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THE CORE OF A COOPERATIVE GAME WITHOUT
' SIDE PAYMENTS()

BY
ROBERT J. AUMANN

The core of an #-person game, though used already by von Neumann and
Morgenstern [15], was first explicitly defined by Gillies [5]. Gillies's defini-
tion is restricted to cooperative games with side payments and unrestrictedly
transferable utilities(?}, but the basic idea is very simple and natural, and
appears in many approaches to gamg theory. We consider a certain set of
“aqutcomes” to a game, and define a relation of “dominance” (usually not
transitive) on this set. The core is then defined to be the subset of cutcomes
maximal with respect to the dominance relation; in other words, the subset
of outcomes from which there is no tendency to move away—the equilibrium
states. '

To turn this intuitive description of the core notion into a mathematical
definition, we need precise characterizations of

{a) the kind of game-theoretic situation to which we are referring {co-
operative game, nancooperative game, etc.);

{b) what we mean by “cutcome”; and

(c) what we mean by “dominance.”

Different ways of interpreting these three elements yield different applica-
tions of the generalized “core” notion, many of them well-known in game
theory. Gillies's care, Luce's y-stability [10], Nash's equilibrium points [12],
Nash's soluticn to the bargaining problem [13](3), and the idea of Pareto
optimality—to mention only some of the applications—can all be obtained
in this way.

Here we shall be concerned exclusively with cooperative games without
side payments(¥). Our procedure will be to generalize von Neumann's funda-
mental notion of characteristic function to this case, and an the basis of this
generalization to define the core in a way that generalizes and parallels the
core in the classical theory—i.e., Gillies's core. The generalization of the char-
acteristic furction is of interest for its own sake also; for example, a theory
of “solutions” has heen developed that generalizes aud parallels the classical
theory of solutions and is based on the characteristic function [3; 16].

Received by the editors July 18, 1960.

(4 Most of the results proved here were announced in [3], to which the reader may refer
for additional intraductary and background material. The basic ideas of this paper were con-
ceived jointly with B. Peleg, to wham the author is greatly indebted,

%) Such games will be called classical games in the sequel, and the theory described in
[5; 15] will be called the classical theory.

) Cf. [6].

{*) Classical games are known to be special cases of these games.
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As in the classical theory, our “outcomes” will all be payoff vectors. We
leave aside for the moment the question as to which particular set of payoff
vectors we wish formally to consider as our set of outcomes. This brings us to
the question of how to characterize the notion of “dominance.”

Although formally it is simpler to define the characteristic function first
and then to base on it the definition of dominance, the more intuitive pro-
cedure is the reverse: We must first state what we require from the dominance
relation, and this will enable us to motivate our definition of characteristic
function. Following the classical theory, then, we will say that a payoff vector
x dominates another one ¥ if

(i} there is a coalition’S that prefers x to ¥, and

(ii} this preference is “not idle,” i.e. S can actually achieve at least its por-

tion of .
What is meant by condition (i} is clear; each member of .5 must get more in %
than in 3. As for condition (ii}, its exact meaning depends on how we wish to
interpret the words “can actually achieve”; or to say the same thing in more
technical language, it depends on when we wish to consider the coalition S
“effective” faor the payoff vector x.

In the sequel we will give a number of different definitions of effectiveness,
each one leading to a different notion of dominance and hence to a different
core. An alternative procedure is ta assume that we already know for each
coalition .S which are the payoff vectors x for which S is effective; on the basis
of this information we can then determine the core, without having to know
the normal form of the game or the definition of effectiveness. A game pre-
sented in this form is said to be in characteristic function torm, The character-
istic function form of a game can always be calculated from its normal form
and a particular definition of effectiveness. Note the similarity with the char-
acteristic function of the classical theory, there there is assaciated with each
coalition § a number (S}, and the vectors x for which S is effective are pre-
cisely thase for which(®) D s x*<2(S). Here the set of x for which S is effec-

- tive need not have such a simple form, and cannot be characterized by a single
number; we therefore define »(S) to be the set itself, rather than a number
that characterizes the set. A considerable part of the theory can be developed
on the basis of the characteristic function, without referring to the original
game or to the particular notion of effectiveness we are using. Asin the classi-
cal theory, some assumptions must be made about »(S) to justify this de-
velopment ; these assumptions are natural ones, and we will establish that
they hold for the particular definitions of effectiveness that we will wish to
use.

We now return to the question of which payoff vectors we wish to con-
sider as “outcomes.” One possibility is the set H of all those payoff vectors
that can be obtained by means of some correlated mixed strategy of the set

(%) The coordinates of the payoff vectors are indexed with superseripts.
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N of all players. Lt is also possible to impose various mare or less natural
restrictions on the set of outcomes. There are two such restrictions that have
received special attention in the literature, namely “individual rationality”
and “group rationality.” The former restricts the outcomes to payoff vectors
in which each individual player gets at least what he can guarantee himself
without any aid from the other players; under the latter restriction, a payoft
vector is not called an “outcome?” if there is another payoff vector in H which
yields more to each player. These two restrictions can be imposed on the
“outcome” concept in various combinations, so that we obtain four possibili-
ties for this concept. In the classical theary it is easily established that all
four lead to the same core; in the present theory this is also true, but the proof
is no longer trivial. An interesting sidelight on this theorem is that its proof
depends essentially an the assumption that H is a polyhedron (this assump-
tion always holds if we start out with a finite game). If we replace H by a non-
polyhedral convex set, the theorem becomies false; such a situation can ac-
tually be realized in the case of games with infinite strategy sets.

The paper is divided into two parts: the first part (§§1-7) deals with the
theory of games in characteristic function form; the second part (§§8-10)
deals with applications to games in normal form. §1 is devoted to a review of
notation. In §2 we give the formal definition of a game in characteristic func-
tion form. §3 is devoted to the definition of various basic concepts such as
domination, individual and group rationality, and core. §§4 and 5 are devoted
to the statement and proof of the theorem that all the sets of outcomes dis-
cussed above lead to the same core. In §6 we give the counter-example to this
theorem when H is not polyhedral. In §7 we discuss the composition of two
games, and remark that the care of the composition is the cartesian product
aof the cores of the companents, In §8 we pass to the normal form. We define
two kinds of effectiveness, both generalizations of the classical definition, and
show that they are different. In §9 we show that both these definitions lead
to characteristic functions that satisfy the conditions of §2. In §10 we discuss
the connection between the supergame(f) of a game and its various cores; in
particular we shall show that the set of acceptable payoff vectors of a game
[t; 2] coincides with the core for ane of the two definitions alluded to above.

1. Notation. N will denote a fixed finite set with # members, who will be
called players. E¥ will denote euclidean space of » dimensions, the coordinates
of the points being indexed by the members of N; formally, E¥ may be con-
sidered the set of functions from N to the reals. The points of E¥ will be called
payoff vectars, If x&E¥, the coordinates of x will be denoted by x%, where
i@ N. For fixed xCE¥ and SCN, we will call the S-tuple {x%}:cs an S-vector
and denote it by x5.(") Note that x=x¥, If x% and 45 are S-vectors, then any

(*) The game each play of which consists of an infinite sequence of the plays of the original
game.
{7) %% is the projection of x on E#; if ¢ is considered a function, then %9 is x restricted to S,
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relation between x% and #% is to be understoad coordinate-wise; e.g., x5 3¢
means x*Z ¥ for all {C.S. If SCN then (£5, y¥~5) denotes the payoff vector z
such that 29=x5 and g¥ 8§ =4¥—5, _

Subsets of N will be called coalitions, and will be denoted by S and 7.
Lower case latin letters towards the end of the alphabet will denote payoff
vectors. i denotes the empty set. In addition to its usual meaning, 0 will
sometimes denote a vector all of whaose components are 0; no confusion will
result. The letter ¢ always denates a player. Unless the contrary is specifically
indicated, summation, the taking of maxima or minima, etc., will be over 1;
for instance, ES means E,«ES-. The symbal X denotes the cartesian preduct.

We shall need a norm on E¥. Any norm with reasonable properties would
serve our purposes; we shall use the maximum, defined by ||x]| =maxy | xf.
In addition to the usual norm properties, we note

) if x> 0 and y > 0, then || + 5| > max (|4, [l3]).

Similar to the definition of norm on E¥, we define a norm on ES by ||«9|
=maxs | x¢|.

The numbering of formulas, thearems, etc., starts from the beginning in
each section; references from one section to another specify the section num-
ber as well as the formula number.

2. The definition of 4 game in characteristic function form.

DEFINITION, A characterisiic function(®) is a pair (N, #), where N i3 a finite
set and # is a function that carries each subset § of ¥ into a subset 2(5) of
E¥ gsa that

(1) (S) 45 convex;

(2) #(8) is closed;

3) () =EY;

(4) 4f xCu(8) and y8 x5, then y&u(S);

(5) if SNT =, then o(S\IT) Du{S)YNa(T).

A game in characteristic function form, or simply a game, is a triple (N, #, H),
where (N, ¥) is a characteristic function and

(6) H is o convex compact polyhedral subset of EX.

Conditian (5} is the natural generalization of the classical nation of super-
additivity: it says that if a certain outcame can be achieved by the disjoint
coalitions S and T when acting separately, then it can also be achieved by
them when acting in concert.

We shall say that (N, », H) is an ordinary game if

(7Y «Ev(N) if and only if there is a yEH such that £ =y.

This condition is easily justified intuitively, if we consider the interpretations.
of H and #(N): H is the set of all payoff vectors that can be achieved by a
joint strategy af all of N, whereas a(N) is the set of payoff vectors x such that

(" Note the similarity with the “end games” used by Ishell [8] in a somewhat different
context. {This work is independent of Isbeli's.)
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N can jointly achieve at least x. The notion of game as originally defined
(without (7)) provides a generalization of von Neumann and Morgenstern's
“extended” game [15](%); this is why (7) was not included in the original
definition(*%}.

3. Domination, core, rationality. Fix a game (N, v, H). A payoff vector %
is said to dominate a payoff vector ¥ vie S {notation: x> gy) if xE2(S) and
x8> 45, » is said to deminate vy (notation: x>>v) if there is an § such that
x>gy. [f Risan arbitrary set of payoff vectars, we define the R-care C(R) to
be the set of all members of R not dominated by any other member of R.

It is easy ta show that for each 1& N, there is an extended real number(*')
¢t such that v({é])= [x: x‘<w‘]. A pa¥off vector x is called mndividually ra-
tional if xZu¥, x is called group rational if there is no y&H such that y>x.
We will denate by E the set of group rational payoff vectors in H, and by 4
the set of individually rational payoff vectors in H; also, we set(1?) A =EMNA
and E=H.

&

-l

Fro. 1

We will consider the R-cores for R=E, E, A, and A. For two-person
games, all these cores turn out to be equal to 4. This is a set which is related
to what has been called the “negotiation set” [11, p. 118], but is not always
the same thing. {See Figure 1, in which the negotiation set is the line bc,
whereas the set A is the broken line ebcf. Note that eb is horizontal and ¢f is
vertical.)

(%) See [3, §7].

{19} Half of (7}—the “only if” half—was inctuded in the definition of “game” as given in
[3, §2]. What we call “game” here is called “extended game" in [3], and what we call “ordinary
game" here is slightly stronger than either of the definitions in [3].

{11} A real number or + = or — 9,
{17} Following the notation of [5, p. 58].
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4. A lemma on polyhedral sets. If BCEX, denate by I(B} the set('d) of
all members x of B for which there is no y such that y>=x. For example,
A=1I(4) and E=I(E). The lemma we shall establish in this section may be
described as follows:

If B 1s ¢ bounded polyhedron in E¥, then for each x in B but not in I(B),
there is a payoff vector x' in I(B) such that if we move along the vay connecting
x to x'’ at a constant speed (which is the same for all xC B), then the raie of in-
crease of each of the coordinates is uniformly bounded away from zero (for alt
xEh).

If B is not a polyhedron this need not be true, as we shall see in an exam-

ple.
For x>0, define f(x) =max. jen{x*/x?), We have

1) flx+ 3 £ max(f(x), f()).

LeMMA 2. For euery closed polyhedron B in E¥, there is ¢ positive number K
such that for all x©B —I(B), there 15 an ' € B such thal

(3) ¥ >x and f' —x2) <K

Proof. Suppose B to be defined by the set of linear inequalities Z,(x)
2b, - -+, Ln(x) Zbm; we denote this set by M. Each subset Q of M defines
a subset Bg of B, namely the set of those elements of B which satisfy the
inequalities in @ strictly, and the inequalities in M — Q as equalities. Some of
the Bg may be empty; but those that are not are distinet, and we have
B =Ugcu Bg. {(Geometrically, the Bg are the interiors of the faces of B

For each @ such that By—I(B)# (4, choose a payoff vector xg in
Bq—1(B). Then there is a payoff vector ¥g€ B such that y4> xe. Now let z
be an arbitrary element of Bg; define y5=x+8(yg—xq). For sufficiently small
positive §, ¥; satisfies the inequalities in Q strictly; the inequalities in M —0Q
are satisfied by y; for all positive 8. Hence for positive § sufficiently small,
B and y:>x; we define x' =y; for this 8. Then ' —x=58(yg—1xq), so that
fl" —x) =f(yqg—xq). Setting K =maxqcu f(yo—%q), we obtain f(x'—x) <K
for all those x that are located in some By for which Bg—I(B) # ¢f. But since
every xC B —I(B) is located in some such By, our proof is complete.

LEMMA 4. For every compact polyhedron B in E¥| there is a positive number
K such that for all x©B —I(B), there 4s an x'"CI{B) such that 2"’ >x and
fle’ —x) 2 K.

Proof. For each x&B-I(B), let F. be the union of the single point «
with the set of all "€ B satistying (3). F. is compact, and therefore the func-
tion ||y —xf|, considered as a function of v, attains its maximum in F., say

() If B is closed and convex, then J(B) is the weak top of B over its base as defined in [7].
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at the point x’’. Suppose "' &I(B). Then by Lemma 2 there is a point y& B
- such that y>x"" and f(y—=x"") K. From (1) it then follows that f(y —x) S K
and from (1.1) that ||y —x]| ={[(y—=") + (& —0)| >||«" —=]|; hence x'* does
not have the maximum property by which it was defined, which is a contra- '
diction. This completes the proof.

COROLLARY 5. If B is a compact polyhedvon in E¥, then there is a positive
swumber K, such that for each x&B—I(B), there is an x''CI{B) such that
%' >x and for each iEN, z"i—xiz||x" — || /K.

5. Relations between the R-cores for R=E, E, A, and 4. Fix a game
(N, 2, H). The crux of this section is the following theorem:

TucoreM 1. Let B be a compact polyhedron in EY, and let y&I(B). If
there is ¢ zEB whick dominates v, then there is also o w&I(B) which
dominales ¥,

Proof. We may assume without loss of generality that y=0. Let ¥V denote
the closed paositive orthant {x:x20 }. Since 0=9&I(B), B cannat intersect
the interior of V, and there is therefore a hyperplane g(x) = Yy cixi=0 which
separates Bfrom V. W. 1. 0. g. g(x) 0 for all x€ B, and g(x) 20 for all x& V;
from the latter fact it follows that ¢¥ 20. Nate that if #&B and g{x) =0, then
x € I(B); otherwise we would have an x:& B such that x,>%, and since not
all the ¢ vanish, it would follow that g(x) <g(x:) =0.

Let the effective set for the domination of 2 over O be S; set h(x) = Zy_g ey,
Suppose there is an x€ B such that x>0 and k(x) 20. Then since x%>0 and
520 it follows that 2. ¢ixi=0. Hence g(x) =0, and therefore x&I(B); but
then we are finished (set w=x). Therefore we may assume without loss of
generality that -

(2) f«C B and z>50, then A(x) <0,

Let k= (ning 2% /2; note that £>0. Let € be the set of those x in B for
which £5=@ and ||xs|| =k. Cis compact, and therefore k(x) attains its maxi-
mum in C at a point %, in C. If 21 & 1(B), then there is an x,& B for which
x2>x; hence |[«3]] >||«5|| =&, and

3) Bxa) = B{xy).

Set 3= (/|| x5|| )%z Then ||x5]| =&, x5 >0, and since B is convex, x,&B. Hence
23 C, and therefare E

) B 2 hs).

Since ||«5]| = &, it foliows that x5 <2%; but since 2€(S), it follows from (2.4)
that x;E#(S). Hence from x50, it follows that x;>s0. Hence by (2),
B(xs) <0. But h(xs) = (&/|| 5] ) a(x2), and k/][x5] < 1; hence R(xs) < h(xs), which
contradicts (3} and (4). We conclude that £,&7(B).
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Now since ||x][| =&, it follows that &5 <25; therefore x,;€2(S). If x{ >0 it
then follows that x;, 50, and since x,CI(B), we are finished (z=2x). [t there-
fore remains only to deal with the case in which one of the coordinates of 25
vanishes. In this case, set §=%k/(K+1), the K being that of Corollary 4.5.
Let x4 B be such that «§ >0 and ||, —#,|| £3; such an x4 can be constructed
by choasing a point sufficiently close to x; on the line segment joining z to %1
Define x{’ in accordance with Corollary 4.5, If [[x{* —x4[ > K8, then x{' {—x}
> & for each 1& N; therefore for 4 N we have

2 — 2 = (x:“— x,;) + (x,, — xi) > 86— |x: - xi] 26—~ [[a — x| 20

Hence x{’ >x and x{' €I(B), contradicting %, € I(B). Hence ||«{* — x| S K3.
But then

! — | = [J2f = 2| + lle— x| £ K8+ 8 =k,
hence
%[ < {14 — 2| + =] = 2k = ming 2.

Hence x{’ S5 25 and from (2.4) we deduce x{’ €(S). Since x{'$>x5 =0, we
obtain xi{’ >0 and x{’ €I{B). The proof of Thearem 1 is now complete
(w=x{"}).

CoROLLARY 5. If B is a compact polyhedron, then C(I(B))=¢€(B)YMI(B).

Proof. If v @(I(B)), then surely y&I(B). If ¥ were not in €(B), then it
would be dominated by a member zof B, and hence by Theorem 1, by a mem-
ber w of J(B); but then it would not be in ¢{I{B}). Hence y& E&(B) also,

Conversely, if ¥&I{B) and is not dominated by any member of B, then
a fortiori it is not dominated by any member of I(B). Hence y& €(I{B)).

COROLLARY 6. G(E) = (EYNE; ¢(A)=c(A)N4.

CoROLLARY 7. If (N, v, H) is an ordinary game, then C(E)=C(E) and
e(d)=e(d).

Proof. We need only remark that if BC@(N) then @(B)CI(B); for any
payoff vector not in I{B) is dominated via N by some other payof’f vector.
Our result now follows by applying Corollary § with B=E or 4.

THEOREM &. If (N, 2, H) is an ordinary game, then €(E)=C(E)=¢c(4)
=@(4).

Proof. It is sufficient to prove that €(E)=@(4). Clearly ¥ &Ny o({i});
hence by (2.5), 2" Es{N). Heuce by (2.7) there is a y&H such that y=o¥.
Now let x& e(E). If s, then for some ¢, xi<vi=y% Let 3 be on the line
segment connecting ¥ to x, but so close to x so that »*Z 4, >x" Since Eis
convex and both x and v are in E (which is the same as JI), so is y1; but then
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w7 1ax, and therefore x & €(E), a contradiction. Therefore 2 & A. Therefore
if x& @(d) then there is a 3&4 such that 2> x; but since ACE, it follows
that 2C E, and therefore x€E@(E), again a contradiction. We have shown
that e(E) C e(4).

Conversely if x€€(A), then surely x& E, since EDADE(4). Hence if
x & e(E), there must be a y& E and an S CN such that y>gx. In particular,
8> x8 and yCu(S). Set z=(¥5, ¥~5); then by (2.4), 2&€8(S), and therefore
2C2(S)MNw-s v({1}). Hence by (2.5), 2&3(N). Hence by (2.7) there is a
wE H such that w2 In particular, w822 =48> 3 29% (since x&4), and
wN—S = aV¥—8=9¥~5. hence w& A. Now let 21 be on the line segment connect-
ing @ to x, but so close to x so that 5> 2 > %8, Since 4 is convex and both
xand ware in 4, so is w,; but since yCo(S), it follows from (2.4) that wCv(S).
Since w’f)-xs and w E0(S), it follows that ;> sx; therefore since wiE A, it
follows that x4 ¢(d), a contradiction. Hence x&e(E), and the proof is
complete,

If G is an ordinary game, we shall call the common value of e(E), e(E),
&(4), and €(4) the core of G.

6. A counter-example. The results of §§4 and 5 may fail if B (or H) is
not polyhedral. In the case of Lemma 4.2 a circle in two dimensions is a
counter-example. In the case of Theorem 5.1, let N= [ L, 2, 3} and let B
be the convex hull of the sets € and I}, where

C={a:al2 0,222 0,0 =0, &)+ (@) = 1],

D= feiaz 020208 =1, () + (& + 1) < 4.
Then
I(B) = DUIx:x1=0,x2=1,0§x3

A

1}.
Define the characteristic function # by
¥ =0, o(§ifd)y = {xrat £ 1/2 and f = 1/2},
v(N) = lx: there is a y € H such that y = x}

We have (1/2,1/2,1/2)E€B and (1/2, 1/2, 1/2) > 115(0, 1, 0), but there is no
member of I(B) that dominates (0, 1, 0). If we set H=B we obtain eounter-
examples to the other results of §5.

7. Composition. Let G, =(Ny, i, Hy) and Gy=(Ns, vz, Ha) be games whose
player sets N; and N, are disjoint. Intuitively, the composition G of Gy and
G is the game each play of which consists of a play of Gi and a play of G,
played without any interconnection. Formally, we define G=(N, 2, H),
where N=N{UN,, H=HXH, and for each SCN, »(8)}=n(SNNi}
XEJQ(S(-\NQ).

Let RiC E¥ and Ry(CEM, and set R= R X Rx. Then it is easilv seen that
@(R) = &(Ry) X €2(Ry). Furthermore, if Gy and G, are ordinary, then so 18 G.
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It follows that in this case, the core of G is the cartesian product of the cores of
G], and Gg.

8. a-effectiveness and S-effectiveness. Up to now we have been treating
games in characteristic function form only; we now turn to games given in
normal form, and ask how we may obtain the characteristic function form
from the normal form. As we remarked in the introduction, this may be done
in a number of ways, depending on our definition of effectiveness. Here we
shall give two such definitions.

A (finite) game T in normal form consists of a finite set N, called the set
of players, a finite set P' for each 1E N, called the set of pure strategies for
player ¢, and a function F from the cartesian product P of all the Pi to E¥;
F is called the payof function(**), and its ith coordinate F*is the payoff to 1.
If SCN, we write PS= [ Pi, the cartesjan product being meant. A proba-
bility measure on P% will be called a c-strategy S-vector (¢ for correlated); the
set of all ¢-strategy S-vectors will be denoted C5. Note that a c-strategy
{i}-vector is the same as a mixed strategy for player i. If ¢NECY, then
F(c¥) will denote the expected payoff if the c-strategy N-vector c¥ is played.
If §, TCN, SNT=, then (¢¥XcT} denotes the product measure(!%) on
PAUT = PSXPT induced by ¢f and ¢7. Occasionally we shall have cause to
consider a topological and a convex structure on €%; in this case 5 will be
considered a subset of EP".

DEFINITION. (1) A coalition S is said to be a-effective for the payoff vector
x if there is a ¢5& C% such that for each ¢¥SE&C¥ 5, we have F3(cI X V-5
=xs,

(2) Sissaid to be 8-effective for x if for each ¢¥~SE& CV—S there is a ¢SS (S
such that F3{¢¥ X c¥—8) = xS,

Intuitively, a-effectiveness means that .5 can assure itself, independently
of the actions of N—.5, that each of its members ¢ will receive at least his
coordinate x* of x. B-effectiveness means that S can always act so that each
of its members ¢ receives at least x but the strategy that it must use to
achieve this end may depend on the strategy used by N —35; in other words,
N—8 cannot effectively prevent S from obtaining at least(1%) x4 Although
a-effectiveness seems at ficst to be the intuitively more straightforward con-
cept, technically speaking f-effectiveness possesses certain interesting prop-
erties not shared by e-effectiveness (see §10) which lead one to think that it
may eventually turn out to be the more significant concept.

To construct a game in which a-effectiveness and S-effectiveness are not
the same, let N= {1, 2, 3} and S={1, 2}. Let P5 have two members p
and #5, and P? two members p¥ and p2, Define F$ by the matrix

(4 Denoted by A in [1: 2].

() Denated (c5, ¢T) in [I]

(4} The difference between the two kinds of effectiveness may be formulated as the dif-

ference between a maxmin and a minmax; for 2-person games it follows from the von Neumaun
thegrem that the two concepts colncide, but this does not generalize to more players.
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Pf 1, —1] 0, 0

s 10, 0=, 1

the values of F? need not concern us. Then for (0, 0, 0), S'is B-effective but not
a-effective,

9. Passage from the normal form to the characteristic function form. Fix
a game T in normal form, and for each SCW, let 2.(S} be the set of payoff
vectors for which S is a-effective. Define 24(S) similarly, using S-effectiveness
instead of a-effectiveness. Define H = F(C¥); H is the convex hull ol all the
payoff vectoars of the form F(p), where pE P. Both (N, v, H) and (¥, v, H)
are ordinary games (though they may be different, as we saw in the previous
section): except for Condition 2.5 in the case of B-effectiveness, all the condi-
tions of §2 are easily verified for both these games. To establish Condition 2.5
for (N, #g, 1), let xEva(S)Mwa(T) and ¥V~5TE C¥—5-T Define subsets U
and V of C§XCT as follows: '

U = {(c5 cT): FT(c® X T X V5T) 2 7},
Vo= {(c5 ¢F): PSS X T X N5T) 2 xS},

Applying the von Neumann-Kakutani fixed point theorem('7), we obtain the
existence of a point (5, ¢5) in UNV. Setting M= (5%cl, we obtain
FRUT(BUT o H=3-T) 2 5T and it follows that x&2(S\JT).

From (2.6) and (2.7) it follows that in an ordinary game, #(¥) must be
polyhedral. The reader may suspect that in the characteristic function form
of a finite game in normal form, v(S) must be polyhedral for all S. This is
true for 14(S), but not for #(S). The example is the same as in the previous
section, except that Fi(3f, pd) = Fi_(pf, $3y=0 rather than 1. (See Figure 2;
22(S) is the cylinder whose cross-section is the shaded area.)

Note that we always have 2,(V) =23(N) and ¥ =f (the former is trivial,
the latter follows from the minimax theorem for 2-person zero-sum games
[15]). In particular, a- and B-effectiveness are equivalent for all 2-persan
games.

If Ty and T, are games in normal form with disjoint player sets, we may
define their composition T by N = Ni\U Ny, P =P X Py, F(pr, po)
= (Fi(p1), Falpa)). It is easily established that either definition of effective-
ness yields a characteristic function form for I' that is the composition of the
corresponding characteristic function forms of T and Ty in the sense of §7.

10. The supergame. Nash's notion of equilibrium point for noncoopera-
tive games {12] is an example of the core notion as described in the introduc-

(17 [9, Thearem 2]; zee also [14].
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tion. The “outcomes™ are strategy n-tuples; one strategy sn-tuple f “demi-
nates” another oune g if they coincide for all but ane of the players, and that one
player prefers(*!) f to g. Thus an equilibrium point is a strategy n-tuple f
with the property that if all the players have reason to believe that f will be
played, then no player will be tempted to deviate from f. In the context of
cooperative games, it is natural to broaden the definition of dominance so
that f dominates g whenever they coincide for all players not in a certain
coalition S, and the players in § each prefer f to g. When dominance between
strategy #-tuples is defined in this way, members of the core are called strong
equilibrium points(?).

-
4R

-l

4
(- 2=2/[d]— 0| -1, ~1<11<0

Fic. 2

This definition of dominance seems well justified for a single play of a
game which is not to be repeated. If the game is to be played repeatedly,
though, then a player or group of players may be unwilling to deviate even
 if the deviation will yield a temparary advantage, for fear of future retalia-
tior. If future retaliation is to be ruled out, then S must be able to madéntain
its payoff at the level of f; that is, S must be effective {or f. We are thus led
to the conclusion that a strategy #-tuple for one of a long sequence of plays
of a game I' should be considered in equilibriam if its payoff is in the core of
the characteristic function form of I'.

The question now arises, is it the a-core or the S-core that is appropriate
for use in this context, or possibly we should use an altogether different notion
of effectiveness? To answer this question, we consider a long sequence of
plays of I' as a single play of a game I'*, which we call the supergame of T
[1; 11]. It stands to reason that equilibrium behavior for ', knowing that

{*4 Le., receives a higher payoff when g is played.
{19 A related definition is given in [4].
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there will be more plays of T in the future, should correspond to equilibrium
behavior in ['*, provided that I'* is not repeated. But for games that are not
repeated, we have a perfectly well-defined equilibrium notion, namely that
of strong equilibrium point. And it turns out that it is precisely the S-care
of the characteristic function form of T' that corresponds to the strong
equilibriurm peoints in I'%,

Formally(?"), the supergame I'* is the game each play of which is an in-
finite sequence of plays of I'. As in finite games, an n-tuple f of supergame
strategies is said to dominate another n-tuple g if they coincide for all players
not in a certain coalition S, and the players in S each prefer f to g. To define
the word “prefer” in this context, we consider a sequence Iy, ', - - - of plays
of T, and look at the average payoff for all the plays up to the kth. A number
of definitions of preference are now possible, of which the following are the
two “extreme” possibilities: '

{(a) S prefers f to g if the probability is positive that infinitely often the
average pavoff to each member of S will be uniformly(*) larger if f is used
than if g is used.

(b) S prefers f to g if it is certain(**) that from a certain play I'y onwards,
the average payoff to each member of S will always be uniformly larger if f
is used than if g is used. '
Au #-tuple f of supergame strategies is said to have the payoff x if with proba-
bility 1 the average payoffs(¥) tend to x. f is said to correspond(*) to a
c-strategy vector ¢ in T' if the payoff to f exists and is the saine as the payoff
to ¢ in T. An #-tuple of supergame strategies is said to be a strong equi-
Librium point if it is undominated and if it possesses a pavoff. Actually we
get two sets of strong equilibrium points, one for each of the two (inequiva-
lent) notions of preference defined above. However, it turns out that both
these sets correspond to the same set of ¢-strategy vectors, called acceptable
points [1, §4]. By making use of Lemma 9.1 of [11, it is not difficult to show
that the set of payoff vectors to acceptable points—the set of acceptable
pavoff vectors—coincides with the f-core(**). Hence the S-core of a finite

{9} For a more detailed treatment of the supergame, see [I l.

(%} The difference must be larger than a fixed {independent of £} positive S-vectar.

%) The probability is 1.

(4) Care should be taken to differentiate between the average payoff for the first & plays,
and the expected pavyaff (for the latter, probability statements would of course be meaningless).
Because of the law of large numbers, the existence of a payoff to fis quite plausible. For exam-
ple, if a “steady state in strategy choices on the individual Iy is ever reached, then f certainly
has a payoff. As we have shawn in [1, $12], considerations of expected payoff are inappropriate
for T#,

() The cotrespondence must be defined via the payolfs because there is no direct method
for comparing strategies for individual games with supergame strategies.

(%) Definitions “between” (a) and (b) yield the same set of payoff vectors. For examiple, in
either of the definitions we could substitute “with prabability at least 1/2" for the respective
probability statements.
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game is the set of payoff vectors to strong equilibrium points in its super-
game.
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