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1 Introduction

Economic models with infinitely many economic agents1 have appeared

in the literature in recent years; particular attention has been paid to

models in which the set of all economic agents appears as a non-atomic

measure space [A1, A2, Ka, Sh, V]. Such models are useful for describing

mass phenomena in economics, phenomena in which the individual agent

is insignificant, but in which sets of agents can exert considerable influence.

This paper is devoted to various mathematical problems raised by the

study of such economic models. The first concerns the existence of utility

functions for the agents, that are measurable as functions of the agent.

Let T be a s-finite measure2 space; intuitively, T is the space of agents.

Let W denote the non-negative orthant of En; intuitively, W is the set of

all bundles containing various (non-negative) quantities of n specified

commodities. It is well-known [D] that a preference order � on W obey-

ing appropriate conditions can be represented by a utility function nðxÞ
(for x A W) that is continuous on W. Now if for each agent t in T there is

a preference order �t, then each such order can be represented by a util-

ity function ntðxÞ. Under which conditions can this function be chosen so

as to be measurable as a function of t, or indeed simultaneously as a

function of x and t? A similar question may be asked when the set of

outcomes on which the preference orders are defined is more general than

W, or even when it may vary with the agent t.

The second question concerns ‘‘measurable choice.’’ Consider the

following:

von neumann’s theorem Let T and X be copies of the unit interval, and

let G be a Borel subset of T�X whose projection on T is all of T. Then

there is a measurable function g from T to X, such that ðt; gðtÞÞ A G for

almost all t in T.

This proposition, proved in [N], is of fundamental importance in eco-

nomic investigations of the kind described above (see [A2, A3]). However,

it is only applicable to these investigations if one assumes that as a mea-

surable space, the space T of agents is essentially the same as the unit

This chapter originally appeared in La Decision, edited by G. T. Guilbaud, pp. 15–26,
Editions du Centre National de la Recherche Scientifique, Paris, 1969. Reprinted with
permission.

1. The word ‘‘agent’’ here is used to mean an economic decision-making unit. The
comparable word for a game is ‘‘player,’’ for a market—‘‘trader.’’

2. On T, only the notion ‘‘measure 0’’ is of significance in the sequel; the measure itself
plays no role.



interval with the Borel sets. This restriction is not as strong as it may

originally seem; any Borel subset of any euclidean space (or, indeed, of

any complete separable metric space) satisfies it. However, it would be

desirable to assume as little as possible about the space T, and in partic-

ular to avoid any assumptions that explicitly specify its measurable

structure.

The third problem concerns the preservation of measurability under

projection. It is well known that if T and X are copies of the unit interval,

H a Borel subset of T�X, then the projection of H on T is Lebesgue

measurable (though it need not be Borel). Here, too, it would be desirable

to prove generalizations that assume as little as possible about the space T.

Although there is no immediately apparent conceptual connection

between the problems we have raised, they are closely connected. The

measurable choice principle and the projection principle are needed in the

proofs of our propositions regarding measurable utility (in addition to

their uses elsewhere in mathematical economics). We therefore start with

the statement and proof of the measurable choice principle in its most

general form, continue with the projection principle, and then discuss the

question of measurable utility.

We would like to thank Gerard Debreu for very stimulating corre-

spondence and discussions on the subjects of this paper, Joram Linden-

strauss for discussions on the measurable choice principle and in

particular for providing the counterexample at the end of section 2, and

Shizuo Kakutani for discussions and references on the subject of Com-

plementary Analytic Choice (see the end of section 4).

2 The Measurable Choice Theorem

We shall need the concept of standard measurable space. This is a mea-

surable space that is isomorphic to a cartesian product of f0; 1g denu-

merably many times. (The space f0; 1g consists of the points 0 and 1

only, and all subsets are measurable. An isomorphism between two mea-

surable spaces is a one-one function from one onto the other, that takes

measurable sets onto measurable sets in both directions.) The unit inter-

val, any euclidean space, and in fact any non-denumerable Borel subset

of any separable complete metric space, with the usual Borel s-field, is

standard. The class of standard spaces thus comprises just about all

spaces that are liable to appear as range spaces in economic applications

of the measurable choice theorem (in most such applications the range

space is simply a euclidean space).
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measurable choice theorem Let ðT; mÞ be a s-finite measure space, let

X be a standard measurable space, and let G be a measurable subset of

T � X whose projection on T is all of T. Then there is a measurable func-

tion g from T to X, such that ðt; gðtÞÞ A G for almost all t in T.

‘‘Almost all’’ means that the exceptional set is measurable and of

m-measure 0.

The theorem is false without the requirement that X be standard, as

will be shown below by means of an example due to J. Lindenstrauss.

The theorem is also false without the s-finiteness restriction on T.

Indeed, let T be ½0; 1� with the Borel sets, and let m be such that every

non-denumerable set has measure y. If the theorem were true in this

case, then it would follow that g can be chosen so that ðt; gðtÞÞ A G for all

t in T, and this is known to be false.

The proof of the measurable choice theorem proceeds by reducing the

general case to von Neumann’s case in a number of stages. The details of

the proof are as follows:

Because of the s-finiteness condition, we may find a measure m0 equiv-

alent to m such that m0ðTÞ ¼ 1. Since the concepts of ‘‘almost all’’ w.r.t. m

and w.r.t. m0 are equivalent, we may replace m by m0. This justifies us in

assuming from now on that mðTÞ ¼ 1.

By analogy with topological usage, define a measurable space Y to be

separable if there is a denumerable family Q of measurable subsets such

that the family of all measurable subsets of Y is the smallest s-ring

including Q. The space Y is called regular if for all x, y A Y, there is a

measurable set containing x but not y.

The first stage of the proof consists of noting that the theorem is true

when both T and X are standard. Indeed this case is covered by von

Neumann’s theorem (see section 1).

In the second stage of the proof we will assume that the domain T is

separable and regular and that the range space X is standard. It is well

known that every separable regular measurable space is isomorphic to a

subset of a standard space. See, for example, [M], Theorem 2.1 (Mackey’s

terminology is somewhat di¤erent). Therefore T may be included in a

standard space U; define a measure n on U by nðSÞ ¼ mðSXTÞ, and note

that nðUÞ ¼ 1.

Let H be a measurable subset of U�X such that G ¼ HX ðT�XÞ; it
is easy to prove that there is such an H. Let pG and pH be the projec-

tions of G and H on U. Of course pH need not be measurable in U, i.e.

it need not be in the s-field associated with U; however, since it is ana-

lytic, it must have equal n-outer and n-inner measures. To prove this,

assume, as one clearly can w.l.o.g., that n has no atoms; next, apply an
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isomorphism that takes U to ½0; 1� and n to Lebesgue measure; and

finally, recall that every analytic subset of ½0; 1� is Lebesgue measurable.

Let nþ and n� denote the n-outer and n-inner measures respectively,

and let Sþ be a measurable subset of U such that Sþ I pH and

nðSþÞ ¼ nþðpHÞ. Then

nþðpHÞ ¼ nðSþÞ ¼ mðSþ XTÞZ mðpHXTÞ ¼ mðpGÞ ¼ 1:

Hence nþðpHÞ ¼ 1, so also n�ðpHÞ ¼ 1. Hence there is a measurable

subset S� of U such that S� H pH and nðS�Þ ¼ 1. Then HW ½ðUnSÞ �X�
is a measurable subset of U�X whose projection on U is all of U. So we

may apply the first stage to it, and obtain a function h from U to X such

that ðt; hðtÞÞ A H except possibly when t A UnS�. If we now define g to be

the restriction of h to T, then g satisfies the demands of the theorem. This

completes the proof of the second stage.

In the third stage, we drop the requirement that T be regular; so now T

is separable, and X standard. Let us define two points in T to be equiv-

alent if every measurable set containing one contains the other. This stage

may then be reduced to the previous one by constructing the identifica-

tion space in which equivalent points are identified. We omit details.

In the fourth and final stage, we drop the requirement that T be sepa-

rable; so now T is an arbitrary measurable space on which there is

defined a totally finite measure n, and X is standard. For any family R of

measurable subsets of T, letzR denote the s-field generated by R, i.e. the

smallest s-field that includes R, and let TR denote the measurable space

whose points are the points of T and whose measurable sets are the

members of zR . Then we claim that for every set G that is measurable

in T�X, there is a denumerable family R of measurable sets in T such

that G is measurable in TR �X. Indeed, let B be the family of all sets G

for which there is such a denumerable family. Then clearly all measurable

rectangles are in B; indeed for them, R can consist of a single set. Fur-

thermore, if G A TR �X, then the complement of G is in TR �X, so B is

closed under the formation of complements. Finally, since the denumer-

able union of denumerable families is again a denumerable family, it fol-

lows that B is closed under the formation of denumerable unions as well.

Hence B is a s-field containing all rectangles, so it must contain all sets

measurable in the product space.

In particular, if GHT�X satisfies the hypotheses of the measurable

choice theorem, we may find a denumerable family R such that G is

measurable in TR �X. But clearly TR is separable, so we may apply the

third stage to the measure space ðTR; mjzR Þ. Hence there is a function g

from T to X, which is measurable w.r.t. the field zR , and such that
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ðt; gðtÞÞ A G except possibly for t in a set S such that S AzR and

mðSÞ ¼ 0. But if g is measurable-zR , it is a fortiori measurable, and from

S AzR it follows that S is measurable. This completes the proof of the

theorem.

The Lindenstrauss counterexample, which shows that X cannot be

replaced by an arbitrary measurable space, is as follows: let T be the half-

open interval ½0; 1Þ with the Borel sets, and let m be Lebesgue measure.

Let X be the subspace of ½0; 1Þ that one usually uses to show that there

are Lebesgue non-measurable sets; that is, the sets Xþ r are mutually

disjoint for rational r, and 6
r
ðXþ rÞ ¼ ½0; 1Þ (addition is modulo 1). Let

D be the subset of T�X defined by

D ¼ fðt; xÞ : t ¼ xg:

D is a sort of diagonal of T�X. It’s easy to prove that D is measurable;

one builds a finite number of small rectangles whose union covers D, lets

the rectangles get smaller, and the intersection is D. Note that the pro-

jection of D on X exhausts X, but the projection on T does not exhaust

T; in fact, the projection is precisely X, which may be considered a subset

of T.

Let

G ¼ 6
r

ðDþ ðr; 0ÞÞ:

Clearly Dþ ðr; 0Þ is measurable, and hence G is measurable. The projec-

tion of Dþ ðr; 0Þ on T is Xþ r, and hence the projection of G exhausts T.

Since the Xþ r are disjoint, it follows that for each t there is precisely one

point gðtÞ A X such that ðt; gðtÞÞ A G. Clearly it is su‰cient to prove that

there is no measurable function that di¤ers from g on a set of Lebesgue

measure 0 only.

We first prove a lemma: If S is a measurable subset of T such that

Sþ r ¼ S for all rational r, then mðSÞ ¼ 0 or mðSÞ ¼ 1. To prove this,

suppose mðSÞ > 0. Then we can find a point t0 at which S has density 1;

hence for every e and every su‰ciently small interval ½s; tÞ around t0, we

will have mðSX ½s; tÞÞ > ð1� eÞðt� sÞ. In particular, if m is a su‰ciently

large positive integer, we can find an interval ½s; tÞ such that t� s ¼ 1=m

and mðSX ½s; tÞÞ > ð1� eÞ=m. Then

mðSÞ ¼ mðSX ½0; 1ÞÞ ¼ m SX
Xm
j¼1

ð½s; tÞ þ j=mÞ
 !

¼
Xm
j¼1

mðSX ð½s; tÞ þ j=mÞÞ
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¼
Xm
j¼1

mððSþ j=mÞX ð½s; tÞ þ j=mÞÞ

¼
Xm
j¼1

mððSX ½s; tÞÞ þ j=mÞ

¼
Xm
j¼1

mðSX ½s; tÞÞ > mð1� eÞ=m ¼ 1� e:

Since e may be chosen arbitrarily small, the lemma follows.

From this lemma we deduce the following corollary:

If S is a not necessarily measurable subset of ½0; 1Þ such that Sþ r ¼ S

for all rational r, then the outer measure of S is either 0 or 1. Indeed, let

S0 be a measurable set containing S, such that mðS0Þ ¼ mþðSÞ, where mþ

denotes outer measure. (For example, take S0 to be the intersection of a

sequence fSig of measurable sets containing S, such that the measure of

Si di¤ers from mþðSÞ by < 1=i). Then S0 þ r is measurable for all r, and

includes Sþ r ¼ S. Therefore S00 ¼ X ðS0 þ rÞ is measurable, and includes

S; since S00 H S0, it follows that mðS00Þ ¼ mþðSÞ. Now S00 þ r ¼ S00 for all

rational r, hence mðS00Þ ¼ 0 or mðS00Þ ¼ 1, and the corollary is proved.

Obviously the outer measure of X cannot vanish; let Y be a measurable

subset of T such that YIX and mðYÞ ¼ mþðXÞ > 0. Using density con-

siderations as in the proof of the lemma, we can find two disjoint inter-

vals I1 ¼ ½s1; t1Þ and I2 ¼ ½s2; t2Þ such that mðYX I1Þ > 0, mðYX I2Þ > 0.

Then also mþðXX I1Þ > 0, mþðXX I2Þ > 0. Let

X1 ¼ 6
r

ððXX I1Þ þ rÞ

X2 ¼ 6
r

ððXX I2Þ þ rÞ:

Then X1 þ r ¼ X1 and X2 þ r ¼ X2 for all rational r. But X1 IXX I1,

and hence mþðX1ÞZ mþðXX I1Þ > 0; similarly mþðX2Þ > 0. So from the

corollary it follows that mþðX1Þ ¼ mþðX2Þ ¼ 1, and since X1 XX2 ¼ q,

it follows that m�ðX1Þ ¼ m�ðX2Þ ¼ 0, where m� denotes the inner mea-

sure. But X1 ¼ g�1ðI1Þ, and it follows that there is no measurable func-

tion g0 such that g di¤ers from g0 on a set of measure 0. This completes

the example.

3 The Projection Theorem

projection theorem Let ðT; mÞ be a s-finite measure space, let X be a

standard measurable space, and let H be a measurable subset of T�X.
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Then the projection of H on T di¤ers from a measurable set by a set of

measure 0.

The theorem is false without the requirement that X be standard; this

may be seen at once by taking H ¼ D in the Lindenstrauss example (see

section 2).

The proof proceeds by reducing the general case to the case in which T

is standard, in much the same way that the measurable choice theorem is

proved. The case in which T is standard is well-known (see for example

Kuratowski [Ku]), as we said in the introduction. We will omit the details

of the proof.

4 Measurable Utility

Let X be a topological space. A continuous preference order (cpo) on X

is a relation x on X that is transitive, reflexive, and complete3 and such

that for each y in X, the sets fx : xx yg and fx : yx xg are closed.

Given such a relation, we will define x@ y if xx y and yx x, and x � y

if xx y but not x@ y. A function n from X to the reals is said to repre-

sent the cpo x if it is continuous and

x x y() nðxÞZ nðyÞ:

Rather than stating our most general result at once, we will first state

and prove a special case. As in section 1, W will denote the non-negative

orthant of a Euclidean space. For the purposes of this paper, a measur-

able space is an abstract space together with a s-field4 of subsets.

proposition 1 Let T be an arbitrary measurable space. For each t in T,

let xt be a continuous preference order on W; assume that for all x, y in W

the set ft : x �t yg is measurable. Then each cpo xt can be represented by

a function nt in such a way so that ntðxÞ is simultaneously measurable5 in t

and x.

Proof First assume that all the preference orders are non-trivial, i.e. that

for each t there are x and y in W such that x �t y. Let R be the set of

rational points in W, G0 the set of rational numbers in the open unit

interval ð0; 1Þ, and G ¼ G0 W f0; 1g. Let fr1; r2; . . .g and fg1; g2; . . .g be

arbitrary but fixed enumerations of R and G0 respectively. For each t

define a function nt from R to G inductively as follows:

3. i.e. for all x, y, either xx y or yxx or both.

4. non-empty family closed under denumerable unions and complementation.

5. i.e. measurable on the product space T�W, when W is invested with the Borel structure.
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Definition of ntðr1Þ

if rj xt r1 for all j, define ntðr1Þ ¼ 0;

if r1 xt rj for all j, define ntðr1Þ ¼ 1;

otherwise, define ntðr1Þ ¼ g1.

Definition of ntðrnÞ

if rj xt rn for all j, define ntðrnÞ ¼ 0;

if rn xt rj for all j, define ntðrnÞ ¼ 1;

if rn @ t rj for some j < n, define ntðrnÞ ¼ ntðrjÞ for that j;
otherwise, define ntðrnÞ to be the first gi such that

maxfntðrjÞ : 1Y j < n and rn �t rjg < gi

< minfntðrjÞ : 1Y j < n and rj �t rng:

First note that for each rj in R, ntðrjÞ is a measurable function of t. The

proof is by induction on j, and the reader will have no di‰culty in sup-

plying it. Next, note that for each t, nt is continuous on R and can be

extended to a continuous function on W in a unique fashion; the exten-

sion will also be called n. Now if x is allowed to range over W, and a is an

arbitrary member of ½0; 1�, then ntðxÞY a if and only if for each positive

integer k there is a positive integer j such that kx� rjk < 1=k and

ntðrjÞ < aþ ð1=kÞ. Together with the measurability of ntðrjÞ established

above, this completes the proof of simultaneous measurability when none

of the preference orders are trivial.

For the general case, note that triviality of the preference order on W is

equivalent to triviality of its restriction to R; from this it easily follows

that the set of all t with trivial preference orders is measurable. If we then

let nt vanish identically in x for all t with trivial orders, and define it as

above for the other t, we again get simultaneous measurability.

measurable utility theorem Let T be a s-finite measure space. For

each t in T, let jðtÞ be a connected subset of En and let xt be a continuous

preference order on jðtÞ. Assume that the set

fðx; y; tÞ : x A jðtÞ; xxt yg

is a subset of En � En � T that is measurable in the product structure, when

En is invested with the Borel structure. Then almost every cpo xt can be

represented by a function nt in such a way so that ntðxÞ is simultaneously

measurable in t and x.

Proof The proof is a variant of that of the previous proposition. Let G

denote the graph of j. From the assumptions of the theorem it follows
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that G is a Borel subset of En � En � T, since it is the intersection of the

displayed expression with the set fðx; y; tÞ : x ¼ yg. Obviously jðtÞ is sep-
arable for each t. What is needed is some way of choosing a denumerable

dense sequence in each of the jðtÞ in a ‘‘measurable’’ way. More pre-

cisely, we want a sequence of measurable functions r1; r2; . . . from T to En

such that for almost all t A T, riðtÞ A jðtÞ for each i, and fr1ðtÞ; r2ðtÞ; . . .g
is dense in jðtÞ.

Let fR1;R2; . . .g be a denumerable basis for the topology of En. For

every positive integer k, define Qk ¼ ft A T : Rk X jðtÞ0qg. One has

Qk ¼ projT½ðT�RkÞXG�. Since G is Borel, it follows from the projec-

tion theorem that there is a measurable set Pk that di¤ers from Qk by a

set of measure 0. Define a sequence of set-valued functions fckg by

ckðtÞ ¼
Rk X jðtÞ for t A Pk

jðtÞ otherwise.

�

Under this definition it may happen that ckðtÞ is empty for t in a certain

measurable set of measure 0. Define

jkðtÞ ¼
ckðtÞ when ckðtÞ0q

jðtÞ otherwise.

�

Clearly the graph of jk is a Borel set, and hence by the measurable choice

theorem we can find functions qnðtÞ such that qk di¤ers from a measur-

able function on a set of measure 0 and qkðtÞ A jkðtÞ for all t. From this it

is easy to construct a sequence of measurable functions fr1; r2; . . .g such

that for almost all t, fr1ðtÞ; r2ðtÞ; . . .g is a dense subsequence6 of jðtÞ.
The reader will have no di‰culty in reconstructing the remainder of

the proof from that of the previous proposition.

The theorem will still hold if the assumption that jðtÞ is connected is

replaced by one of two assumptions: either that jðtÞ is independent of t,
or that jðtÞ has a finite number of components for each t. But it seems

di‰cult to dispense with it altogether. To appreciate the di‰culties, let us

specialize to the case in which T is the unit interval with the Borel struc-

ture and Lebesgue measure. Let X be a standard measurable space.

Recall that a subset G of a Euclidean space is called analytic (A) if it is

the projection of a Borel set in a higher dimensional space; comple-

mentary analytic (CA) if it is the complement of an A set; PCA if it is the

projection of a CA set; and CPCA if it is the complement of a PCA set.

6. We are grateful to Professor G. Debreu for communicating to us a method used by C.
Castaing in an unpublished paper dated December 1966 (see also [C]), which considerably
simplified the construction of the rk .
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The measurable choice theorem still holds if one assumes that the G in

the statement of that theorem need only be analytic rather than Borel;

this is easily seen. But we do not know whether the measurable choice

theorem holds if G is assumed to be complementary analytic. Let us call

this hypothesis (i.e. that it does hold) the ‘‘complementary analytic choice

hypothesis,’’ or CA choice for short. Then the measurable utility theorem

without any connectedness assumption on jðtÞ would follow from CA

choice.

We do not know whether CA choice is true or false; unfortunately,

though, it seems for all practical purposes to be unusable. The discussion

of this question brings us to the roots of set theory. Consider the statement:

1) CA choice is false.

The statement (1) is consistent with the axioms of set theory. To

demonstrate this, consider the following statements:

2) There is a subset of the line that is both PCA and CPCA and

that is not Lebesgue measurable.

3) There is a (point-valued) function with a CA graph that is not

Lebesgue measurable.

First we establish that 1), 2), and 3) are all equivalent. The equivalence

of 2) and 3) is known; see [Si, p. 56]. Moreover, 3) obviously implies 1),

since we may take the set-valued function needed to contradict CA choice

to be precisely the point-valued function of 3). To complete the equiva-

lence proof, one need only show that ‘‘not 3)’’ implies CA choice. Again

referring to page 56 of [Si], we see that if F is a set-valued function with a

CA graph, then there is a point-valued function f with a CA graph

such that f ðtÞ A FðtÞ for all t. But then from ‘‘not 3)’’ it follows that f

is Lebesgue measurable, implying CA choice. Thus 1), 2), and 3) are all

equivalent.

For the sake of simplicity, we will consistently refer to 2) in the sequel,

which is the best known of the above three equivalent statements. Gödel

proved [G] that 2) is consistent with set theory; so 2) also is, as asserted

above. But it also raises some new questions. In the same paper, Gödel

proved that 2) and the Continuum Hypothesis are simultaneously con-

sistent with set theory. This leads one to wonder whether Paul Cohen’s

recent results or methods can be used to prove not only the independence

of the Continuum Hypothesis, but also that of 2). If 2) is independent,

then at least we would be sure that the existence of an appropriate utility

in the disconnected case is consistent. Specifically, we would like to know

the answers to the following two questions:
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(i) Is 2) independent of set theory?

(ii) Is 2) independent of set theory, when the Continuum Hypothesis is

added as an axiom of set theory?

Of course there may be a simple direct proof of the theorem we want,

without using CA choice. In view of the above considerations, though, it

would be surprising if there were a simple counterexample, because that

would yield a proof of 2).

Note

Part of this research was performed while the author was in the Department of Statistics
and the Cowles Foundation for Research in Economics at Yale University, on leave from
the Hebrew University, during 1964–65. Part was performed subsequently at the Hebrew
University. At Yale, the research was partially supported by two ONR programs. At the
Hebrew University, it was partially supported by the Logistics & Mathematical Statistics
Branch, O‰ce of Naval Research, Washington D.C., under Contract F61051 67 C 0094.
Reproduction in whole or in part is permitted for any purpose of the United States
Government.
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