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ANALYSIS OF THE MULTIPLANE METHOD FOR STOCHASTIC
SIMULATIONS OF REACTION NETWORKS WITH

FLUCTUATIONS∗
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Abstract. Chemical reaction networks are commonly modeled by rate equations, which are
systems of ordinary differential equations describing the evolution of species concentrations. Such
models break down at low concentrations, where stochastic effects become dominant. Instead, one
has to solve the master equation that governs the multidimensional probability distribution of particle
populations. For large networks such an approach is often computationally prohibitive due to the
exponential dependence of the number of states on the number of components. The multiplane
method is a dimension reduction technique that exploits the structure of the network to derive
approximate dynamics for the marginal distributions of pairs of coreacting species. This method was
introduced in [A. Lipshtat and O. Biham, Phys. Rev. Lett., 93 (2004), 170601] as an uncontrolled
approximation for specific examples in the context of interstellar chemical reactions. In this paper
we formalize the method and prove that it is asymptotically exact in the two extreme limits of small
and large population sizes. Our analysis concentrates on steady-state conditions, although numerical
simulations indicate that the method is equally well applicable to time-dependent solutions. This
analysis partially explains the surprisingly high accuracy of the method.
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1. Introduction. Reaction networks are a modeling framework used in many
branches of science, such as chemical reactions, molecular genetics, and population
dynamics. A reaction network can be represented as a directed hypergraph, where
the nodes represent the various species and the hyperedges represent the reactions. A
directed hyperedge connects a set of source nodes—the reactants—to a set of target
nodes—the products. Each reaction has a number associated with it—a rate constant.
The semantics of such networks vary between applications. Most commonly, reaction
networks are interpreted as rate equations, which are systems of ordinary differen-
tial equations that govern the evolution of species concentrations. Rate equations
are accurate in situations where the population sizes of the various species are large,
and stochastic effects are therefore negligible. Rate equations, however, become in-
appropriate in situations where the typical population size of one or more species is
of order one or less. In such situations, reaction networks are usually interpreted as
continuous-time Markov processes, where transitions between states occur at random
times, and in every such event a single reaction occurs.

While sample paths of continuous-time Markov processes can be easily simulated
on a computer, the inference of their statistical properties (e.g., the prediction of mean
populations or mean reaction rates) requires the solution of a master equation, which
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is an infinite-dimensional linear differential system that governs the evolution of the
joint probability density of species populations. Even if this system is truncated into
a finite-dimensional one, its dimension can remain very large, especially when the
number of reacting species is large; the number of states is exponential in the number
of species. This “explosion of states” over the years has motivated the development of
numerous analytical and computational methods to approximate the solution of the
master equation by the solution of a lower-dimensional equation. In certain cases, e.g.,
when an explicit separation of scales is identified, the lower-dimensional approximation
can be justified rigorously and error bounds can be provided. In most situations,
however, the approximation is “uncontrolled” and justified a posteriori by numerical
experiments; see [10] for a review of dimension reduction techniques in similar and
other contexts.

It should be noted that in many cases the master equation is not used directly due
to its complexity. Instead, stochastic realizations are performed following the Gillespie
algorithm [9]. This approach is used, for example, by Charnley [6] in the context of
interstellar reactions. Other attempts to reduce the complexity of the system is the use
of moment equations. There the issue is the derivation of suitable closure relations.
For example, in order to close the equations at the level of second moments, it is
necessary to express the third moment in terms of the first two moments. Examples
for such closure relations can be found in [18, 11].

In [17, 1] an approximation method was proposed and applied to chemical net-
works associated with interstellar gas and dust. In interstellar clouds, certain chemical
reactions occur on the surface of microscopic dust grains [13]. When the grains are
very small, the mean populations of some reactive species are often less than one
atom/molecule per grain, which renders the use of rate equations inappropriate [7, 5].
On larger grains, mean populations are intermediate in size, often not large enough
to justify the use of the rate equations, and yet sufficiently large to render the trun-
cated master equation of too high dimension to be solved by direct methods [20].
The approximation method developed in [17] relies on the premise that species that
do not directly interact are in some sense conditionally independent so that lower-
dimensional master equations can be derived for marginal distributions of subsets of
interacting species. This approximation, which was named the multiplane method,
was applied to a number of model systems. In [17, 1] the multiplane method reduces
the multivariate master equation into a set of coupled equations for the marginal dis-
tributions of population sizes within maximal cliques of interacting species. In the
present paper, the method is simplified even further, resulting in a set of equations
for the marginal distributions of only pairs of coreacting species. This new formu-
lation yields an approximation method that is more efficient and does not depend
on the structure of the reaction network (e.g., does not require the network to be
sparse).

The multiplane method was tested for a number of specific networks and was
found to provide approximations of surprisingly high accuracy over a large range of
parameters comprising both small and large grains. The main goal of the present
paper is to elucidate the reasons for this success. Our main finding is that the multi-
plane method is asymptotically exact both in the limit of very small grains and in the
limit of very large grains. More precisely, let rij denote the mean rate of a reaction
that takes as reactants species Xi and Xj , and let r̂ij denote the mean reaction rate
predicted by the multiplane method; both exact and approximate rates depend on
the size s of the grain. We find that the relative error of the multiplane method has
the following two-sided asymptotic behavior:
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(1.1)
r̂ij − rij

rij
=

{
O(s), s � 1,

O(1/s), s � 1.

It should be noted that each of these limits admits a relatively simple solution—
rate equations are valid in the large grain limit, whereas a low-dimensional truncated
master equation is valid in the small grain limit. The virtue of the multiplane method
is that it “interpolates” between these two limiting regimes in which it is exact. We
believe that it is this property that makes it relatively accurate even in intermediate
regimes, where no analytical justification can be provided. Our asymptotic analysis
concentrates on steady-state conditions; numerical evidence indicates that the method
applies equally well to time-dependent situations.

The structure of this paper is as follows: In section 2 we define chemical networks
and formulate the corresponding master equation. In section 3 we describe the multi-
plane method as a general algorithm. In section 4 we show in detail how to apply the
multiplane method to a particular low-dimensional system and assess its accuracy by
a numerical solution of both exact and approximate equations. In sections 5 and 6 we
analyze the multiplane method in the limits of small and large grain size, respectively.
In particular, we estimate the error for the predicted mean reaction rates and derive
the two-sided asymptotic behavior (1.1). A numerical test supporting our analysis is
reported in section 7. A discussion concludes this paper in section 8.

2. Chemical reaction networks. Consider a chemical network of M species,
X = {Xi}Mi=1, and K reactions, R = {Rj}Kj=1. Every reaction Rj involves a set of
reactants and a set of products. A reaction network can be represented graphically
as a directed hypergraph. The nodes in the graph are the species X; there is one
node per species. The hyperedges in the graph represent the reactions. The jth
hyperedge connects a set of source nodes—the reactants—to a set of target nodes—
the products. This chemical network is supplemented by influxes (e.g., due to the
adsorption of molecules onto a surface), which are graphically represented as inward
arrows, and by effluxes (e.g., due to the desorption of molecules from a surface), which
are graphically represented as outward arrows.

Example. An example of such a network is depicted in Figure 2.1. The network
involves five species, denoted by X = {X1, . . . , X5}. All species have outgoing fluxes,
whereas only the species X1, X2, X3 have incoming fluxes. There are two reactions:

R1 : X1 + X2 → X4, i.e., reactants = {X1, X2} , products = {X4} ;

R2 : X1 + X3 → X5, i.e., reactants = {X1, X3} , products = {X5} .

Each reaction Rj has a rate constant aj associated with it; the reaction rate is the
product of the rate constant and the population sizes of its reactants (i.e., reaction
rates depend combinatorially on the abundance of reactants). In addition, every
species has an influx rate fi and an efflux/desorption rate constant wi; the efflux
of a species is the product of this constant and its population size. This chemical
network is assumed to be governed by a Markov birth-and-death process, that is,
a continuous-time Markov process in which single reactions occur at exponentially
distributed random times with rates dictated by the state of the system. Such random
events may either be the addition of a single molecule, the removal of a single molecule,
or a chemical reaction (see, e.g., Gardiner [8]).

General formulations tend to require tedious notation. Here we will restrict our-
selves to binary reactions: every reaction involves two reactants (which may be of the
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X1

X2 X3

X4 X5

Fig. 2.1. A hypergraph representing a model chemical network. The network involves five
species, X1, X2, X3, X4, and X5, and two reactions, X1 + X2 → X4 and X1 + X3 → X5.

same species) and one product. The list of reactions R can therefore be represented
as a list of triplets:

(i, j, k) ∈ R means that reaction Xi + Xj → Xk occurs.

We will denote the rate constant of the reaction (i, j, k) by aij ; the reasons for the
omission of the index k are that the reactants uniquely define the product and that
the reaction rate depends only on the abundance of reactant molecules.

Networks of binary reactions can be endowed with another graph structure. The
set of nodes remains the set of species, X. An undirected edge Eij connects the
nodes Xi and Xj if these species coreact, i.e., if there exists a product Xk such
that (i, j, k) ∈ R. For reactions (i, i, k) involving two reacting molecules of the same
species, no edge is drawn. We denote the set of edges by E and will henceforth call
the resulting undirected graph, (X,E), the reaction network graph.

Example. For the network of Figure 2.1 there are only two edges: E = {E12, E13}.
Let the population size of the ith species be denoted by Ni. The vector of pop-

ulation sizes N = (N1, . . . , NM ) is a stochastic (Markov) process in continuous time.
Furthermore, let P (n) = P (n1, . . . , nM ), nj ≥ 0, be the multivariate probability
distribution of the population sizes, generally a function of time.

We introduce increment and decrement operators: for functions g = g(n) we
define

(S±
j g)(n1, . . . , nM ) = g(n1, . . . , nj ± 1, . . . , nM ).

If nj = 0, then the decrement operator yields zero. With a slight abuse of notation,
we denote, for example, by S+

j (njg) the function

n �→ (nj + 1) g(n1, . . . , nj + 1, . . . , nM ).

Using this abbreviated notation, the master equation for the joint distribution
P (n) takes the form
(2.1)
dP

dt
=

∑
Xi∈X

fi (S
−
i −I)P +

∑
Xi∈X

wi(S
+
i −I)(niP )+

∑
(i,j,k)∈R

aij(S
+
i S+

j S−
k −I)(ninjP ).

The first term on the right-hand side of (2.1) represents the influx of molecules,
the second term represents desorption, and the third term represents the chemical
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reactions. Note that P (n) grows if before the reaction each reactant had a population
size greater by one, and each product had a population size smaller by one. For
reactions (i, i, k) where the two reactants are of the same species, the reaction term
has to be modified into

aii(S
+
i S+

i S−
k − I)(ni(ni − 1)P ).

The master equation (2.1) is a linear evolution equation on the infinite-dimen-
sional discrete space, N

M . The stationary distribution of this process is the solution
of (2.1) with the left-hand side equal to zero; averages with respect to the stationary
distribution are denoted by 〈·〉. The rate of the (i, j, k) reaction at steady state is
given by

rij = aij〈NiNj〉.

If i = j, the reaction rate at steady state is

rii = aii〈Ni(Ni − 1)〉.

Example. Consider again the network shown in Figure 2.1. In this case we have
M = 5 species and K = 2 reactions, given by

X1 + X2 → X4 and X1 + X3 → X5.

The master equation (2.1) for P = P (n1, . . . , n5) is

dP

dt
=

3∑
i=1

fi (S
−
i − I)P +

5∑
i=1

wi(S
+
i − I)(niP )

+ a12(S
+
1 S+

2 S−
4 − I)(n1n2P ) + a13(S

+
1 S+

3 S−
5 − I)(n1n3P ).

Since the species X4 and X5 are only end products, they can be eliminated from
the model by summing up the master equation over all possible values of n4 and n5

(taking a partial trace). The reduced master equation for P = P (n1, n2, n3) is

dP

dt
=

3∑
i=1

fi (S
−
i − I)P +

3∑
i=1

wi(S
+
i − I)(niP )

+ a12(S
+
1 S+

2 − I)(n1n2P ) + a13(S
+
1 S+

3 − I)(n1n3P ).

(2.2)

We are interested in chemical reactions that occur in adsorption sites on surfaces.
An important parameter is the area of the surface, s (in interstellar chemistry s is the
surface area of the dust grain). Small grains imply weaker influxes of particles and
faster kinetics, as two atoms that diffuse on the grain surface have a higher collision
rate. Specifically, the influxes fi are directly proportional to s, whereas the reaction
rates aij are inversely proportional to s. The rate of desorption, wi, is, on the other
hand, independent of the grain size.

Except for very simple situations [12, 3, 4], the master equation cannot be solved
analytically, and numerical solutions are needed. The infinite-dimensional master
equation is then truncated into a finite-dimensional system. To get meaningful results,
the truncation has to be performed at values of ni large compared to typical population
sizes. For large networks, a numerical solution can still be impractical, as the system
size is exponential in the number of species. This is precisely the motivation for
approximation methods such as the one described in the next section.
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3. The multiplane method. Consider a reaction network of the type discussed
in the previous section, where every reaction (i, j, k) ∈ R involves two reactants, Xi

and Xj , and one product, Xk. Such a network is represented by a reaction network
graph, (X,E), where Eij ∈ E if Xi and Xj coreact. |E| denotes the number of edges
in the graph; note that it can differ from the total number of reactions, |R|, since
reactions where the two reactants are of the same species are not included in E. For
every Eij ∈ E we denote by Pij the marginal distribution:

Pij(n1, n2) = Prob(Ni = n1, Nj = n2).

The multiplane method replaces the master equation (2.1) by |E| coupled master
equations whose solutions approximate the marginal distributions Pij , Eij ∈ E, asso-
ciated with all pairs of coreacting species. The rationale behind the method is that
the multivariate distribution of population sizes is captured, to a large extent, by the
pairwise marginal distributions of coreacting species. The method is intended only
to approximate the marginal distributions of pairs of coreacting species; i.e., it is not
expected to yield accurate predictions for, say, a moment 〈NiNj〉 for Eij /∈ E.

We denote by Cij = {Xi, Xj}, Eij ∈ E, the pairs of reacting species and by
Qij = Qij(ni, nj) the distribution that approximate the marginal distribution Pij of
the population sizes in Cij . Note that if a species Xi reacts with more than one
species, Xj , Xk, . . . , then the approximate distributions Qij , Qik, . . . induce marginal
distributions on the population size of Xi, but these marginals are not a priori re-
quired to coincide. Mathematically, this means that we have generated several distinct
replicas of Xi.

For every Eij ∈ E, the approximate master equation for Qij is derived as follows:
We start with the master equation (2.1) and take its trace over all species Xk /∈ Cij .
When taking a partial trace over the reaction terms, we need to distinguish between
various cases, depending on whether one or two of the species involved are in Cij , and
within each case to distinguish between the reactants and the product. The only case
that cancels upon summation is where all three species are not in Cij . The resulting
equation for Pij is

dPij

dt
= fi (S

−
i − I)Pij + fj (S−

j − I)Pij + wi(S
+
i − I)(niPij) + wj(S

+
j − I)(njPij)

+ aij(S
+
i S+

j − I)(ninjPij)

+
∑

(i,�,m)∈R

ai�(S
+
i − I)(ni〈N�〉ni,nj

Pij) +
∑

(j,�,m)∈R

aj�(S
+
j − I)(nj〈N�〉ni,nj

Pij)

+
∑

(i,�,j)∈R

ai�(S
+
i S−

j − I)(ni〈N�〉ni,nj
Pij) +

∑
(j,�,i)∈R

aj�(S
+
j S−

i − I)(nj〈N�〉ni,nj
Pij)

+
∑

(k,�,i)∈R

ak�(S
−
i − I)(〈NkN�〉ni,njPij) +

∑
(k,�,j)∈R

ak�(S
−
j − I)(〈NkN�〉ni,njPij),

(3.1)

where the various summations over k, �,m are over species not in Cij . The last four
lines represent reaction terms: the first line is for the reaction involving Xi and Xj

as reactants; the second line represents reactions where either Xi or Xj is a reactant
and neither is a product; the third line represents reactions where Xi is a reactant
and Xj a product, and vice versa; the fourth line represents reactions where either
Xi or Xj is a product and neither is a reactant.
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The |E| master equations (3.1) do not form a closed system because they contain
expressions such as

〈N�〉ni,nj and 〈NkN�〉ni,nj ,

which are moments of population sizes of species not in Cij , conditional on the state
of the population sizes in Cij . That is,

〈N�〉ni,nj =

∑
nm,Xm /∈Cij

n� P (n)∑
nm,Xm /∈Cij

P (n)
and 〈NkN�〉ni,nj =

∑
nm,Xm /∈Cij

nkn� P (n)∑
nm,Xm /∈Cij

P (n)
,

which requires the knowledge of the full multivariate distribution P .
Note that in the expressions nk〈N�〉ni,nj

, the species Xk ∈ Cij and X� /∈ Cij

coreact, which means that Ek� ∈ E. The multiplane method consists of the following
approximation:

(3.2) nk〈N�〉ni,nj ≈ nk〈N�〉k�,nk
and 〈NkN�〉ni,nj

≈ 〈NkN�〉k�,

where averages 〈·〉k� are with respect to the marginal distribution Pk�, and conditional
averages 〈·〉k�,nk

are averages with respect to Pk� conditioned on Nk = nk. We
thus obtain a closed system of equations for the |E| marginal distributions. The
approximate marginal distributions Qij satisfy the equation

dQij

dt
= fi (S

−
i − I)Qij + fj (S−

j − I)Qij + wi(S
+
i − I)(niQij) + wj(S

+
j − I)(njQij)

+ aij(S
+
i S+

j − I)(ninjQij)

+
∑

(i,�,m)∈R

ai�(S
+
i − I)(ni〈N�〉i�,ni

Qij) +
∑

(j,�,m)∈R

aj�(S
+
j − I)(nj〈N�〉j�,nj

Qij)

+
∑

(i,�,j)∈R

ai�(S
+
i S−

j − I)(ni〈N�〉i�,niQij) +
∑

(j,�,i)∈R

aj�(S
+
j S−

i − I)(nj〈N�〉j�,njQij)

+
∑

(k,�,i)∈R

ak�(S
−
i − I)(〈NkN�〉k�Qij) +

∑
(k,�,j)∈R

ak�(S
−
j − I)(〈NkN�〉k�Qij),

(3.3)

where
(3.4)

〈N�〉k�,nk
=

∑
n�

n�Qk�(nk, n�)∑
n�

Qk�(nk, n�)
and 〈NkN�〉k� =

∑
nk,n�

nkn�Qk�(nk, n�).

This system of |E| bivariate master equations is coupled through the conditional mo-
ments (3.4). Note that unlike the original master equation, the multiplane equations
(3.3) are nonlinear.

Consider a situation where there are M species and the typical population size of
each species is 〈N〉. In such a case, the truncated master equation is a linear system
of size 〈N〉M . The number of binary reactions |E| is at most M(M − 1)/2. The
multiplane method yields a nonlinear system of dimension

|E| 〈N〉2,

which for large M is significantly smaller than 〈N〉M , even in the extreme case of
|E| = M(M − 1)/2.
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Example. For the network in Figure 2.1 with the end products X4, X5 eliminated,
E = {E12, E13}, Q12(n1, n2), and Q13(n1, n3) satisfy

dQ12

dt
= f1 (S−

1 − I)Q12 + f2 (S−
2 − I)Q12

+ w1(S
+
1 − I)(n1Q12) + w2(S

+
2 − I)(n2Q12)

+ a12(S
+
1 S+

2 − I)(n1n2Q12) + a13(S
+
1 − I)(n1 〈N3〉13,n1

Q12),

dQ13

dt
= f1 (S−

1 − I)Q13 + f3 (S−
3 − I)Q13

+ w1(S
+
1 − I)(n1Q13) + w3(S

+
3 − I)(n3Q13)

+ a13(S
+
1 S+

3 − I)(n1n3Q13) + a12(S
+
1 − I)(n1 〈N2〉12,n1

Q13),

(3.5)

where

〈N3〉13,n1
=

∑
n3

n3 Q13(n1, n3)∑
n3

Q13(n1, n3)
and 〈N2〉12,n1

=

∑
n2

n2 Q12(n1, n2)∑
n2

Q12(n1, n2)
.

We expect this approximation to yield accurate estimates for moments such as

〈N1〉 , 〈N2〉 , 〈N3〉 , 〈N1N2〉 , 〈N1N3〉

but not for, say, 〈N2N3〉.
4. A numerical example. To get better insight into the multiplane method,

consider once again the network of Figure 2.1 with the end products X4 and X5

eliminated. The infinite-dimensional master equation can be turned into a finite-
dimensional one by truncating the distribution at a certain population size. To obtain
a particularly low-dimensional system, we truncate the distribution at n = 1; i.e.,
every one of the three species exists in either zero or one copy. Thus, the only allowed
states are (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), and (1, 1, 1).
This eight-state Markov process is depicted in Figure 4.1.

Ordering the states by their binary representation, the master equation takes the
form

(4.1)
dP

dt
= RP,

where the rate matrix is

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� w3 w2 0 w1 a13 a12 0
f3 � 0 w2 0 w1 0 a12

f2 0 � w3 0 0 w1 a13

0 f2 f3 � 0 0 0 w1

f1 0 0 0 � w3 w2 0
0 f1 0 0 f3 � 0 w2

0 0 f1 0 f2 0 � w3

0 0 0 f1 0 f2 f3 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The diagonal entries of R, which we represent by �, make each column sum up to
zero. Taking an arbitrary choice of parameters,

f1 = 1, f2 = 2, f3 = 3,

w1 = 4, w2 = 5, w3 = 6,

a12 = 7, a13 = 8,
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0,0,0

0,1,0 0,0,11,0,0

1,1,0 1,0,1 0,1,1

1,1,1

Fig. 4.1. Graphical representation of the Markov process obtained by truncating the population
size of each reactive species at N = 1.

0,0

1,0 0,1

1,1

C12

0,0

1,0 0,1

1,1

C13

Fig. 4.2. Graphical representation of the two reduced Markov processes obtained by applying
the multiplane method to the Markov process of Figure 4.1.

(4.1) has the following stationary distribution:

P

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0, 0, 0
0, 0, 1
0, 1, 0
0, 1, 1
1, 0, 0
1, 0, 1
1, 1, 0
1, 1, 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.4385
0.2032
0.1615
0.0762
0.0739
0.0227
0.0181
0.0059

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In contrast, the multiplane method introduces the two Markov processes depicted
in Figure 4.2. The network on the left represents C12 = {X1, X2}, and the network
on the right represents C13 = {X1, X3}. As above, solid edges represent reactions;
the dashed edges represent reactions whose rates involve average population sizes with
respect to the other network.

The two reduced master equations,

dQ12

dt
= R12Q12 and

dQ13

dt
= R13Q13,
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have rate matrices

R12 =

⎛
⎜⎜⎝

� w2 w1 + a13〈N3〉13,1 a12

f2 � 0 w1

f1 0 � w2

0 f1 f2 �

⎞
⎟⎟⎠

and

R13 =

⎛
⎜⎜⎝

� w3 w1 + a12〈N2〉12,1 a13

f3 � 0 w1

f1 0 � w3

0 f1 f3 �

⎞
⎟⎟⎠ ,

where

〈N2〉12,1 =
Q12(1, 1)

Q12(1, 0) + Q12(1, 1)
,

〈N3〉13,1 =
Q13(1, 1)

Q13(1, 0) + Q13(1, 1)
.

This nonlinear system can be solved, for example, iteratively. The stationary distri-
butions are

Q12

⎛
⎜⎜⎝

0, 0
0, 1
1, 0
1, 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.6438
0.2324
0.0972
0.0267

⎞
⎟⎟⎠ and Q13

⎛
⎜⎜⎝

0, 0
0, 1
1, 0
1, 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.6016
0.2754
0.0924
0.0307

⎞
⎟⎟⎠ .

Note, in particular, that the marginal distribution of X1 is not the same in the two
subsystems. The exact marginal distributions of C12 and C13 are

P12

⎛
⎜⎜⎝

0, 0
0, 1
1, 0
1, 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.6416
0.2377
0.0967
0.0240

⎞
⎟⎟⎠ and P13

⎛
⎜⎜⎝

0, 0
0, 1
1, 0
1, 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.6000
0.2793
0.0921
0.0286

⎞
⎟⎟⎠ .

The agreement between the two procedures is surprisingly good. The Kullback–
Leibler (KL) divergence between the approximate and exact marginal distributions
is

KL[Q12|P12] = 2.08 × 10−4 and KL[Q13|P13] = 1.06 × 10−4.

The total variation (TV) distance, on the other hand, is of order 0.01, which is
excellent, given that all the parameters are O(1).

As will be shown below, this truncated Markov process provides an excellent
approximation in the limit of small grain size. We set the grain size to be s = ε
and take fi �→ εfi and aij �→ aij/ε (the reaction rates are proportional to the mean
sweeping time of the grain’s surface by a diffusing atom). In such situations, the mean
population sizes are of the order O(ε). Numerical tests show that the TV distances
between P12, P13 and Q12, Q13 scale like O(ε2). The predicted reaction rates show a
relative error that is O(ε) (see Figure 4.3). The reason for this asymptotic convergence
will be clarified in the next section.
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Fig. 4.3. Numerical results for the model problem of Figure 4.1: comparison between the full
master equation and the multiplane method. Relative errors in the prediction of the correlations
〈N1N2〉 (circles) and 〈N1N3〉 (crosses) versus the grain size s. The relative errors decay propor-
tionally to the grain size.

5. Asymptotic analysis for small grains. We now turn to analyze the accu-
racy of the multiplane method in two limits. In this section we treat the limit of small
grain size, whereas the limit of large grain size is treated in the next section. The
limit of small grains is imposed by setting fi �→ εfi and aij �→ aij/ε, where s = ε � 1
is the size of the grain. That is, influxes are very weak and reactions are very fast;
hence, as will be shown, mean population sizes are O(ε).

The numerical tests in the previous section suggest that the multiplane method
yields approximations with relative errors that are O(ε). Note that we are interested
only in relative errors since the s → 0 limit is trivial—the limiting distribution is
concentrated at the empty state—hence all absolute errors tend to zero.

At steady state the master equation takes the form
(5.1)

0 = ε
∑

Xi∈X

fi (S
−
i −I)P+

∑
Xi∈X

wi(S
+
i −I)(niP )+

1

ε

∑
(i,j,k)∈R

aij(S
+
i S+

j S−
k −I)(ninjP ),

whereas the multiplane model consists of the coupled system

0 = εfi (S
−
i − I)Qij + εfj (S−

j − I)Qij + wi(S
+
i − I)(niQij) + wj(S

+
j − I)(njQij)

+
aij
ε

(S+
i S+

j − I)(ninjQij)

+
∑

(i,�,m)∈R

ai�
ε

(S+
i − I)(ni〈N�〉i�,niQij) +

∑
(j,�,m)∈R

aj�
ε

(S+
j − I)(nj〈N�〉j�,njQij)

+
∑

(i,�,j)∈R

ai�
ε

(S+
i S−

j − I)(ni〈N�〉i�,ni
Qij) +

∑
(j,�,i)∈R

aj�
ε

(S+
j S−

i − I)(nj〈N�〉j�,nj
Qij)

+
∑

(k,�,i)∈R

ak�
ε

(S−
i − I)(〈NkN�〉k�Qij) +

∑
(k,�,j)∈R

ak�
ε

(S−
j − I)(〈NkN�〉k�Qij)

(5.2)
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for all Eij ∈ E, where

〈N�〉k�,nk
=

∑
n�

n�Qk�(nk, n�)∑
n�

Qk�(nk, n�)
and 〈NkN�〉k� =

∑
nk,n�

nkn�Qk�(nk, n�).

5.1. Expansion of the full master equation. To investigate the asymptotic
behavior of the solution to (5.1) as ε → 0, we formally expand the stationary solution
in powers of ε:

P (n) = P (0)(n) + εP (1)(n) + ε2P (2)(n) + · · · .

We then substitute this expansion into (5.1) and equate terms of the same power of
ε. The result is a hierarchy of equations:

0 =
∑

(i,j,k)∈R

aij(S
+
i S+

j S−
k − I)(ninjP

(0)),

0 =
∑

Xi∈X

wi(S
+
i − I)(niP

(0)) +
∑

(i,j,k)∈R

aij(S
+
i S+

j S−
k − I)(ninjP

(1)),

0 =
∑

Xi∈X

fi (S
−
i − I)P (0) +

∑
Xi∈X

wi(S
+
i − I)(niP

(1))

+
∑

(i,j,k)∈R

aij(S
+
i S+

j S−
k − I)(ninjP

(2)),

and so on.
The first set of equations in the hierarchy consists only of reaction terms. For

every state n0 we sum up this equation for all n below it (lexicographically), yielding,
for all (i, j, k) ∈ R,

S+
i S+

j S−
k (ninjP

(0)) = 0,

or

P (0)(n) = 0 if there exist ni, nj > 0 such that Eij ∈ E.

The second set of equations in the hierarchy consists of both desorption and
reaction terms. Here again, partial summation up to every n yields, for every Xi,

S+
i (niP

(0)) = 0,

i.e.,

P (0)(n) = 0 for all n �= 0.

Moreover, for all (i, j, k) ∈ R,

S+
i S+

j S−
k (ninjP

(1)) = 0

or

P (1)(n) = 0 if there exist ni, nj > 0 such that Eij ∈ E.
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Thus, the only entry of P (0) that does not vanish is P (0)(0), which by normalization
is equal to one:

(5.3) P (0)(n) =

{
1 for n = 0,

0 for n �= 0.

We proceed with the third set of equations in the hierarchy, which now includes
influxes as well. It is easy to see that

P (1)(n) = 0 for |n| > 1,

P (2)(n) = 0 if there exist ni, nj > 0 such that Eij ∈ E,

where |n| = n1 + · · · + nM is the total population size. The fact that the probability
of finding a pair of reacting molecules is at most O(ε3) is not surprising. Without
reactions, the probability of any population size of two or more is O(ε2). Since the
reaction rates scale like 1/ε, it follows that the probability of finding a pair of reacting
species is (at least) by a factor of ε lower than in the absence of reactions.

The only nonvanishing equations at this level in the hierarchy yield

(5.4) P (1)(n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

fi
wi

for |n| = 1, ni = 1,

−
M∑
j=1

fj
wj

for n = 0,

0 for |n| > 1.

We then take the fourth set of equations in the hierarchy, namely,

0 =
∑

Xi∈X

fi (S
−
i −I)P (1)+

∑
Xi∈X

wi(S
+
i −I)(niP

(2))+
∑

(i,j,k)∈R

aij(S
+
i S+

j S−
k −I)(ninjP

(3)).

By now, it is clear that the distribution for a given n scales at most like ε to the
power of |n|. The entries of P (2) for two-particle states are given by

(5.5) P (2)(n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

wi + wj

(
f2
i

wi
+

f2
j

wj

)
for |n| = 2, ni = nj = 1, Eij /∈ E,

f2
i

2w2
i

for |n| = 2, ni = 2, aii /∈ E,

0 for |n| = 2, ni = nj = 1, Eij ∈ E,

whereas the entries of P (2) for the one-particle states |n| = 1, ni = 1 are given by

P (2)(n) = − fi
wi

( ∑
Xj∈X

fj
wj

)
− fi

w2
i

( ∑
Xj∈X

fj

)
+

f2
i

w2
i

+
∑

j,Eij /∈E

wj/wi

wi + wj

(
f2
i

wi
+

f2
j

wj

)
.

By normalization, we may then extract P (2)(0).
Finally, given a reaction (i, j, k) ∈ R, we set |n| = 1, nk = 1 to find

(5.6) P (3)(n) =
fifj
aij

(
1

wi
+

1

wj

)
for |n| = 2, ni = nj = 1, Eij ∈ E.
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Thus, (5.3), (5.4), and (5.5) give to leading order the distributions of zero-,
one-, and two-particle states, whereas (5.6) gives the leading order term for the
two-interacting-particle states. This expansion in powers of ε can, in principle, be
continued further. At this point we are already in measure to evaluate the mean
reaction rates:

(5.7) rij = fifj

(
1

wi
+

1

wj

)
ε3 + O(ε4).

Note, in particular, that the influxes contribute multiplicatively to the reactions rates,
whereas the desorption rates act “in parallel.” Note also the “asymptotic indepen-
dence” between any two reactions; the probability of the two-particle state of two
reactive species is asymptotically unaffected by all other reactions.

5.2. Expansion of the multiplane method. A similar asymptotic expansion
can be performed for the multiplane equations (5.2). It is easy to see that to leading
order the results are unchanged, meaning that relative errors between the two proce-
dures are at most O(ε). Specifically, we assume the following asymptotic behavior:

(5.8) 〈N�〉k�,nk
= O(ε2) and 〈NkN�〉k� = O(ε3),

which implies that the equation for Qij is a closed equation up to relative errors of
order ε:

0 = εfi(1 + O(ε)) (S−
i − I)Qij + εfj (S−

j − I)Qij

+ wi(1 + O(ε)(S+
i − I)(niQij) + wj(S

+
j − I)(njQij) +

aij
ε

(S+
i S+

j − I)(ninjQij).

(5.9)

Expanding Qij(n) in power of ε,

Qij(n) = Q
(0)
ij (n) + εQ

(1)
ij (n) + ε2 Q

(2)
ij (n) + · ,

we obtain, after an analysis similar but much simpler than in the previous section,
the following solution:

Qij(0, 0) = 1 + O(ε),

Qij(1, 0) =
fi
wi

ε + O(ε2),

Qij(0, 1) =
fj
wj

ε + O(ε2),

Qij(2, 0) =
f2
i

2w2
i

ε2 + O(ε3),

Qij(0, 2) =
f2
j

2w2
j

ε2 + O(ε3),

Qij(1, 1) =
fifj
aij

(
1

wi
+

1

wj

)
ε3 + O(ε4).

One may now verify a posteriori that the ansatz (5.8) is consistent with this solution.
If we denote by r̂ij the stationary reaction rate predicted by the multiplane

method, then

(5.10) r̂ij = fifj

(
1

wi
+

1

wj

)
ε3 + O(ε4),

which compared with (5.7) gives one side of (1.1).
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6. Asymptotic analysis for large grains. In the limit of large grains we set
fi �→ fi/ε and aij �→ εaij , where the grain size is s = 1/ε, ε � 1. In this limit, influxes
are very strong and reactions are very slow, and, as a result, mean population sizes are
of order O(1/ε). Our goal is to show that, like in the small grain limit, the multiplane
method yields approximations with relative errors that decay with ε.

For large population size, one performs an asymptotic expansion known as Van
Kampen’s Ω-expansion [21, 8]. Specifically, we define for each species Xi a rescaled
population size xi = εni, which is an order one quantity, viewed as a continuous
parameter. We then define ρ(x) = P (x/ε). Our analysis relies on a formal asymptotic
expansion. Limit theorems making this analysis rigorous may be found in Kurtz
[15, 16].

6.1. Expansion of the full master equation. Substituting the scaled param-
eters fi, aij and the definition of the distribution ρ(x), the master equation (2.2) takes
the form

ε
∂ρ

∂t
=

∑
Xi∈X

fi (S
−
i − I)ρ+

∑
Xi∈X

wi(S
+
i − I)(xiρ)+

∑
(i,j,k)∈R

aij(S
+
i S+

j S−
k − I)(xixjρ),

where the increment and decrement operators add or subtract in quanta of ε. Assum-
ing that ρ(x) converges as ε → 0 to a twice differentiable function, we expand:

S±
i = I ± ε

∂

∂xi
+

ε2

2

∂2

∂x2
i

+ O(ε3),

which leads to the following asymptotic expansion of the master equation:

∂ρ

∂t
= −

∑
Xi∈X

fi
∂ρ

∂xi
+

∑
Xi∈X

wi
∂(xiρ)

∂xi
+

∑
(i,j,k)∈R

aij

(
∂

∂xi
+

∂

∂xj
− ∂

∂xk

)
(xixjρ)

+
ε

2

∑
Xi∈X

fi
∂2ρ

∂x2
i

+
ε

2

∑
Xi∈X

wi
∂2(xiρ)

∂x2
i

+
ε

2

∑
(i,j,k)∈R

aij

(
∂

∂xi
+

∂

∂xj
− ∂

∂xk

)2

(xixjρ)

+ O(ε2).

(6.1)

To O(ε2) terms, (6.1) is a transport-diffusion equation. The O(1) terms, which
involve only first derivatives, can be identified as the Liouville equation for the deter-
ministic system

(6.2)
dx

dt
= g(x),

where

gi(x) = fi − wixi −
∑

(i,k,�)∈R

aikxixk +
∑

(k,�,i)∈R

ak�xkx�.

Equations (6.2) are the rate equations, which constitute the deterministic large pop-
ulation size limit.

The O(ε) terms, which involve second derivatives, transform the equation into a
parabolic Fokker–Planck equation that corresponds to the Itô stochastic differential
system

(6.3) dx = g(x) dt +
√
εΓ(x) dW ,
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where W (t) is a vector of M independent Brownian motions, and Γ(x) is the M -by-M
diffusion matrix, whose square has entries

Γ2
ij(x) =

(
fi + wixi +

∑
(i,k,�)∈R

aikxixk +
∑

(k,�,i)∈R

ak�xkx�

)
δij

+
∑

(i,j,k)∈R

aijxixj +
∑

(i,k,j)∈R

aikxixk.

(The square root of a matrix is defined up to an orthogonal rotation; we may choose
without loss of generality the unique symmetric positive-definite square root.) This
stochastic system is the diffusion approximation to the master equation in the limit
of large population size.

At this stage, the Fokker–Planck equation (6.1) can be solved perturbatively, using
a WKB expansion [2]. To leading order, the rescaled population size x tends, up to an
1/
√
ε stochastic correction, to the solution of the rate equation (6.2). Switching back

to the original discrete variables, n, the stationary reaction rates predicted by the
rate equations deviate by a relative error of O(ε) from the exact stationary reaction
rate. Namely, if r̃ij are the reaction rates predicted by the rate equations, then

(6.4)
r̃ij − rij

rij
= O(ε).

6.2. Expansion of the multiplane method. A similar expansion can be per-
formed for the multiplane method. First, we replace Qij(n) by σij(εn):

ε
dσij

dt
= fi (S

−
i − I)σij + fj (S−

j − I)σij + wi(S
+
i − I)(xiσij) + wj(S

+
j − I)(xjσij)

+ aij(S
+
i S+

j − I)(xixjσij)

+
∑

(i,�,m)∈R

ai�(S
+
i − I)(xi〈X�〉i�,xiσij) +

∑
(j,�,m)∈R

aj�(S
+
j − I)(xj〈X�〉j�,xj

σij)

+
∑

(i,�,j)∈R

ai�(S
+
i S−

j − I)(xi〈X�〉i�,xi
σij) +

∑
(j,�,i)∈R

aj�(S
+
j S−

i − I)(xj〈X�〉j�,xj
σij)

+
∑

(k,�,i)∈R

ak�(S
−
i − I)(〈XkX�〉k�σij) +

∑
(k,�,j)∈R

ak�(S
−
j − I)(〈XkX�〉k�σij),

(6.5)

where

〈X�〉k�,xk
=

∑
x�

x�σk�(xk, x�)∑
x�

σk�(xk, x�)
and 〈XkX�〉k� =

∑
xk,x�

xkx�σk�(xk, x�).

(Recall that the summation over k, �,m is over all species not in Cij .)
We proceed with the expansion as in the previous subsection, except that the

functions 〈X�〉k�,xk
and 〈XkX�〉k� are a priori unknown. The function σij satisfies to

order O(ε):

dσij

dt
= −fi

∂

∂xi
σij − fj

∂

∂xj
σij + wi

∂

∂xi
(xiσij) + wj

∂

∂xj
(xjσij)

+ aij

(
∂

∂xi
+

∂

∂xj

)
(xixjσij)
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+
∑

(i,�,m)∈R

ai�
∂

∂xi
(xi〈X�〉i�,xi

σij) +
∑

(j,�,m)∈R

aj�
∂

∂xj
(xj〈X�〉j�,xj

σij)

+
∑

(i,�,j)∈R

ai�

(
∂

∂xi
− ∂

∂xj

)
(xi〈X�〉i�,xiσij)

+
∑

(j,�,i)∈R

aj�

(
∂

∂xj
− ∂

∂xi

)
(xj〈X�〉j�,xjσij)

−
∑

(k,�,i)∈R

ak�
∂

∂xi
(〈XkX�〉k�σij) −

∑
(k,�,j)∈R

ak�
∂

∂xj
(〈XkX�〉k�σij).

The next order terms are diffusive.
The equation for σij is the Fokker–Planck equation for the Itô stochastic differ-

ential system

(6.6) dxij = gij(xij) dt +
√
εΓij(xij) dW ij ,

where xij = (xi, xj) is a stochastic process representing the populations sizes in Cij .
The drift function gij is given by

[gij ]i(xij) = fi − wixi − aijxixj −
∑

(i,�,m)∈R

ai�xi〈X�〉i�,xi

−
∑

(i,�,j)∈R

ai�xj〈X�〉i�,xi
+

∑
(j,�,i)∈R

aj�xj〈X�〉j�,xi
+

∑
(k,�,i)∈R

ak�〈XkX�〉k�.

An analogous expression holds for [gij ]j(xij).
The set of coupled Fokker–Planck equations can also be solved perturbatively,

using a WKB expansion. To leading order, the copies of the same xi coincide, and
the variables {xij}, with their common components identified, satisfy the same rate
equations (6.2) as x in the previous section. Thus, the reaction rates r̂ij predicted by
the multiplane approximation deviate by a relative error of O(ε) from the prediction
of the rate equations,

r̂ij − r̃ij
r̃ij

= O(1/s), s � 1,

and hence from the exact stationary reaction rate, rij .

7. A numerical test. We now test of the accuracy of the multiplane method
for a particular example. We consider a network of three reactive species that form a
“clique”—every pair of species coreacts. The products of the three reactions are not
reactive; hence they can be eliminated. Thus, the network consists of the following
reactions:

X1 + X2 → ∅, X1 + X3 → ∅, X2 + X3 → ∅.

The multiplane method calculates the approximate bivariate distributions Q12, Q13,
and Q23. We used the following parameters:

f1 = s, f2 = 1.5 s, f3 = 2 s,

w1 = 2.5, w2 = 3, w3 = 3.5,

a12 = 1/s, a13 = 2/s, a23 = 3/s,
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Fig. 7.1. Top: Log-log plot of the stationary reaction rate r12 versus the grain size s for the
clique of three reactive species. Comparison between the exact solution (circles), the multiplane
prediction (solid line), the small s asymptotic behavior (5.7) (dashed line), and the rate equations’
prediction (dash-dotted line). Bottom: Semilog plot of the relative errors of the reaction rates
predicted by the multiplane method.

where s is the grain size. In Figure 7.1 (top) we plot the stationary reaction rate r12
as a function of the grain size s. The exact solution is represented by circles, The
multiplane prediction is represented by a solid line, the small-s limiting behavior (5.7)
is represented by a dashed line, and the rate equations’ solution is represented by a
dash-dotted line. Note the accurate interpolation of the multiplane method between
the two limiting regimes. In Figure 7.1 (bottom) we plot the relative errors of the
three stationary reaction rates, r12, r13, and r23, predicted by the multiplane method.
The relative errors reach a maximum in the vicinity of s = 1 and, as predicted, decay
in both limits of small and large grains. Note that even at their peak, the relative
errors are of the order of a few percents, which is (once again) surprisingly good.

8. Discussion. The main goal of this paper was to systematically formulate the
multiplane method and shed some light on the reasons for its success, despite its
“uncontrolled” nature, as reported in [17]. We considered reaction networks in which
every reaction is generated by two reactants. The multiplane method was defined as an
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algorithm for producing a closed system of equations for approximating the marginal
distributions of all pairs of coreacting species. Thus, the heart of the method is the
premise that most of the dynamics are captured by the joint distributions of pairs
of coreacting species. Even in the case where a set of reactants constitutes a clique,
their joint distribution can be approximated by a set of pairwise distributions for the
sake of predicting mean reaction rates. Our methodology can easily be adapted to
more general situations, such as reactions with more than two reactants. Moreover,
while the present analysis treats irreversible reactions, the dissociation of molecules
can easily be accounted for by the addition of flux-like terms into the master equation.

We analyzed the method in two extreme situations, weak influxes and fast reac-
tions, on the one hand, and strong influxes and slow reactions, on the other hand. In
both limits, the multiplane method was found to yield predictions with relative errors
that vanish asymptotically. It should be emphasized that the two limits involve very
different analyses, and the asymptotic exactness of the method in both limits has to be
attributed to totally different reasons. While each of the limits can be approximated
by its own methods (rate equations in one limit and a low-dimensional Markov pro-
cess in the other limit), the multiplane method has the merit to “interpolate” between
those two limits. As such, it makes a good candidate for dealing with intermediate
situations in which no simple analysis is available.

The multiplane method can be viewed as part of an abundance of approxima-
tion methods for structured probabilistic models [14]. A similar surprising accuracy
was observed, for example, in the context of general continuous-time Bayesian net-
works [19], where no small parameter exists. A natural question is whether such
approaches can be justified on more general grounds, for example, by identifying
them as optimal within a certain subclass of models.
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