the limit of
small grains. For large grains, the multiplane results coincide with
the master equation and with the corresponding term �N2��N3� of
the rate equations �dashed line�.
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significant deviation between the multiplane method and the
master equation is found for the probability P�0,1 ,1�, in
agreement with the previous analysis.

The analysis above shows that the multiplane method is
valid in the limit of small grains. In this limit, the probability
distribution is dominated by a few high probabilities associ-
ated with small population sizes of the reactive species.
These dominant probabilities satisfy the approximation of
Eq. �6�. Therefore, the population sizes and reaction rates
obtained from the multiplane method and the master equa-
tion are in excellent agreement.

B. The limit of large grains

The applicability of the multiplane method in the limit of
large grains is not surprising, because in this limit even the
rate equations provide accurate results. As shown above, the
rate equations can be derived from multiplane equations by
removing the conditions from the conditional averages. The
accuracy of the rate equations shows that in the limit of large
grains the correlations are negligible and the probability dis-
tribution P�n1 ,n2 ,n3� can be factorized into a product of
probabilities of single species. Therefore, the multiplane

method provides accurate results for any desired moments of
the probability distribution.

VI. THE MULTIPLANE EQUATIONS
FOR COMPLEX NETWORKS

For sparse reaction networks with fluctuations, the multi-
plane method was found to provide a dramatic reduction in
the number of equations compared to the master equation.
The method provides accurate results for the populations of
reactive species and for the reaction rates. The method was
presented for simple networks which include only three spe-
cies. However, the generalization to more complex networks
is straightforward. Consider the network shown in Fig. 7.
The probability distribution of the population sizes of the
reactive species in this network is P�n1 , . . . ,n7�. To derive
the multiplane equations one first needs to split the network
into maximal cliques, or maximal fully connected subgraphs.
For the network of Fig. 7, these cliques are C1 : �X1 ,X2,
C2 : �X1 ,X3, C3 : �X1 ,X4, C4 : �X1 ,X5 ,X6, and
C5 : �X1 ,X6 ,X7. The next step is to write down the master
equation for the marginal probability distribution associated
with each clique. This can be done using either the top-down
approach, which is straightforward but tedious, or the
bottom-up approach.

In the top-down approach, the master equation for the
marginal probability distribution associated with a given
clique is obtained by tracing over all the species that do not
belong to this clique. This procedure is repeated for each one
of the maximal cliques.

In the bottom-up approach, the master equation for the
internal reactions in each clique is constructed first. Then, the
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coupling terms between cliques, which include the condi-
tional averages, are added one by one. These terms account
for reactions between species, such as Xj, which belong to
the clique, and species, such as Xk, which do not belong to
the clique. In the master equation, the reaction between Xj

and Xk is described by terms of the form
njnkP�. . . ,nj ,nk , . . . �. In the multiplane equation for the given
clique, nk is replaced by �Nk�nj

and P�. . . ,nj ,nk , . . . � is re-
placed by the marginal probability distribution for the clique.
For example, the resulting equation for the clique C1 is

Ṗ�n1,n2� = F1�P�n1 − 1,n2� − P�n1,n2�� + F2�P�n1,n2 − 1� − P�n1,n2�� + W1��n1 + 1�P�n1 + 1,n2� − n1P�n1,n2��

+ W2��n2 + 1�P�n1,n2 + 1� − n2P�n1,n2�� + �A1 + A2���n1 + 1��n2 + 1�P�n1 + 1,n2 + 1� − n1n2P�n1,n2��

+ A1��n1 + 2��n1 + 1�P�n1 + 2,n2� − n1�n1 − 1�P�n1,n2��

+ �
i=3

7

�A1 + Ai���n1 + 1��Ni�n1+1P�n1 + 1,n2� − n1�Ni�n1
P�n1,n2�� , �19�

where Eq. �6� is used in order to justify the replacement of �Ni�n1,n2
by �ni�n1

. We find it instructive to carry out the procedure
for the clique C5 as well. In this clique, the species X1 and X6 are both correlated with X5. When tracing over X5 one must
maintain both correlations, giving rise to the conditional average �N5�n1,n6

. The resulting equation takes the form

Ṗ�n1,n6,n7� = �
i=1,6,7

Fi�P�. . . ,ni − 1, . . . � − P�n1,n6,n7�� + �
i=1,6,7

Wi��ni + 1�P�. . . ,ni + 1, . . . � − niP�n1,n6,n7��

+ �A1 + A6���n1 + 1��n6 + 1�P�n1 + 1,n6 + 1,n7� − n1n6P�n1,n6,n7��

+ �A1 + A7���n1 + 1��n7 + 1�P�n1 + 1,n6,n7 + 1� − n1n7P�n1,n6,n7��

+ �A6 + A7���n6 + 1��n7 + 1�P�n1,n6 + 1,n7 + 1� − n6n7P�n1,n6,n7��

+ �
i=1,6

Ai��ni + 2��ni + 1�P�. . . ,ni + 2, . . . � − ni�ni − 1�P�n1,n6,n7��

+ �
i=2

4

�A1 + Ai���n1 + 1��Ni�n1+1P�n1 + 1,n6,n7� − n1�Ni�n1
P�n1,n6,n7��

+ �A1 + A5���n1 + 1��N5�n1+1,n6
P�n1 + 1,n6,n7� − n1�N5�n1,n6

P�n1,n6,n7��

+ �A5 + A6���n6 + 1��N5�n1,n6+1P�n1,n6 + 1,n7� − n6�N5�n1,n6
P�n1,n6,n7�� . �20�

This network has been simulated using both the multiplane
method and the complete master equation. The results were
found to be in excellent agreement �8�.

VII. APPLICATIONS TO PHYSICAL
AND BIOLOGICAL SYSTEMS

Stochastic simulations are of great importance in a wide
range of physical systems. Below we present two examples
of current research areas in which the multiplane method is
expected to be useful.

A. Chemical networks on interstellar grains

The chemistry of interstellar clouds includes gas-phase
reactions as well as grain-surface reactions �22,23�. Due to
the microscopic size of the grains and the low flux, the popu-
lation sizes of reactive species on the grains may be small
and exhibit strong fluctuations. Under these conditions rate

equations are not suitable for the simulation of grain-surface
chemistry �9–12�. To account correctly for the reaction rates,
stochastic methods such as direct integration of the master
equation �3–5� or Monte Carlo simulations �9,10,24� are re-
quired. The master equation is more suitable for grain chem-
istry because it consists of differential equations, which can
be easily coupled to the rate equations of gas phase chemis-
try. Furthermore, the master equation provides the probabil-
ity distribution from which the reaction rates can be evalu-
ated directly, unlike Monte Carlo methods that require to
accumulate large sets of data and to perform ensemble or
temporal averages. For simple networks the master equation
is efficient and provides accurate results. However, for com-
plex networks, the master equation becomes infeasible. In
this case, the multiplane method provides efficient stochastic
simulations.

Consider the network of Fig. 7. Using the substitutions
X1→H, X2→OH, X3→H3CO, X4→H2CO, X5→HCO,
X6→O, X7→CO, this network coincides with the reaction
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network that leads to methanol production on grains in mo-
lecular clouds �6–10�. Current experimental effort is aimed at
the evaluation of the relevant rate constants for the surface
diffusion, reaction, and desorption of the species involved in
this network �25,26�. These experiments include infrared
spectroscopy as well as temperature-programmed desorption
runs using a mass spectrometer to detect the desorbed mol-
ecules. The resulting parameters, inserted into the multiplane
equations, will enable to evaluate the reaction rates in inter-
stellar environments and to compare the results with obser-
vations. The multiplane method for this network provides a
reduction in the number of equations from about 1000 000,
using the master equation, to about 1000 equations. For more
complex networks the master equation becomes infeasible,
while the multiplane method remains efficient.

B. Genetic networks in cells

Another important field in which the multiplane method is
expected to be useful is the study of genetic regulatory net-
works in cells. These networks describe the transcription of
mRNAs from genes and their translation into proteins. The
regulation is performed at the transcriptional level �by tran-
scription factors that bind to the promoter site of the regu-
lated gene�, at the post-transcriptional level �e.g., by small
noncoding RNAs� and at the post-translational level �e.g., by
protein-protein interactions�. Analysis of these networks re-
vealed modular structure. In particular, modules or motifs
that perform specific functions and repeatedly appear in dif-
ferent parts of the network were identified �27–29�. Common
examples of such motifs are the autorepressor �30� and dif-
ferent versions of the feed forward loop �31�. Other modules
such as the genetic switch �32� and the mixed-feedback loop
�33� also appear, but are not as common.

Genetic networks often exhibit strong fluctuations due to
the fact that some of the transcription factors appear in low
copy numbers. Moreover, the transcriptional regulation is
typically performed by a small number of transcription fac-
tors which bind and unbind to the promoter site at a fast rate.
This gives rise to strong fluctuations in the transcription rate
of the regulated gene. Some modules, such as the autorepres-
sor, the genetic switch, and the mixed-feedback loop include
positive or negative feedback mechanisms, which tend to
enhance the role of fluctuations. In particular, the dynamics
of the genetic switch system was studied extensively using
both deterministic and stochastic methods �34–41�. It was
found that fluctuations play a crucial role in this system.
While the analysis of small modules such as the genetic
switch can be done using the master equation, it quickly
becomes infeasible when larger networks are considered.

The implementation of the multiplane method in this context
is expected to provide a broader perspective on the role of
fluctuations in genetic networks. Recently, such fluctuations
at the level of single cells were measured experimentally
using the green fluorescent protein �42�. Such measurements
are also expected to provide the effective rate constants of
the relevant processes in the cell.

VIII. SUMMARY AND DISCUSSION

We have shown that the multiplane method provides effi-
cient simulations of complex reaction networks with fluctua-
tions, for which the rate equations fail and the master equa-
tion is infeasible. The multiplane equations are obtained by
breaking the network into maximal cliques and writing down
the set of master equations for the marginal probability dis-
tributions of these cliques, with a suitable coupling between
them. For typical sparse networks, the method provides a
dramatic reduction in the number of equations. We found
that the multiplane results for the first and second moments,
which account for population sizes and reaction rates, re-
spectively, are in excellent agreement with those of the com-
plete master equation. It also accounts correctly for higher
moments, which involve species from the same clique. How-
ever, the method does not account correctly for second and
higher moments, which include species from different
cliques.

The numerical results are complemented by an asymptotic
analysis of the small- and large-grain limits. A more rigorous
analysis shows that the multiplane method is asymptotically
exact in both limits �43�. It is performed in a more general
setting, in which the maximal cliques may be broken into
smaller cliques. In particular, one may break the entire net-
work into cliques of two species each. It is shown that even
in this case, in the limits of small and large grains, the
method still provides exact results for all the first moments
and for those second moments that involve species in the
same clique.

A related approach, based on moment equations, also pro-
vides efficient stochastic simulations of reaction networks
�44�. In this approach, one constructs differential equations
for the first and second moments of the probability distribu-
tion. The number of equations is further reduced to one equa-
tion for each reactive species �node� and one equation for
each reaction �edge�. Thus, for typical sparse networks, the
complexity of the stochastic simulation becomes comparable
to that of the rate equations. In applications such as interstel-
lar chemistry, in which the main objective is to calculate the
reaction rates, the moment equations are advantageous.
However, in systems such as genetic networks, in which the
probability distribution itself is of interest, the multiplane
method is required.
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