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ABSTRACT. We show that the distribution of the first return time τ to

the origin, v , of a simple random walk on an infinite recurrent graph is

heavy tailed and non-concentrated. More precisely, if dv is the degree

of v then for any t ≥ 1 we have

Pv (τ≥ t ) ≥ c

dv
p

t
,

and

Pv (τ= t | τ≥ t ) ≤ C log(dv t )

t
,

for some universal constants c > 0 and C <∞. The first bound is at-

tained for all t when the underlying graph is Z, and as for the second

bound, we construct an example of a recurrent graph G for which it is

attained for infinitely many t ’s.

Furthermore, we show that in the comb product of G withZ, two in-

dependent random walks collide infinitely many times almost surely.

This answers negatively a question of Krishnapur and Peres [5] who

asked whether any comb product of two infinite recurrent graphs has

the finite collision property.

1. INTRODUCTION

1.1. Return times. In this paper we study the distribution of return times
of a simple random walk X t on an infinite connected graph G = (V ,E)
with finite degrees. For v ∈ V , the hitting time of v by X , denoted τv , is
defined by τv = min{t ≥ 1 : X t = v}. When X starts at v (that is, X0 = v), we
call τv the return time to v . As usual, the law of X when X0 = v is denoted
by Pv . Our main result is that on any graph these times are heavy tailed,
with exponent at most 1/2, and non-concentrated.

Theorem 1.1. Let G = (V ,E) be an infinite connected graph with finite
degrees {dv }v∈V . There exists a universal constants c > 0 such that for any
t ≥ 1 we have

Pv (τv ≥ t ) ≥ c

dv
p

t
,

1
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Theorem 1.2. Let G = (V ,E) be an infinite connected graph with finite
degrees {dv }v∈V . There exists a universal constants C < ∞ such that for
any t ≥ 1 we have

Pv (τv = t | τv ≥ t ) ≤ −C log(dv t )

t
.

The proof of Theorem 1.1 uses electrical network and martingale argu-
ments and the proof of Theorem 1.2 incorporates spectral decomposition
of killed random walks. These two inequalities are sharp up to multiplica-
tive constants. Indeed, for Theorem 1.1, it is easy to see that in a copy of
N, together with d − 1 new vertices who are attached only to 0 we have
P0(τ0 ≥ t ) ≈ c

d
p

t
.

Constructing a graph which saturates the inequality of Theorem 1.2 is
harder and we perform this in section 4. The sharpness of Theorem 1.2
is perhaps more surprising since most natural examples exhibit an upper
bound of order 1/t . For example, in Z it is classical (see [3]) that Pv (τv ≥
t ) ≈ t−1/2 and Pv (τv = t ) ≈ t−3/2. It is likely that if the distribution of τv is
regular varying in some sense it is possible to prove a 1/t upper bound.
Indeed, in the construction in Section 4 the rate of decay of Pv (τv ≥ t ) has
extremely different behavior at different scales of t .

It is a well known fact that Eτv =∞ for any infinite connected graph.
This of course follows from Theorem 1.1, but a simpler way to see it is to
consider the Green function

g (u) = Ev

τv∑
t=1

1{X t=u} ,

that is, the expected number of visits to u before returning to v . It is easy
to check that the vector {g (u)}u∈G is invariant under the random walk
operator and that g (v) = 1. Hence, g (u) = du/dv for all u in the connected
component of v . Furthermore, it is clear that

∑
u g (u) = Eτv and since G

is connected and infinite we deduce that Eτv =∞.

1.2. The finite collision property. The construction of Section 4 is re-
lated to the finite collision property. Recall that an infinite graph G has
the finite collision property if two simple random walks X t and Yt collide
only finitely many times almost surely, i.e., the set {t : X t = Yt } is almost
surely finite. It is obvious that any bounded-degree transient graph have
the finite collision property, and it is an easy exercise to check that Z and
Z2 do not have the finite collision property. In fact, any transitive recur-
rent graph does not have the finite collision property (to see this, note
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that in a transitive graph the number of collisions has a geometric distri-
bution, hence it is a.s. finite if and only if it has finite mean).

It is a surprising discovery of Krishanpur and Peres [5] that there exists
recurrent graphs with the finite collision property. In these graphs, both
random walks visit every vertex infinitely often, but only collide finitely
many times. Their constructions involve the comb product of two graphs
and is defined as follows. Given two graph G , H and a vertex v ∈ H define
Combv (G , H) to be the graph with vertex set V (G)×V (H) and edge set{

{(x, w), (x, z)} : {w, z} ∈ E(H) , x ∈V (G)
}∪{

{(x, v), (y, v)} : {x, y} ∈ E(G)
}

.

Krishanpur and Peres prove in [5] that Comb0(G ,Z) and Comb(0,0)(G ,Z2)
have the finite collision property whenever G is an infinite recurrent graph
with bounded degrees. They asked (see first question of Section 4 of [5])
whether Combv (G , H) has the finite collision property whenever G and
H are infinite recurrent graphs. Our next result answers their question
negatively.

Theorem 1.3. There exists a bounded-degree, connected, infinite graph H
and a vertex v ∈ H such that Combv (Z, H) does not have the finite collision
property.

We do not use Theorems 1.1 and 1.2 for the proof of Theorem 1.3, how-
ever, the graph for which (1.2) is saturated (see Section 4) is the graph H
in the statement of the above theorem. The important property of this
graph is that, roughly, at certain scales it behaves like a finite graph. This
property is crucial both for showing the sharpness of Theorem 1.2) and
for the proof of Theorem 1.3.

In fact, general results in this flavor have recently been obtained. Bar-
low, Peres and Sousi [1] give a general condition for a graph not to have
the finite collision property. While this condition fails for the graph con-
structed in the proof of Theorem 1.3, they use it to show that various nat-
ural graphs with fractal geometry do not have the finite collision property.

1.3. Extensions and questions. Theorems 1.1 and 1.2 can be extended
to the setting of finite graphs. Indeed, the proofs of both theorems can
be extended so that they hold for any finite graph and any t ≤ R2, where
R is the effective resistance diameter of the graph R = maxv,u Reff(v ↔ u).
These extensions to the proof are straightforward. In particular cases it is
even possible to prove stronger assertions, see for example Lemma 3.1.
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We cannot expect Theorems 1.1 and 1.2 to hold for general hitting times.
Indeed, if u is a vertex such that its removal leaves v in a finite compo-
nent (these are sometimes called cutpoints), then the distribution of τu

started from v has exponential decay since as much as the distribution
of τu started from v is concerned, the graph is finite. However, perhaps
there is hope to prove similar estimates when u is not such a cutpoint.

To demonstrate that Theorem 1.2 does not hold for hitting times in
general, consider the following example: The graph is simply the natural
numbers, with 22n

edges between n and n +1. If a simple random walk
starts at 0, there is a positive probability it will never take a step backward,
that is, Xi = i for all i . This means that P0(τn = n|τn ≥ n) does not decay
to 0. Of course, this graph has unbounded degrees, so it remains to see
whether a bounded degree example exists. Similar questions can be also
asked about commute times, that is, the first time to hit some specific
vertex and return to the origin. These retain some of the symmetry of
return times and perhaps Theorem 1.1 and 1.2 can be extended to them.

Finally, is it true that for any t ≥ 1 the graph N minimizes the quantity
P0(τ0 ≥ t ) of all connected infinite graphs with the origin having degree
1?

2. PROOF OF THEOREMS 1.1 AND 1.2.

We begin with a few lemmas. For background about effective resis-
tance we refer the reader to [6].

Lemma 2.1. Let G be a finite graph. For any two vertices x, y and any ε> 0
we have

Px(τy ≤ ε(Reff(x ↔ y))2) ≤ ε
where Reff(x ↔ y) is the effective resistance between x and y, when G is
considered as an electric network with unit resistances.

Proof. Let f : G → R+ be the potential corresponding to a unit current
flow of the electrical network between x and y . That is, f is the harmonic
function on G\{x, y} with boundary values f (x) = 0 and f (y) = Reff(x ↔ y)
(as G is finite f is uniquely determined). The associated unit current flow
is an antisymmetric function on directed edges i : E(G) →R such that

(i)
∑

u∼x i (xu) = 1, and
(ii) For any u ∈G \ {x, y} we have

∑
v∼u i (uv) = 0, and

(iii) For any oriented cycle e1, . . . ,em we have
∑

1≤ j≤m i (e j ) = 0.
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Since we have unit edge resistances we get that i (uv) = f (u)− f (v) for
any edge uv . We first observe that f is Lipschitz, that is, for any edge uv
we have f (u)− f (v) ≤ 1. Indeed, assume without loss of generality that
f (u) < f (v) and let s > 0 be a number such that f (u) < s ≤ f (v). Consider
the cut (S,Sc ) defined by S = {u : f (u) < s}. The sum of the unit current
flow i on edges leading from S to Sc is 1 and each edge receives non-
negative flow, hence f (v)− f (u) = i (u, v) ≤ 1 (another way to see this is
combining Proposition 2.2 and Exercise 2.31 of [6]). We deduce that

E
[

f 2(X t )− f 2(X t−1)
∣∣ X t−1

]= E[( f (X t )− f (X t−1))2
∣∣ X t−1

]≤ 1,

when X t−1 6= y and hence f 2(X t∧τy )− t ∧τy is a supermartingale. Put T =
εReff(x ↔ y)2. Optional stopping yields that

Ex[ f 2(XT∧τy )] ≤ Ex[T ∧τy ] ≤ T .

If τy < T , then f 2(XT∧τy ) = Reff(x ↔ y)2. Thus, by Markov’s inequality we
get

Px(τy < T ) ≤ T

Reff(x ↔ y)2
≤ ε ,

concluding the proof of the lemma. ■
Proof of Theorem 1.1. We prove the assertion with c = 1

4 . For r > 0
we write B(v,r ) for the ball of radius r in G according to the shortest
path metric and write ∂B(v,r ) for its boundary, that is, ∂B(v,r ) = B(v,r ) \
B(v,r − 1). We consider the effective resistance Reff(v ↔ ∂B(v,r )). Fix
t ≥ 1. If for all r > 0 we have that Reff(v ↔ ∂B(v,r )) ≤ 4

p
t (this can only

happen in the transient case), then

Pv (τv ≥ t ) ≥ lim
r→∞Pv

(
X t hits ∂B(v,r ) before v

)≥ 1

4dv
p

t
.

Otherwise, let r to be the first radius such that Reff(v ↔ ∂B(v,r )) ≥ 4
p

t .
As in the proof of Lemma 2.1 let f be the harmonic function on B(v,r )
with f (v) = 0 and f (∂B(v,r )) = Reff(v ↔ ∂B(v,r )). Let S be the set of ver-
tices S = {u : f (u) ≤ 2

p
t }. We saw in the proof of Lemma 2.1 that f is

Lipschitz. Hence, any vertex x ∈ N (S), where N (S) denotes the neighbors
of S which are not in S, has 2

p
t ≤ f (x) ≤ 2

p
t +1. We deduce that

2
p

t ≤ Reff(v ↔ N (S)) ≤ 2
p

t +1.

We have that

Pv
(
τN (S) < τv

)= 1

dv Reff(v ↔ N (S))
≥ 1

dv (2
p

t +1)
(2.1)
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where τN (S) = min{t ≥ 1 | X t ∈ N (S)}. The strong Markov property implies

Pv (τv ≥ t ) ≥ Pv
(
τN (S) < τv

)
min

u∈N (S)
Pu

(
τv ≥ t

)
.

To estimate the second probability on the right hand side we apply Lemma
2.1 with ε = 1/4. We deduce that this probability is at least 3/4. This to-
gether with (2.1) gives that

Pv (τv ≥ t ) ≥ 3

4dv (2
p

t +1)
≥ 1

4dv
p

t
,

concluding our proof. ■

Lemma 2.2. [Spectral decomposition] Let G = (V ,E) be an infinite con-
nected graph with finite degrees and let v ∈ V . Then there exists a finite
measure µ on [−1,1] such that for all t ≥ 2 we have

Pv (τv = t ) =
∫ 1

−1
x t−2dµ .

Proof. By conditioning on the location of the random walk at time dt/2e
and using the Markov property we get that

Pv (τv = t ) = ∑
u 6=v

Pv
(
Xdt/2e = u, τv ≥ dt/2e)Pu

(
τv = bt/2c) .

Observe that by the reversibility property of the simple random walk we
have

Pv
(
Xdt/2e = u, τv ≥ dt/2e)= du

dv
Pu

(
τv = dt/2e)

and hence

Pv (τv = t ) = 1

dv

∑
u 6=v

duPu
(
τv = dt/2e)Pu

(
τv = bt/2c) . (2.2)

Consider the Hilbert space`2(G) of functions from V \{v} toR equipped
with the inner product

〈 f , g 〉 = ∑
u 6=v

du f (u)g (u)

and the corresponding norm. Let Q be the random walk operator killed
upon hitting v . That is,

Q f (u) = 1

du

∑
w∼u,w 6=v

f (w) .
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One can easily check that Qt f = Eu( f (X t )1{τv>t }). Define the function
h(w) = Pw (τv = 1) (i.e. h(w) = 1/dw if w ∼ v and h(w) = 0 otherwise). We
have that

Qt−1h(u) = Pu(τv = t ) .

Hence, we can rewrite equation 2.2 as

Pv (τv = t ) = 1

dv
〈Qdt/2e−1h,Qbt/2c−1h〉 .

A simple calculation shows that

〈Q f , g 〉 = ∑
u 6=v

∑
w∼u,w 6=v

f (w)g (u) = 〈 f ,Qg 〉 ,

that is, Q is self-adjoint with respect to the inner product of `2(G). Hence,
we may apply the spectral theorem (see [7] or [4]) and conclude that there
exists a measure ν on [−1,1] and a real function λ : [−1,1] → [−1,1] such
that Q is isometrically equivalent to multiplication by λ. In particular,

Pv (τv = t ) = 1

dv
〈Qdt/2e−1h,Qbt/2c−1h〉 = 1

dv

∫ 1

−1
λt−2(x)ĥ2(x)dν

where ĥ is the image of h under the isometry. If we define µ to be the
pull-back measure

µ(A) = 1

dv

∫
λ−1(A)

ĥ2(x)dν ,

for any Borel set A ⊂ [−1,1], we get that

Pv (τv = t ) =
∫ 1

−1
x t−2dµ ,

which concludes the proof. ■
Corollary 2.3. Let G = (V ,E) be an infinite connected graph with finite
degree and let v ∈V , then the sequence

{
Pv (τv = 2t )

}
t≥1 is decreasing in t .

Proof of Theorem 1.2 We prove the assertion with C = e10. We may as-
sume t ≥ max{e10/dv ,4}, since otherwise we have that e10t−1 logdv t ≥ 1
and the assertion is trivial. Lemma 2.2 gives that Pv (τv = t ) = ∫

[−1,1] x t−2dµ
for some measure µ. Write A ⊂ [−1,1] for the set

A =
{

x : |x| ≥ 1− 4logdv t

t

}
.

Assume first that t is even. In this case we may bound

Pv (τv ≥ t ) ≥ ∑
j≥0

Pv (τ= t +2 j ) =
∫

[−1,1]

x t−2

1−x2
dµ≥

∫
A

x t−2

1−x2
dµ . (2.3)
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Thus,

Pv (τv = t )

Pv (τv ≥ t )
≤

∫
Ac x t−2dµ

Pv (τv ≥ t )
+

∫
A x t−2dµ∫
A

x t−2

1−x2 dµ
. (2.4)

If x 6∈ A, then x t−2 ≤ (1− 4log(dv t )
t )t−2 ≤ e−2log(dv t ) ≤ (dv t )−2 since t ≥ 4. We

also haveµ([−1,1]) ≤ 1 by putting t = 2 in Lemma 2.2. Hence, by Theorem
1.1 (recall that we proved it with c = 1

4 ) we get that∫
Ac x t−2dµ

Pv (τv ≥ t )
≤ 4

t
.

If x ∈ A, then x2 ≥ 1−8t−1 logdv t hence∫
A x t−2dµ∫
A

x t−2

1−x2 dµ
≤ 8logdv t

t
.

We put these two in (2.4) and get that Pv (τv = t | τv ≥ t ) ≤ 12logdv t
t when

t is even. When t is odd we first bound

Pv (τv = t ) =
∫

[−1,1]
x t−2dµ≤

∫
[−1,1]

x t−3dµ= Pv (τv = t −1) .

By the assertion for even t ’s we get that

Pv (τv = t ) ≤ 12log(dv (t −1))

t −1
Pv (τv ≥ t −1) .

Also, Pv (τv ≥ t −1) = Pv (τv ≥ t )+Pv (τv = t −1) so

Pv (τv ≥ t −1) ≤
[

1− 12log(dv (t −1))

t −1

]−1
Pv (τv ≥ t ) ,

whenever 12log(dv (t − 1))/(t − 1) < 1. Indeed, whenever t ≥ e10/dv we
have that 12log(dv (t −1))/(t −1) < 1/2 and we have that

Pv (τv = t ) ≤ 24log t

t
Pv (τv ≥ t ) ,

concluding our proof. ■

3. PRELIMINARIES ON EXPANDERS.

Recall that a family {Gn} of d-regular graphs on n vertices is called an
expander family if there is some uniform constant ρ < 1 such that the
second largest eigenvalue in absolute value of the transition matrix λ2(n)
satisfies |λ2(n)| ≤ ρ for all n. It is a classical fact (see Theorem 6.9 in [6])
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that if {X t } is a simple random walk on Gn then for any v ∈ Gn and any
integer t we have ∣∣P(X t = v)− 1

n

∣∣≤ e−(1−ρ)t . (3.1)

Another useful fact (see [2]) is that if we put unit resistance on each edge
of the expander, then there exists a constant C = C (ρ) <∞ such that for
any u, v ∈Gn the effective resistance satisfies

Reff(u ↔ v) ≤C . (3.2)

In the following four lemmas we study the simple random walk on the
graph G obtained by taking a d-regular expander and an arbitrary vertex
of v and adding a new vertex v ′ together with the edge {v ′, v}. We consider
d as fixed and |G| = n tending to infinity (in all our applications taking
d = 3 suffices).

Lemma 3.1. There exist constants δ> 0 such that for any u 6= v ′

Pu(τv ′ ≥ δn) ≥ δ ,

and

Pu(τv ′ ≤ n) ≥ δ .

Proof. We begin by proving a lower bound on P(τv ′ ≥ δn). Since the
walker must visit v in order to visit v ′ it suffices to prove the assertion
for X0 = v . Since G has bounded degree, there exists a vertex y ∈ G with
graph distance from v at least c logn. By (3.2) the effective resistance be-
tween v and y is bounded by a constant and hence with constant positive
probability X t hits y before v . We get that that for some constant c > 0 we
have

P(τv ′ ≥ c logn) ≥ c . (3.3)

Furthermore, by (3.1) and the union bound we have that

P
(∃ t ∈ [c logn,δn] with X t = v

)≤ δ+ e−(1−ρ)c logn

1−e−(1−ρ)
,

where ρ < 1 is the uniform bound on the second eigenvalue. This to-
gether with (3.3) shows that P(τv ′ ≥ δn) ≥ δ for some constant δ> 0.

To prove a lower bound P(τv ′ ≤ n) we employ a second moment calcu-
lation. Write Y for the number of visits to v ′ in before time n. It is clear
by (3.1) that P(X t = v ′) ≥ 1

2n for any t ≥ C logn so EY ≥ c for some c > 0.
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On the other hand, if t2 > t1 and X t1 = v ′, then by (3.1) the probability
of having X t2 = v ′ is at most n−1 + e−c(t2−t1) for some c > 0. This gives
that EY 2 ≤ C and we get that Y > 0 with some fixed probability by the
inequality

P(V > 0) ≥ (EV )2

EV 2
,

valid for any non-negative random variable V . This concludes the proof.
■

Lemma 3.2. There exists constants C ,c > 0 such that for any vertex u 6= v ′

there exists a set of vertices Su such that |Su | = n −o(n) and for any w ∈ Su

and any C logn ≤ t ≤ n

Pu(X t = w , τv ′ ≥ t ) ≥ c

n
.

Proof. By (3.1) and Lemma 3.1, for any two vertices u, w and any C logn ≤
t ≤ n we have Pu(X t = w) ≤ 2/n and Pu(τv ′ ≥ t ) ≥ c > 0. Hence

Pu(X t = w | τv ′ ≥ t ) ≤ C

n
, (3.4)

for some C = C (ρ) > 0. Furthermore, Pπ(τv ′ ≤ C logn) = O(n−1 logn),
where π is the stationary distribution. This is because the expected num-
ber of visits to v ′ by time C logn is O(n−1 logn). Define

S = {
u : Pu(τv ′ ≤C logn) ≤C n−1 log2 n

}
,

and we deduce that |S| ≥ n(1− log−1 n). We combine this with (3.4) to get
that

Pu(X t ∈ S | τv ′ ≥ t ) ≥ 1− C

logn
. (3.5)

By definition of S and (3.1), for any u ∈ S and any w we have

Pu(XC logn = w | τv ′ ≥C logn) ≤ 1+o(1)

n
.

Thus, by the Markov property, for any u and w

Pu(X t+C logn = w | X t ∈ S , τv ′ ≥ t +C logn) ≤ 1+o(1)

n
,

and therefore there exists a set Su such that |Su | = n −o(n) such that for
every w ∈ Su we have

Pu(X t+C logn = w | X t ∈ S , τv ′ ≥ t +C logn) ≥ 1

n
(1−o(1)) .
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This together with (3.5) shows that for any w ∈ Su and 2C logn ≤ t ≤ n we
have

Pu(X t = w , τv ′ > t ) ≥ c

n
, (3.6)

concluding our proof. ■
Lemma 3.3. There exist constants C = C (ρ),c = c(ρ) > 0, such that for
every C logn ≤ t ≤ n and any u 6= v ′ we have

Pu(τv ′ = t ) ≥ c

n
.

Proof. Reversibility of the simple random walk implies that

Pu(τv ′ = t ) ≥ 1

d

∑
w∈V

Pu(X t/2 = w,τv ′ ≥ dt/2e)Pv ′(X t/2 = w,τv ′ ≥ bt/2c) ,

and the assertion follows from plugging in Lemma 3.2 and summing. ■
Our last lemma about expanders concerns two independent simple

random walks X t and Yt . We denote by Pu1,u2 for the probability distri-
bution generated when X0 = u1 and Y0 = u2. We denote τX

u for the hitting
time of X t of u and similarly for Y .

Lemma 3.4. There exists a constant c = c(ρ) > 0 such that for any u1 6= v ′

and u2 6= v ′

Pu1,u2

(
∃t ≤ n ∧τX

v ′ ∧τY
v ′ such that X t = Yt

)
≥ c .

In other words, the probability that X t and Yt collide before time n and
before either of them hits v ′ is uniformly positive.

Proof. For any C logn ≤ t ≤ n, by Lemma 3.2 there exists a constant c > 0
and a set S of size |S| = n −o(n) such that for any w ∈ S

Pu1 (X t = w , τX
v ′ ≥ t ) ≥ c

n
Pu2 (Yt = w , τY

v ′ ≥ t ) ≥ c

n
.

Hence ∑
w∈G

Pu1

(
X t = w , τX

v ′ ≥ t
)
Pu2

(
Yt = w , τY

v ′ ≥ t
)≥ c

n
.

Let N = |{t ≤ n ∧τX
v ′ ∧τY

v ′ : X t = Yt }|, then by the previous inequality and
the independence of X t and Yt we learn that EN ≥ c. To bound the sec-
ond moment of N by (3.1) we have Pv (X t = u) ≤ n−1 + e−ct , for some
c > 0. Also, by reversibility Pu,u(X t = Yt ) = Pu(X2t = u). We deduce by the
Markov property that for any t2 > t1 we have that

Pu1,u2 (X t1 = Yt1 and X t2 = Yt2 ) ≤ (n−1 +e−2c(t2−t1))Pu1,u2 (X t1 = Yt1 ) .
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Similar considerations give that Pu1,u2 (X t1 = Yt1 ) ≤ n−1 + e−ct1 and so we
have that

EN 2 ≤
n∑

t1=1

n∑
t2=t1

Pu1,u2 (X t1 = Yt1 and X t2 = Yt2 ) ≤C ,

for some constant C > 0 and the assertion of the lemma follows. ■

4. SHARPNESS

In this section we show that the estimate of Theorem 1.2 is sharp up
to the multiplicative constant C . In order to elucidate the ideas of the
construction we begin with a simple construction showing the sharpness
of Theorem 1.2 for a single t . We then construct a more elaborate graph
for which the theorem is sharp for an infinite sequence of t ’s. This graph
will be useful later in Section 5 — it will be the base of the comb for the
construction of Theorem 1.3.

4.1. A simple construction. Given an integer t we construct the graph
Gt as follows. Let δ> 0 be the constant from Lemma 3.1 and take

n = 3log(1/δ)t

δ log t
.

The graph Gt is constructed by taking N = {0,1, . . .} with edges between
consecutive numbers, and attaching to 0, by an edge, a 3-regular expander
of size n (the degree of 0 is thus 2).

Theorem 4.1. There exists c > 0 such that the simple random walk on Gt

satisfies

P0(τ0 = t | τ0 ≥ t ) ≥ c log t

t
. (4.1)

Proof. We abbreviate τ for τ0 and write {X t } for the simple random walk
on Gt starting at 0. Write A for the event that X1 = 1, so P(A ) = 1/2. It
is a well known fact (see [3]) that the probability that a random walk on
N does not return to the origin in t steps decays like t−1/2, that is, P(τ ≥
t | A ) ≈ t−1/2. Let δ > 0 be the constant from Lemma 3.1. By iterating
Lemma 3.1 using the Markov property we get that P(τ ≥ t | A c ) ≥ δt/δn .
Thus, since t ≤ δ

2log(1/δ) n logn we have that P(τ≥ t |A c ) ≥ t−1/2 and so

P(τ≥ t ) ≈ P(τ≥ t |A c ) .
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Now, Lemma 3.3 together with the Markov property gives that

P(τ= t |A c ) ≥ c

n
P(τ≥ t −δn |A c ) ≥ c ′

n
P(τ≥ t |A c ) ≥ c log t

t
P(τ≥ t ) ,

concluding our proof. ■
4.2. The full construction. We now construct a graph saturating inequal-
ity (4.1) for infinitely many t ’s. This graph will also be used in the next
section as the base graph (a tooth) of the comb exhibiting almost sure
infinitely many collisions. Let {hi ,ni }i≥0 be two increasing sequences of
integers such that

hi À ni−1h2
i−1 and ni = h15

i , (4.2)

and let {Ei }i≥1 be a sequence of 3-regular expanders of sizes |Ei | = ni . For
each i let vi ∈ Ei be an arbitrary vertex. The graph G =G({hi ,ni }) consists
of N = {0,1, . . .} with edges between consecutive numbers and we attach
the expander Ei by adding an edge between vi and hi . The following is
the main result of this section.

Theorem 4.2. Consider the graph G({hi ,ni }) for {hi ,ni } satisfying (4.2)
and put ti = chi ni logni for some small constant c > 0. We have

P0(τ0 = ti | τ0 ≥ ti ) ≥ c log ti

ti
.

We begin with some preparatory lemmas and observations leading to
the proof of this theorem. In all of the statements below we are consid-
ering a simple random walk on G({hi ,ni }) for {hi ,ni } satisfying (4.2). For
a vertex v of G({hi ,ni }) we write h(v) for its height, that is, if v ∈ Ei , then
h(v) = hi and if v ∈N, then h(v) = v .

Proposition 4.3. We have

(1) For any h > 0 we have P0(τh < τ0) = h−1, and
(2) For any i and v such that 0 ≤ h(v) < hi we have Ev (τhi ∧τ0) ≤ 2h2

i .

Proof. Part (1) is immediate since the effective resistance between ver-
tices 0 and h is precisely h. Part (2) follows immediately by the com-
mute time identity (see [6]). Indeed, the effective resistance between v
and {0,h} is at most h/2+C (where C is the constant from (3.2)) and the
number of edges in the subgraph between 0 and h (that is, the subgraph
spanned on all vertices v having 0 ≤ h(v) < h together with h) is at most

hi +
i−1∑
j=1

n j ≤ 2hi ,
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by condition (4.2). ■
Proposition 4.4. There exist a constant δ > 0 such that for any i ≥ 1 and
k ≥ 1 we have

P0(τ0 ≥ δkni hi ) ≥ δk

hi
.

Proof. By Lemma 3.1, at each visit to hi , with uniform positive probability
the random walks spends cn steps in the expander Ei . At each visit to hi

the probability of visiting 0 before returning to hi is h−1
i by Proposition

4.3. We deduce by this that there exists some constant c > 0 such that for
any k ≥ 1 we have

P0(τ0 ≥ τhi + ckni hi | τhi < τ0) ≥ ck .

By Proposition 4.3 the event τhi < τ0 occurs with probability h−1
i , con-

cluding the proof. ■
For the next step we define τ(m)

0 to be the m-th return time to 0. That

is, τ(1)
0 = τ0 and for m > 1

τ(m)
0 = min{t > τ(m−1)

0 : X t = 0} .

It will also be convenient to define τ(0)
0 = 0.

Proposition 4.5. There exist positive constants C ,c such that for any i ≥ 1
and any k ≥ 1 we have

P0
(
τ

(C khi )
0 < khi ni

)≤Ce−ck .

Proof. Since

τ
(C khi )
0 =

C khi∑
m=1

(τ(m)
0 −τ(m−1)

0 ) ,

we learn that τ(C khi )
0 is a sum of C khi i.i.d. random variables distributed

as τ0. By Proposition 4.4, the probability of each of these variables to be
at least ni hi is at least ch−1

i for some small c > 0. Large deviation for
binomial random variable immediately gives that for large enough C > 0
we have

P
(C khi∑

m=1
(τ(m)

0 −τ(m−1)
0 ) ≤ khi ni

)≤Ce−c1k ,

for some constant c1 > 0. ■
The following Lemma shows that the random walk on G spends most

of its time inside the the appropriate expander.
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Lemma 4.6. Let t be an integer such that hi ni ≤ t ≤ h2
i ni for some i ≥ 1.

Then
P0

(
X t ∈ Ei

)≥ 1−C h−2
i .

Proof. For convenience we write h for hi and n for ni . Write N0(t ) for the
number of visits to 0 by time t . By Proposition 4.5 with k = h we deduce
that for some constants C ,c > 0 we have

P(N0(t ) ≥C h2) ≤Ce−ch .

In each such excursion from 0 to 0 the probability of reaching h5 is h−5

by Proposition 4.3. We conclude that the probability the walker does not
reach height h5 before time t is at least 1−C h−3. Denote this event by A .

Let t0 = t −h12 and define iteratively tk+1 to be

tk+1 = min{t > tk : X t = h} ,

for any integer k ≥ 1. For any k ≥ 1, if X tk+1 6∈ Ei , then X tk+1 ∈ {h−1,h+1}.
The expected time to hit either h or h5 from any vertex between them is
at most h10 by Proposition 4.3. Hence, if X tk+1 = h + 1, then after every
2h10 steps we hit either h or h5 with probability at least 1

2 . By iterating,
the probability that the walker does not hit h or h5 in h11 steps is at most
e−ch . This event occurs if both tk+1 − tk ≥ h11 and A occur. Since P(A ) ≥
1−2h−3 we have

P0(tk+1 − tk ≥ h11|X tk+1 = h +1) =O(h−3) . (4.3)

In a similar fashion one gets that

P0(tk+1 − tk ≥ h11|X tk+1 = h −1) =O(h−3) . (4.4)

On the other hand, if X tk+1 ∈ Ei , then (3.1) gives that

P0
(
tk+1 − tk ∈ [h11,h12]

∣∣ X tk+1 ∈ Ei
)≤ 2h12

n
=O(h−3) , (4.5)

by condition (4.2). Lemma 3.1 yields

P0(tk+1 − tk ≥ h12|X tk+1 ∈ Ei ) > c ,

for some constant c = c(ρ) > 0. Now, let K be the first k such that tk+1 −
tk ≥ h12. The distribution of K is geometric with parameter at least c/3 >
0, since P0(X tk+1 ∈ Ei ) = 1/3. Hence P0(K ≥ h) ≤ e−ch , for some c = c(ρ) >
0. Now, if X t 6∈ Ei , then either K ≥ h, or for some k ≤ h we have that
tk+1 − tk ∈ [h11,h12], or for some k ≤ h we have that tk+1 − tk ≥ h12 and
X tk+1 6∈ Ei . By the union bound together with (4.3), (4.4) and (4.5) we get
that this probability is at most O(h−2), concluding our proof. ■
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Proof of Theorem 4.2. Fix i and abbreviate t = ti , h = hi and n = ni . We
have that

P0(τ0 ≥ t ) = P0(τ0 ≥ t and τ0 < τh)+h−1P0(τ0 ≥ t | τh < τ0) .

The first term is negligible since starting from any vertex v between 0
and h, we have Pv (τ0 ∧τh ≥ 2h2) ≤ 1

2 by Proposition 4.3, and hence, by

the Markov property, P0(τ0 ∧ τh ≥ t ) ≤ e−ct/h2
. Theorem 1.1 gives that

P0(τ0 ≥ t ) ≥ 4−1t−1/2 and since t ≥ h3, we conclude that

P0(τ0 ≥ t ) = (1+o(1))h−1P0(τ0 ≥ t | τh < τ0) . (4.6)

Assuming the event τh < τ0 occurred, let T0 = τh and for j ≥ 1 define

T j = min{t > T j−1 : X t = h} ,

to be the time of the j -th visit to h. Also, let J = max{ j : T j < τ0} be the
index of the last visit to h before returning to 0. We define a sequence
of random bits {b j } j≥0 in the following way. We set b j = 1 if X t = 0 for
some T j < t < T j+1 and b j = 0 otherwise. Conditioned on the history of
the walk until T j the probability of b j = 1 is exactly (3h)−1, since the walk
need to take a step to h −1 and then the probability of hitting 0 before h
is h−1, by Proposition 4.3. Hence, the distribution of J is geometric with
parameter (3h)−1.

Observe that the distribution of the walk between TJ and τ0 is that of a
simple random walk started at h and conditioned to hit 0 before return-
ing to h and is independent of the walk until time TJ . In particular, TJ is
independent of τ0 −TJ . We may now bound P0(τ0 = t ) from below by

P0(τ0 = t ) ≥ h−1P0(TJ = t − (τ0 −TJ ) | τh < τ0) .

Since TJ is independent of τ0−TJ we may condition on the event τ0−TJ =
t − s and get that

P0(TJ = t − (τ0 −TJ ) | τh < τ0) =∑
s

P(τ0 −TJ = t − s | τh < τ0)P(TJ = s | τh < τ0) . (4.7)

When starting a simple random walk at h−1, the expected hitting time of
h or 0 is at most 2h2 by Proposition 4.3. Hence,

P0(τ0 −TJ > 4h3 | τh < τ0) ≤ 1

2
.
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Therefore, it is enough to show that for any s satisfying t −4h3 ≤ s ≤ t we
have

P0(TJ = s | τh < τ0) ≥ c

hn
P0(τ0 ≥ t | τh < τ0) , (4.8)

since then by (4.6) and (4.7) we get that

P0(τ0 = t ) ≥ c

hn
P0(τ0 ≥ t ) =Θ

( log t

t

)
P0(τ0 ≥ t ) .

To show (4.8) we take some small δ and bound

P0(TJ = s | τh < τ0) ≥ P0(TJ = s, Xs−δn ∈ Ei ,τ0 ≥ s | τh < τ0) .

By the Markov property the last probability is at least

Ph(τ0 < τh)min
u∈Ei

Pu(τh = s)P0(Xs−δn ∈ Ei ,τ0 ≥ s −δn | τh < τ0) . (4.9)

Lemma 3.3 and Proposition 4.3 gives that the product of the first two
probabilities is at least c(hn)−1. By Lemma 4.6 we have that

P0(Xs−δn 6∈ Ei ) ≤C h−2 ,

and since s = (1+o(1))chn logn Proposition 4.4 with k = c logn gives that

P0(τ0 ≥ s −δn) ≥ δc lognh−1 ≥ h−1.5 ,

as long as c > 0 is chosen to be small enough. We conclude that

P0(Xs−δn ∈ Ei ,τ0 ≥ s−δn | τh < τ0) ≥ cP0(τ0 ≥ s−δn | τh < τ0) ≥ cP0(τ0 ≥ t ) ,

which together with (4.9) shows (4.8) and the proof is concluded. ■

5. COMBS

Recall the definition of the comb product of two graphs and of the fi-
nite collision property in Section 1.2. In this section we prove that the
graph G =G({hi ,ni }), for {hi ,ni } satisfying (4.2), is such that Comb0(Z,G)
does not have the finite collision property. We begin with a sketch to il-
lustrate the idea of the proof.

Let i ≥ 1 and write h,n for hi ,ni respectively. Our goal is to get the two
walkers inside the same expander Ei since then they collide with positive
probability by Lemma 3.4. Starting from the base of the comb, the prob-
ability of reaching height h before returning to the base is h−1. If this
happens, the random walk has positive probability of being “swallowed”
in the expander Ei and stay in it for n steps. At each visit to the tip of
the expander, that is, the vertex h, the probability of getting back to the
base of the comb is h−1. The other expanders, above and below Ei are
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either too small or too far away to matter. We deduce that by time hn the
typical behavior of the walker is to walk about h steps on the base of the
comb, then rise to height h, have about h excursions of length n inside
the expander and finally return to the base of the comb.

Thus, after h2n steps, each random walker has performed about h2

steps on the base of the comb (this is a simple random walk on Z) and in
about h of them it performs excursions of length hn in which it spends
most of the time in the expander Ei . The base points onZ of these h long
excursions are roughly h uniform points in {−h, . . . ,h}, so the probability
that in at least one of them the two walkers are in the same base point is
uniformly positive. We conclude that by time h2n the two walkers have
positive probability of colliding. This occurs in all scales, that is, for all
i ≥ 0. Each scale has no influence on what occurs in the next scale hence
we get the required result.

We now make this heuristic precise. Given a simple random walk X t

on Comb(Z,G) we write X (1)
t and X (2)

t for its first and second coordinates
respectively. Note that X (1)

t is a time change of a simple random walk on
Z and X (2)

t is distributed precisely as simple random walk on G({hi ,ni })
equipped with extra two loops at 0. One can easily check that the esti-
mates of Section 4 are valid for this graph as well. Put T0 = 0 and Ti =
Ti−1 +ni h2

i . For any i ≥ 1 and k = 1, . . . ,hi define the random variables

Ik = {
X (1)

Ti−1+khi ni
= Y (1)

Ti−1+khi ni
and X (2)

Ti−1+khi ni
∈ Ei and Y (2)

Ti−1+khi ni
∈ Ei

}
.

The following lemma is the key step for proving Theorem 1.3.

Lemma 5.1. There exists a constant c > 0 such that for all i ≥ 1 we have

P
( hi⋃

k=1
Ik | XTi−1 ,YTi−1

)
≥ c .

Proof of Theorem 1.3. Write Ai for the event that X t and Yt collide in the
time interval [Ti−1,Ti ]. Lemma 5.1 together with Lemma 3.4 shows that

P(Ai | XTi−1 ,YTi−1 ) ≥ c ,

for some constant c > 0. We deduce that Ai occurs infinitely many times
with probability 1, concluding the proof. ■

We will prove Lemma 5.1 using a second moment argument, however,
we require two additional preparatory lemmas about the random walk
on a single copy of G({hi ,ni }), the base of the comb.
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Lemma 5.2. Let X t be a simple random walk on G and let h = hi . Then
there exists positive constants C ,c, independent of i , such that for any ver-
tex v satisyfing 0 ≤ h(v) ≤ h4 we have

Ev
[
ecn−1(τ0∧τh∧τh4 )]≤C .

Proof. For any vertex v of G between 0 and h4 we have that Ev (τ0 ∧τh ∧
τh4 ) ≤C n. To see this observe that there are three cases: if v is in the ex-
pander Eh the expected hitting time of h is of order O(n) by the commute
time identity and (3.2). If h(v) > h, then the expected hitting time at h or
h4, by the commute time identity, is at most C h8, which is o(n) (there are
no expanders between h and h4 by (4.2)). Similarly, if h(v) < h then the
expected hitting time at 0 or h is o(n). Hence for any such v we have

Pv
(
τ0 ∧τh ∧τh4 ≥ 2C n

)≤ 1

2
,

hence

Pv
(
τ0 ∧τh ∧τh4 ≥ Bn

)≤ e−cB ,

and the (ii) follows by integration. ■
Lemma 5.3. Let X t be a simple random walk on G and let h = hi and
n = ni . There exists constants C ,c > 0, independent of i , such that

P0(τ0 ∧τh4 ≥ Bnh) ≤ 2e−cB

h
,

hence

E0ec(nh)−1(τ0∧τh4 ) ≤ 1+ C

h
.

Proof. Let Nh denote the number of visits to h before time τ0 ∧τh4 . We
have that

P0(Nh ≥ k) ≤ 1

h

(
1− 1

3h

)k−1 ≤ e−(k−1)/3h

h
,

since reaching to h before 0 has probability h−1, and given that, at each
visit to h the probability of visiting 0 before returning to h is precisely
(3h)−1. By this bound it suffices to prove that

P0
(
τ0 ∧τh4 ≥ Bnh and Nh ≤ cBh

)≤ e−cB

h
, (5.1)

for some small c > 0. Let γm for m = 1, . . . ,cBh be i.i.d. random variables
distributed as the stopping time τ0∧τh∧τh4 for the random walk starting
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at h. Then the event on the left hand side of (5.1) implies that

cBh∑
m=1

γm ≥ Bnh .

By Lemma 5.2 we have that there exists some c2 > 0 such that E0ec2n−1γm ≤
C . Hence, by independence and Markov’s inequality we get that

P0

( cBh∑
m=1

γm ≥ Bnh
)
≤ C cBh

ec2Bh
,

which is of order e−cBh if c = c(c2,C ) > 0 is chosen small enough com-
pared with c2. This proves (a stronger assertion than) (5.1) and concludes
the proof. ■

Consider now the random walk X t on Comb(Z,G) and fix some i ≥ 1.
Write X (2)

t for the second coordinate of X t and let `(t ) denote the random
variable

`(t ) =
∣∣∣{ j ∈ [Ti−1,Ti−1 + t ] : X (2)

j−1 = X (2)
j = 0

}∣∣∣ .

In other words, `(t ) counts the number of times j ∈ [Ti−1,Ti−1 + t ] in
which X j walked on the Z base of the comb.

Lemma 5.4. Let X t be a simple random walk on G and let h = hi and
n = ni . There exists constants C ,c > 0, independent of i , such that for any
k = 1, . . . ,h we have

P
(
`(khn) ≥C kh

)≤Ce−ck ,

and

P
(
`(khn) ≤C−1kh

)≤ 1

h2
+Ce−ck .

Proof. Part (i) of the lemma is equivalent to Proposition 4.5. For m ≥ 1
write tm for the time in which X t takes the m-th step on Z. That is, t0 = 0
and for m ≥ 1 we have

tm = min
{

j > tm−1 : X (2)
j−1 = X (2)

j = 0
}

.

To prove the second assertion of the lemma, note that the event `(khn) ≤
C−1kh is equivalent to

C−1kh∑
m=1

(tm − tm−1) ≥ khn . (5.2)

For each m let Am be the event that X t visited h4 between times tm−1

and tm and write Ām for the complement of Am . By Proposition 4.3 we
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have that P(Am) = h−4. Thus, the probability that Am occurs for some
m = 1, . . . ,C−1kh is at most h−2 since k ≤ h. We get that

P
(C−1kh∑

m=1
(tm − tm−1) ≥ khn

)
≤ 1

h2
+P

(C−1kh∑
m=1

(tm − tm−1)1{Ām } ≥ khn
)

.

To bound the last term of this inequality observe that

(tm − tm−1)1{Ām }
(d)≤ τ0 ∧τh4 .

By Lemma 5.3 there exists some C2 > 0 such that

Eec(nh)−1(tm−tm−1)1{Ām } ≤ 1+ C2

h
,

and by independence and Markov’s inequality we deduce that

P
(C−1kh∑

m=1
(tm − tm−1)1{Īm } ≥ khn

)
≤

(
1+ C2

h

)C−1kh

eck
,

which is at most Ce−ck if C = C (c,C2) > 0 is chosen large enough. This
concludes the proof. ■
Lemma 5.5. For any k = 1, . . . ,h

P(Ik |XTi−1 ,YTi−1 ) ≈ 1p
kh

.

Proof. Lemma 5.4 implies that for some positive constants C ,c we have

P
(
C−1kh ≤ `(khn) ≤C kh

)≥ 1−Ce−ch −C h−2 .

So with this probability, this holds for both walks X t and Yt . Clearly X (1)
Ti−1

and Y (1)
Ti−1

are of distance at most Ti−1 away from the origin Comb(Z,G),

and Ti−1 ¿
p

h by (4.2). Thus, the local CLT for the simple random walk
on Z implies that the probability that at time Ti−1 +khn the two walkers
are in the same copy of G is at least c(kh)−1/2 and at most C (kh)−1/2. This
shows P(Ik ) ≤C (kh)−1/2. Furthermore, by Lemma 4.6 the probability that
at that time the walks are not inside the expander Eh is at most h−2. The
lower bound P(Ik ) ≥ c(kh)−1/2 follows. ■
Lemma 5.6. For any k1 < k2 in {1, . . . ,h} we have that

P(Ik1 Ik2 | XTi−1 ,YTi−1 ) ≤ 1

h
√

k1(k2 −k1)
.
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Proof. By Lemma 5.5 we have that P(Ik1 ) ≈ (k1h)−1/2. Conditioned on
Ik−1 we have that at time Ti−1 + k1hn the two random walks are in the
same expander Ei , and in particular in the same copy of G . Another ap-
plication of Lemma 5.5 then gives that

P(Ik2 | Ik1 ) ≤ C√
h(k2 −k1)

,

concluding the proof. ■

Proof of Lemma 5.1. Lemma 5.5 gives that

h∑
k=1

P(Ik ) ≥ c ,

and Lemma 5.6 yields that

h∑
k1=1

h∑
k2=1

P(Ik1 Ik2 ) ≤C .

The lemma follows by the inequality P(X > 0) ≥ (EX )2/EX 2 valid for any
non-negative random variable X . ■
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