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Abstract

We are given a graph G with n vertices, where a random subset of k vertices has been
made into a clique, and the remaining edges are chosen independently with probability 1

2 . This
random graph model is denoted G(n, 1

2 , k). The hidden clique problem is to design an algorithm
that finds the k-clique in polynomial time with high probability. An algorithm due to Alon,
Krivelevich and Sudakov uses spectral techniques to find the hidden clique with high probability
when k = c

√
n for a sufficiently large constant c > 0. Recently, an algorithm that solves the

same problem was proposed by Feige and Ron. It has the advantages of being simpler and more
intuitive, and of an improved running time of O(n2). However, the analysis in the paper gives
success probability of only 2/3. In this paper we present a new algorithm for finding hidden
cliques that both runs in time O(n2), and has a failure probability that is less than polynomially
small.

1 Introduction

A clique in a graph G is a subset of its vertices any two of which are connected by an edge. The
problem of determining the size of the maximum clique in a graph is known to be NP-complete
[20]. It has also been proved [11, 5, 4] that assuming P ̸= NP, there exists a constant b > 0 for
which it is hard to approximate the size of the maximum clique within a factor of nb. Therefore, it
is natural to investigate the hardness of this problem in the average case.

The Erdös Rényi random graph model, also denoted G(n, 12), is a probability measure on graphs
with n vertices. In this model, a random graph is generated by choosing each pair of vertices
independently with probability 1

2 to be an edge. It is known that with probability tending to 1 as n
tends to infinity, the size of the largest clique in G(n, 12) is (2+o(1)) log n. There exists a polynomial
time algorithm (see for example [16]) that finds a clique of size (1+ o(1)) log n in G(n, 12) with high
probability, but even though in expectation G(n, 12) contains many cliques of size (1 + ε) log n for
any fixed 0 < ε < 1, there is no known polynomial time algorithm that finds one. It is plausible to
conjecture that this problem is computationally hard, and this hardness has been used in several
cryptographic applications [22, 19].

Finding a large clique may be easier in models where the graphs contain larger cliques. Define,
therefore, the hidden clique model, denoted by G(n, 12 , k). In this model, a random n vertex graph
is generated by randomly choosing k vertices to form a clique, and choosing every other pair of
vertices independently with probability 1

2 to be an edge. Jerrum [18] and Kučera [23] suggested this
model independently and posed the problem of finding the hidden clique. When k ≥ c0

√
n log n

for some sufficiently large constant c0, Kučera observed [23, §Thm. 6.1] that the hidden clique can
be found with high probability by taking the k highest degree vertices in the graph. For k = c

√
n,
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there is an algorithm due to Alon, Krivelevich and Sudakov [3] that finds the hidden clique with
high probability when c is sufficiently large using spectral techniques. In a more recent paper [14],
Feige and Ron propose a simple algorithm that runs in time O(n2) and finds the hidden clique
for k = c

√
n with probability at least 2/3. In this paper we present a new algorithm that has the

advantages of both algorithms, as it runs in time O(n2), and fails with probability that is less than
polynomially small in n. The algorithm has three phases. In the first phase, we iteratively find
subgraphs of the input graph G. Denote these subgraphs by G = Go ⊃ G1 ⊃ G2 ⊃ · · · . Given Gi,
we define Gi+1 as follows: Pick a random subset of vertices Si ⊆ V (Gi) that contains each vertex
with probability α. Define Ṽi as the set that contains all the vertices in Gi that are not in Si, with

at least 1
2 |Si|+ β

√
|Si|
2 neighbors in Si, namely

Ṽi =
{
v ∈ V (Gi) \ Si : dSi(v) ≥ 1

2 |Si|+ β

√
|Si|
2

}
.

Define Gi+1 to be the induced subgraph of Gi containing only the vertices in Ṽi. We choose α and
β in such a way that the relative size of the hidden clique grows with each iteration. We repeat
the process t times, until we are left with a subgraph where the hidden clique is large enough so
we can continue to the second phase. A logarithmic number of iterations is enough. For the exact
way of choosing α, β and t, see the proof of Lemma 2.10.

In the second phase, we find K̃, the subset of the hidden clique contained in Gt. This is done by
estimating kt, the number of clique vertices in Gt, then defining K ′ as the set of kt largest degree
vertices in Gt, and letting K̃ contain all the vertices in Gt that have at least 3kt

4 neighbors in K ′.

In the third phase of the algorithm, we find the rest of the hidden clique using K̃. This is done by
letting G′ be the induced subgraph of G containing K̃ and all its common neighbors. Let K∗ be
the set of the k largest degree vertices in G′. Then K∗ is the set returned by the algorithm as the
candidate for the hidden clique.

Theorem 1.1. If c > c0 then there exist α, β such that, given G ∈ G(n, 12 , c
√
n), the probability

that K∗ is the hidden clique is at least 1− e−Θ(nε0 ) for some ε0 = ε0(c).

Numerical calculations show that c0 is close to 1.65. For a mathematical definition of c0 see
Definition 2.2. A refinement of the algorithm that works with high probability for all c ≥ 1.261 is
presented in section Sec. 3.1.

1.1 Related Work

Since [3], there have been many papers describing algorithms that solve various variants of the
hidden clique problem. In [12] an algorithm for finding hidden cliques of size Ω(

√
n) based on the

Lovász theta function is given, that has two advantages. The first is being able to find the clique
also in a semi-random hidden clique model, in which an adversary can remove edges that are not
in the clique, and the second is being able to certify the optimality of its solution by providing an
upper bound on the size of the maximum clique in the graph.

McSherry [25] gives an algorithm that solves the more general problem of finding a planted
partition. In the random graph model described there, we are given a graph where the vertices are
randomly partitioned into m classes, and between every pair of vertices where one is in class i and
the other in class j there is an edge with probability pij . With the appropriate parameters, this
model can be reduced both to the hidden clique model and to the hidden dense graph model that
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we describe in Sec. 3.2. For both these cases, the result is a polynomial time algorithm that finds
the hidden clique (dense graph) with high probability for k = c

√
n.

Several attempts have been made to develop polynomial time algorithms for finding hidden
cliques of size k = o(

√
n), so far with no success. For example, Jerrum [18] described the Metropolis

process and proved that it cannot find the clique when k = o(
√
n). Feige and Krauthgamer [13]

explain why the algorithm described in [12] fails when k = o(
√
n). Frieze and Kannan [15] give

an algorithm to find a hidden clique of size k = Ω
(
n1/3 log4 n

)
, however, the algorithm maximizes

a certain cubic form, and there are no known polynomial time algorithms for maximizing cubic
forms. In Sec. 2.1.3 we give an algorithm that finds the hidden clique when we are given a small
part of it by an oracle or an adversary. We prove, that for any k = ω(log n log logn), knowing only
log n+1 vertices of the hidden clique enables us to find the rest of them with high probability. For
smaller k’s, log n+ 1 is not enough, but (1 + ε) log n is.

There are many problems in different fields of computer science that are related to the hidden
clique problem. Among others, there are connections to cryptography, testing and game theory.
For connections to cryptography, see for example [22] where an encryption scheme based on hiding
an independent set in a graph is described or [19] where the function whose input is a graph G and
a set K of k vertices and whose output is G with a clique on K is proposed as a one way function
for certain values of k. For connections to testing, see [2] where Alon et al. prove that if there is
no polynomial time algorithm to find hidden cliques of size t > log3 n then there is no polynomial
time algorithm that can test k-wise independence of a distribution even when given a polynomial
number of samples from it, for k = Θ(log n). For connections to game theory, see [17], where Hazan
and Krauthgamer prove that if there is a polynomial time algorithm that finds a Nash equilibrium
of a two player game whose social-welfare is close to the maximum, then there is a randomized
polynomial time algorithm that finds the hidden clique for k = O(log n). The hidden clique model
is also related to the planted-SAT model [7, 21] and some models in computational biology [6].

2 Proof of Thm. 1.1

Throughout the paper we use the following notations.

Notation 2.1. Given a graph G = (V,E), for every v ∈ V and S ⊆ V we denote by dS(v) the
number of neighbors v has in S. Formally, dS(v) = |{u ∈ S : (u, v) ∈ E}|. We abbreviate dV (v) by
d(v).

Notation 2.2. Let φ(x) denote the Gaussian probability density function φ(x) = 1√
2π
e−x2/2. We

denote by Φ(x) the Gaussian cumulative distribution function Φ(x) =
∫ x
−∞ φ(t)dt, and Φ(x) =

1− Φ(x).

Notation 2.3. All logarithms in the paper are base 2.

Notation 2.4. We use the shorthand “whp(f(n))” to mean: “with probability at least 1− f(n)”.

Definition 2.1. Given α, β, we define

τ = (1− α)Φ(β)

and
ρ = (1− α)Φ(β − c

√
α) .
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Definition 2.2. For every α, β, denote the minimal c for which ρ ≥
√
τ by c̃(α, β). Define c0 as

the infimum of c̃(α, β).

Definition 2.3. Define n = n0, n1, n2, . . . and k = k0, k1, k2, . . . by ni = τ in and ki = ρik. Define
also n = ñ0, ñ1, . . . and k = k̃0, k̃1, . . . to be the actual sizes of Gi and the hidden clique in Gi

respectively when running the algorithm.

2.1 Proving the correctness of the algorithm

In order to prove the correctness of the algorithm, we examine each of the three phases of the
algorithm. First, we prove that in every iteration, with high probability ñi, k̃i are close to ni, ki
respectively. We do this by first proving that in every iteration the graph Gi is a copy of G(ñi,

1
2 , k̃i),

and therefore it is enough to prove that given a graph in G(n, 12 , k), with high probability
∣∣Ṽ0

∣∣ is
close to τn and

∣∣Ṽ0∩K
∣∣ is close to ρk. Here, the high probability should be high enough to remain

high even after t iterations. Next, we prove that with high probability K̃ is a subset of the hidden
clique. Last, we prove that with high probability K∗ is the hidden clique.

2.1.1 Proving the correctness of the first phase of the algorithm

Lemma 2.4. For every i ≥ 0, the graph Gi defined in the i’th iteration of the algorithm is a copy
of G(ñi,

1
2 , k̃i).

Proof. We prove this by induction. Assume that Gi is a copy of G(ñi,
1
2 , k̃i). Consider the following

equivalent way of generating G(ñi,
1
2 , k̃i): First, pick the k̃i hidden clique vertices. Then pick the set

Si. Then pick all the edges between V (Gi) \ Si and Si. At this point, we have enough information
to find Ṽi, which is the vertex set of Gi+1. Since we can find the vertices of Gi+1 without exposing
any of the edges in it, it is a copy of G(ñi+1,

1
2 , k̃i+1).

Lemma 2.5. For every 0 < ε1 < 1
2 and 0 < ε2 < 1

2 , the set S0 satisfies
∣∣|S0| − αn

∣∣ ≤ O(n1−ε1)

and
∣∣|S0 ∩K| − αk

∣∣ ≤ O(k1−ε2) whp(e−Θ(n1−2ε1 ) + e−Θ(k1−2ε2 )).

Proof. Follows directly from Thm. A.3, by setting t = n1−ε1 for the bound on |S0| and t = k1−ε2

for the bound on |S0 ∩K|.

Lemma 2.6. For every 0 < ε1 <
1
2 and 0 < ε2 <

1
2 , the set Ṽ0 satisfies

∣∣|Ṽ0| − τn
∣∣ ≤ O(n1−ε1) and∣∣∣|Ṽ ∩K| − ρk

∣∣∣ ≤ O(k1−ε2) whp(e−Θ(n1−2ε1 ) + e−Θ(k1−2ε2 )).

Proof. Assume that the events |S0| = (1 + o(1))αn and |S0 ∩ K| = (1 + o(1))αk both occur. By
Lemma 2.5 this happens with high probability. We can now apply Cor. A.4 twice.

For the vertices in (V \ S0) \K, the result follows directly from Cor. A.4 by setting ε = ε1. For

v ∈ (V \ S0) ∩K, having dS(v) ≥ 1
2αn+ β

√
αn
2 is equivalent to having

dS\K(v) ≥ 1
2α(n− k) + 1

2

(
β − c

√
α
)√

n
n−k

√
α(n− k) .

So setting ε = ε2 in Cor. A.4, gives that

P
(∣∣|Ṽ0 ∩K| − ρ′k

∣∣ ≤ O(k1−ε2)
)
≥ 1− e−Θ(k1−2ε2 ) ,
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where ρ′ = (1− α)Φ
(
(β − c

√
α)

√
n

n−k

)
. But the difference between ρ and ρ′ is of order 1√

n
, which

means that the result holds for
∣∣|Ṽ0 ∩K| − ρk

∣∣ as well.
Remark 2.1. In order to get a success probability that tends to 1, we need to bound the sum of
the probabilities of failing in each iteration by o(1). We refer the reader to Sec. 2.2 for a detailed
analysis of the failure probability of the algorithm.

2.1.2 Proving the correctness of the second phase of the algorithm

We start by bounding the probability that a hidden clique of size k contains the k largest degree
vertices in the graph.

Lemma 2.7. Let G ∈ G(n, 12 , k). Denote the hidden clique by K, and the set of k largest degree
vertices by M . Then

P
(∣∣M \K

∣∣ > 0
)
≤ e−(k2/8n−logn−O(1)) .

Proof. Define x = 1
4k. Then by Thm. A.3

P
(
∃v ̸∈ K : d(v) ≥ 1

2n+ x
)
≤ nP

(
B
(
n, 12

)
≥ 1

2n+ x
)
≤ nP

(∣∣B(
n, 12

)
− 1

2n
∣∣ ≥ x

)
≤ 2ne−k2/8n .

On the other hand,

P
(
∃v ∈ K : d(v) < 1

2n+ x
)

≤ kP
(
B
(
n− k, 12

)
< 1

2(n− k) + x− 1
2k

)
≤ kP

(∣∣B(
n− k, 12

)
− 1

2(n− k)
∣∣ ≥ x

)
≤ 2ke−k2/8n .

Therefore, the probability that there exist a non-clique vertex v and a clique vertex u such that
d(u) < d(v) is bounded by 2(n+ k)e−k2/8n.

Corollary 2.8. If the algorithm does t iterations before finding K̃ and succeeds in every iteration,

then whp(e−Θ(( ρ
2

τ
)t)), K̃ is a subset of the original hidden clique.

Proof. The algorithm estimates k̃t, the number of hidden clique vertices in Gt, by kt = ρtk. If
the input graph has n vertices and a hidden clique of size k = c

√
n, and all the iterations are

successful, then |k̃t − kt| ≤ O(k1−ε1
t ). Recall that K ′ is defined as the kt largest degree vertices in

Gt. By Lemma 2.7, whp(e−Θ( ρ
2tk2

τtn
)) the hidden clique vertices have the largest degrees in Gt, so if

k̃t < kt then K ′ contains all the hidden clique vertices in Gt plus O(k1−ε1
t ) non-clique vertices, and

if k̃t > kt, then K ′ contains all the hidden clique vertices in Gt except for O(k1−ε2
t ) of them. In both

cases, every hidden clique vertex in Gt has at least kt−O(k1−ε2
t ) neighbors in K ′. Whp(e−Θ( ρ

2tk2

τtn
))

every non-clique vertex in Gt has at most 2kt
3 neighbors in K ′ (this follows from Thm. A.3 and

the union bound). Thus, if we define K̃ =
{
v ∈ V (Gt) : dK′(v) ≥ 3kt

4

}
, then whp(e−Θ( ρ

2tk2

τtn
)), K̃

contains every clique vertex in Gt, and no non-clique vertex in Gt.
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2.1.3 Proving the correctness of the third phase of the algorithm

In order to prove that K∗ is the hidden clique with high probability, we prove a more general
Lemma. We prove that if an adversary reveals a subset of the clique that is not too small, we can
use it to find the whole clique.

Lemma 2.9 (Finding hidden cliques from partial information). We are given a random graph
G ∈ G(n, 12 , k), and also a subset of the hidden clique K̃ of size s. Denote the hidden clique in G
by K. Suppose that either

(a) k = O(log n log log n) and s ≥ (1 + ε) log n for some ε > 0, or

(b) k ≥ ω(log n log log n) and s ≥ log n+ 1.

Let G′ denote the subgraph of G induced by K̃ and all its common neighbors, and define K∗ to be
the k largest degree vertices of G′. Then for every 0 < ε3 < 1

2 , whp(e
−Θ(s log k+logn) + e−Θ(k1−2ε3 )),

K∗ = K.

Proof. Look at an arbitrary subset of K of size s. The probability that its vertices have at least
l0 non-clique common neighbors can be bounded by

∑n−k
l=l0

nl2−sl. Taking union bound over all
subsets of size s of K gives that the probability that there exists a subset with at least l0 non-clique
common neighbors is bounded by

ks
n−k∑
l=l0

nl2−sl =
n−k∑
l=l0

2s log k+l(log n−s) ≤ n2s log k+l0(logn−s) .

Therefore, this is also a bound on the probability that the set K̃ has at least l0 non-clique neighbors.
So we have

P
(∣∣V (

G′)∣∣ ≥ k + l0
)
≤ 2logn+s log k+l0(log n−s) ,

thus if we take l0 =
2(logn+s log k)

s−logn we get that this probability is less than polynomially small in n:

P
(∣∣V (

G′)∣∣ ≥ k + l0
)
≤ 2−s log k−logn .

Whp(2−s log k−logn), there are at most l0 = 2(logn+s log k)
s−logn non-clique vertices that are adjacent to

all of K̃. Recall that the probability that there exists a vertex in G with more than k
2 + k1−ε3

neighbors in the hidden clique is bounded by e−Θ(k1−2ε3 ). Therefore, whp(e−Θ(k1−2ε3 )), the degrees
of all the non-clique vertices in G′ are at most k

2 + k1−ε3 + l0. If s and k are such that l0 = o(k),
this value is smaller than k − 1. On the other hand, all the clique vertices in G′ have degree at
least k − 1, so the clique vertices have the largest degrees in G′.

If k = ω(log n log log n) then letting s = log n+1 gives l0 = 2
(
log n+log n log k+log k

)
. Clearly,

log n+log k = o(k). To see that log n log k = o(k), denote k = log nf(n) where f(n) = ω(log log n).
Then log n log k = log n

(
log logn + log

(
f(n)

))
. Clearly, log n log(f(n)) = o(log nf(n)), and from

the definition of f(n) we also have log n log log n = o(log nf(n)).
If k ≤ O(log n log log n), then letting s ≥ (1+ ε) log n for some small ε > 0 is enough, since then

l0 =
2
ε +

2(1+ε)
ε log k = o(k).
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2.2 Bounding the failure probability

Lemma 2.10. For every c > c0, there exist 0 < α < 1 and β > 0 such that if we define a = − log τ

log ρ2

τ

and b = − log ρ2

log ρ2

τ

, then for every ε0 <
1
a , the failure probability of the algorithm is at most e−Θ(nε0 ).

Proof. In order for the probability proven in Cor. 2.8 to tend to 0, we need τ and ρ to satisfy
ρ√
τ
> 1. From Definition 2.2 we know that for c > c0 there exist α, β that satisfy this inequality.

Numerical calculations show that c0 is close to c0 = 1.65. The values of α and β for which this value
is attained are α = 0.3728 and β = 0.72. For these values, we get τ ≈ 0.14787 and ρ ≈ 0.38455,
and ρ√

τ
≈ 1.00003.

Let the number of iterations be t = ε4 logn

log ρ2

τ

for some ε4 > 0. We use the union bound to

estimate the failure probability during the iteration phase of the algorithm. By Lemmas 2.5, 2.6

this probability is at most
∑t

i=0

(
e−Θ(n

1−2ε1
i ) + e−Θ(k

1−2ε2
i )

)
, which can be upper bounded by

e−Θ(n(1−2ε1)(1−ε4a)) + e−Θ(n
1
2 (1−2ε2)(1−ε4b)) .

By Cor. 2.8, the failure probability in the step of finding K̃ is bounded by e−Θ(nε4 ). Finally, if t is
as defined above, then assuming the first two phases succeed, |K̃| ≥ ρtk− o(ρtk) = k1−bε4(1− o(1))
(notice that b = a − 1 so ε4 < 1

a implies that 1 − bε4 > 0). K̃ is large enough so that we can use
Lemma 2.9, to conclude that the probability of failing in the third phase is at most

e−Θ(n
1
2 (1−ε4b) logn) + e−Θ(k1−2ε3 ) .

For any choice of 0 < ε1, ε2 <
1
2 and 0 < ε4 <

1
a , denote

ε0 = min
{
ε4, (1− 2ε1)(1− ε4a),

1
2(1− 2ε2)(1− ε4b)

}
,

and take ε3 = 1−2ε0
2 (notice that ε3 > 0 because ε0 < 1

2). With these parameters, the failure

probability of the whole algorithm is bounded by e−Θ(nε0 ).

3 Refinements

3.1 A variation of this algorithm that works for smaller cliques

The reason our algorithm works is that the clique vertices in V \ S have a boost of around 1
2αk

(which is c
√
α times the standard deviation) to their degrees, so this increases the probability that

their degree is above the threshold. If we could increase the boost of the clique vertices’ degrees (in
terms of number of standard deviations) while still keeping the graph for the next iteration random,
then we would be able to find the hidden clique for smaller values of c. One way to achieve this,
is by finding a subset of S that has γn vertices (γ < α) and δk clique vertices. If we look just at
the degrees of the vertices in V \ S into this subset of S, then the clique vertices have a boost of
around 1

2δk to their degree, which is c δ√
γ times the standard deviation.

The subset of S that we use in this variation is the set of all vertices of S that have at least
1
2αn + η

√
αn
2 neighbors in S. Since these degrees are not independent we cannot use the same

concentration results we used before, so we first prove the following concentration result.
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Lemma 3.1. Let G ∈ G
(
n, 12

)
and a, c′ > 0. Define a random variable

X =
∣∣{v ∈ V (G) : d(v) ≥ 1

2n+ a
√
n
2

}∣∣ .
Then for every 0 < ε′ < 1

4 it holds that

P
(∣∣X − Φ(a)n

∣∣ ≥ c′n1−ε′
)
≤ 2e−p(1−p)πc′4n1−4ε′/8 .

Proof. For every v ∈ V (G) define a random variable

Xv =

{
1 d(v) ≥ 1

2n+ a
√
n
2

0 otherwise
.

Then X =
∑

Xv. By Cor. A.2 we have |Φ(a)n− EX| ≤ c
√
n for some constant c.

To prove that X is concentrated around its mean we define additional random variables. Let
ε > 0 to be defined later, and define three thresholds:

t1 =
1
2n+ (a− ε)

√
n
2 , t2 =

1
2n+ a

√
n
2 , and t3 =

1
2n+ (a+ ε)

√
n
2 .

For every v ∈ V (G) define

Fv =


0 d(v) < t1
2
(
d(v)−t1

)
ε
√
n

t1 ≤ d(v) ≤ t2

1 d(v) > t2

, Gv =


0 d(v) < t2
2
(
d(v)−t2

)
ε
√
n

t2 ≤ d(v) ≤ t3

1 d(v) > t3

Define F =
∑

v Fv and G =
∑

v Gv. We bound the differences EF − EX and EX − EG. For every
v ∈ V ,

EFv − EXv = 2−n
t2∑

i=t1

2(i−t1)
ε
√
n

(
n
i

)
≤ 2−n

t2∑
i=t1

(
n
i

)
≤ ε

√
n

2 2−n
(
n
n
2

)
≤ ε√

2π

(
1 +O

(
1
n

))
(1)

where the last two inequalities follow from the fact that
(
n
n
2

)
is the maximal binomial coefficient,

and from Stirling’s approximation (see, for example [1]): n! =
√
2πn

(
n
e

)n(
1 + O

(
1
n

))
. Repeating

this calculation for EXv − EGv gives

EXv − EGv = 2−n
t3∑

i=t2

(
1− 2(i−t2)

ε
√
n

)(
n
i

)
≤ ε√

2π

(
1 +O

(
1
n

))
. (2)

From (1) we have
P
(
X − EX ≥ λn

)
≤ P

(
F − EF ≥

(
λ− ε√

2π

)
n
)

and from (2) we have

P
(
X − EX ≤ −λn

)
≤ P

(
G− EG ≤ −

(
λ− ε√

2π

)
n
)

Thus, we need to calculate the concentration of F and G. Both are edge exposure martingales
with Lipschitz constant 1

ε
√
qn . Therefore, by Azuma’s inequality (see, for example [24]) we get:

P
(
F − EF ≥

(
λ− ε√

2π

)
n
)
+ P

(
G− EG ≤ −

(
λ− ε√

2π

)
n
)
≤ 2e

−
(λ− ε√

2π
)2n2

2(n2)( 1
ε
√

qn
)2 ≤ 2e

−qε2(λ− ε√
2π

)2n
.

Choosing λ = n−ε′ and ε = 1
2

√
2πc′n1−ε′ concludes the proof.
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Lemma 3.2. Define the set S̃ to be all the vertices v ∈ S with dS(v) ≥ 1
2αn + η

√
αn
2 . For every

0 < ε1 < 1
4 , whp(e

−Θ(n1−4ε1 )) we have
∣∣|S̃| − γn

∣∣ ≤ O(n1−ε1), where γ = αΦ(η). Furthermore, for

every 0 < ε2 <
1
2 , whp(e

−Θ(k1−2ε2 )) we have
∣∣|S̃ ∩K| − δk

∣∣ ≤ O(k1−ε2), where δ = αΦ(η − c
√
α).

Proof. The first part of the Lemma follows directly from Lemma 3.1 by setting ε′ = ε1. For the

second part of the Lemma, look at a clique vertex v ∈ S. Having dS(v) ≥ 1
2αn+η

√
αn
2 is equivalent

to having

dS\K(v) ≥ 1
2α(n− k) + 1

2(η − c
√
α)

√
n

n−k

√
α(n− k) .

Thus, setting ε = ε2 in Cor. A.4, gives that whp(e−Θ(k1−2ε2 )),
∣∣|S̃ ∩ K| − δ′k

∣∣ ≤ O(k1−ε2), where

δ′ = αΦ
(
(η − c

√
α)

√
n

n−k

)
. The difference between δ and δ′ is of order 1√

n
, which means that the

result holds for
∣∣|S̃ ∩K| − δk

∣∣ as well.
Theorem 3.3. Consider the variant of the algorithm where we define Ṽi as follows:

Ṽi =
{
v ∈ V (Gi) \ Si : dS̃i

(v) ≥ 1
2 |S̃i|+ β

√
|S̃i|
2

}
with S̃i, γ as defined in Lemma 3.2. If c ≥ 1.261 then there exist α, β, η for which running the
variant of the algorithm described above on a random graph in G(n, 12 , c

√
n) finds the hidden clique

whp(e−Θ(nε0 )) for some ε0 = ε0(c).

Proof. We follow the proof of Thm. 1.1, with two differences. The first is that we use Lemma 3.2
instead of Lemma 2.5, which implies that instead of demanding ε1 < 1

2 we demand ε1 < 1
4 . The

second is that in Lemma 2.6 and everything that follows we use a different definition for ρ. Since now
the clique vertices’ degree boost is c δ√

γ times the standard deviation, we define ρ = (1−α)Φ
(
β− cδ√

γ

)
.

Next, for every α, β, η, we denote by c̃(α, β, η) the minimal c for which ρ√
τ
> 1. Denote the infimum

of c̃(α, β, η) by c∗. Numerical calculations show that c∗ is close to 1.261. The values of α, β and η
for which which this value is attained are α = 0.8, β = 2.3 and η = 1.2. For these values, we get
τ ≈ 0.0021448 and ρ ≈ 0.046348, and ρ√

τ
≈ 1.0008.

3.2 Finding hidden dense graphs in G(n, p)

Define the random graph model G(n, p, k, q) for 0 < p < q < 1. Given a set of n vertices, randomly
choose a subset K of k vertices. For every pair of vertices (u, v), the edge between them exists with
probability p if at least one of the two vertices is in V \K, and with probability q if they are both
in K. The model discussed in the previous sections is equivalent to G

(
n, 12 , c

√
n, 1

)
.

Next, we define a generalization of the algorithm from the previous section. This algorithm has
the same three phases as before. In the first phase, the definition of Ṽi is different. Ṽi is defined as
the set of vertices with at least p|Si|+ β

√
p(1− p)|Si| neighbors in Si. Namely,

Ṽi =
{
v ∈ V (Gi) \ Si : dS(v) ≥ p|Si|+ β

√
p(1− p)|Si|

}
.

Define ρ′ = (1−α)Φ
(
β− c

√
α q−p√

p(1−p)

)
. In the second phase, after t iterations, define K ′ to be the

set of ρ′tk largest degree vertices in Gt, and let K̃ contain all the vertices in Gt that have at least
1
2(p+ q) neighbors in K ′. In the third phase, let K ′ be the set of vertices containing K̃ and all the

vertices in G that have at least 1
2(p+ q)|K̃| neighbors in K̃. Let K∗ be the set of all vertices in G

that have at least 1
2(p+ q)k neighbors in K ′. The algorithm returns K∗ as the dense graph.

9



Theorem 3.4. If c ≥ c0

√
p(1−p)

q−p then there exist 0 < α < 1 and β > 0 for which given a graph

G ∈ G(n, p, c
√
n, q), the above algorithm finds the hidden dense graph whp(e−Θ(nε0 )) for ε0 = ε0(c).

To prove Thm. 3.4, as in the hidden clique case, we first prove the correctness of each of the
phases of the algorithm, and then bound the failure probability. To prove the correctness of the
first phase, we prove Lemmas B.1 and B.2, which are analogous to Lemmas 2.4 and 2.6. To prove
the correctness of the second phase, we prove Lemma B.3 and Cor. B.4, which are analogous to
Lemma 2.7 and Cor. 2.8. To prove the correctness of the third phase we prove Lemma B.5. The

failure probability follows as in Lemma 2.10 by noticing that substituting c

√
p(1−p)

q−p for c in the

definition of ρ′ gives the exact definition of ρ.

4 Discussion

Our results bring up some interesting questions for future research. For example, one of the
advantages of the algorithm presented here is a failure probability that is less than polynomially
small in the size of the input. Experimental results shown in [14] suggest that the failure probability
of the algorithm described there may also be o(1). The question of whether the analysis can be
improved to prove this rigorously is an interesting open question. One can also ask whether the
analysis in [3] can be improved to show failure probability that is less than polynomially small.

Aside from the most interesting open question of whether there exists an algorithm that finds
hidden cliques for k = o(

√
n), one can ask about ways to find hidden cliques of size k = c

√
n as c

gets smaller. In [3], Alon, Krivelevich and Sudakov give a way to improve the constant for which
their algorithm works, at the expense of increasing the running time. This technique can be used
for any algorithm that finds hidden cliques, so we describe it here. Pick a random vertex v ∈ V ,
and run the algorithm only on the subgraph containing v and its neighborhood. v is a clique vertex,
then the parameters of the algorithm have improved, since instead of having a graph with n vertices
and a hidden clique of size c

√
n we now have a graph with n

2 vertices and a hidden clique of size
c
√
n. The expected number of trials we need to do until we pick a clique vertex is O(

√
n). This

means that if we have an algorithm that finds a hidden clique of size c
√
n, where c ≥ c0, we can

also find a hidden clique for c ≥ c0√
2
, while increasing the running time by a factor of

√
n. If we

wish to improve the constant even further, we can pick r random vertices and run the algorithm
on the subgraph containing them and their common neighborhood. This gives an algorithm that
works for constants smaller by up to a factor of 2r/2 than the original constant, at the expense of
increasing the running time of the algorithm by a factor of nr/2.

We have described a sequence of algorithms whose running times increase by factors of
√
n. It

is not known whether the constant can be decreased if we can only increase the running time by a
factor smaller than

√
n.

Question 1. Given an algorithm that runs in time O(n2) and finds hidden cliques of size c
√
n for

any c ≥ c0, is there an algorithm that runs in time O(n2+ε), where ε < 1
2 and finds hidden cliques

of size c
√
n where c < c0? How small can c be as a function of ε?
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A Concentration inequalities

Throughout the paper, we use the central limit theorem for binomial random variables, and its rate
of convergence that was independently discovered by Berry in 1941 [8] and by Esseen in 1942 [10].
For details, see, for example [9, §Sec. 3.4.4].

Theorem A.1 (Berry, Esseen). Let B(n, p) be a binomial random variable with parameters n, p.
Then for every x ∈ R ∣∣P(B(n,p)−pn√

p(1−p)n
≤ x

)
− Φ(x)

∣∣ = O
(

1√
n

)
.

Corollary A.2. Let B(n, p) be a binomial random variable. For any a ∈ R, the probability that
B(n, p) is greater than pn+ a

√
p(1− p)n is bounded by∣∣P(B(n, p) ≥ pn+ a

√
p(1− p)n

)
− Φ(a)

∣∣ ≤ O
(

1√
n

)
.

Theorem A.3 (Hoeffding’s Inequality). Let S = X1 + · · · + Xn where the Xi’s are independent
Bernoulli random variables. Then for every t > 0

P (|S − ES| ≥ t) ≤ 2e−2t2/n .

Corollary A.4. Let A,B be two disjoint sets of vertices in G ∈ G(n, p) with |A| = n1 and |B| = n2

such that n1 ≤ O (n2) . Given a ∈ R, define the random variable

X =
∣∣{v ∈ A : dB(v) ≥ pn2 + a

√
p(1− p)n2

}∣∣ .
12



Then for every c′ > 0 and 0 < ε < 1
2 it holds that

P
(∣∣X − Φ(a)n1

∣∣ ≥ c′n1−ε
1

)
≤ e−c′n1−2ε/2 .

Proof. From Cor. A.2 we know that
∣∣Φ(a)n1 − EX

∣∣ ≤ c n1√
n2

for some constant c > 0. Therefore,

by Thm. A.3, for any constant c′ > 0,

P
(∣∣X − Φ(a)n1

∣∣ ≥ c′n1−ε
1

)
≤ P

(∣∣X − EX
∣∣ ≥ c′n1−ε

1 − c n1√
n2

)
≤ e−(c′n1−ε

1 −cn1/
√
n2)2/n1 ≤ e−

1
2
c′n1−2ε

1

where the last inequality holds because n1√
n2

≤ O
(√

n1

)
= o(n1−ε

1 ).

B The G(n, p, k, q) case

Lemma B.1 (analogous to Lemma 2.4). For every i ≥ 0, the graph Gi defined the i’th iteration
of the algorithm is a copy of G(ñi, p, k̃i, q).

Proof. The proof is identical to the proof of Lemma 2.4.

Lemma B.2 (analogous to Lemma 2.6). For every 0 < ε1, ε2 <
1
2 , the set Ṽ satisfies

∣∣|Ṽ | − τn
∣∣ ≤

O(n1−ε1) and
∣∣|Ṽ ∩K| − ρ′k

∣∣ ≤ O(k1−ε2) whp(e−Θ(n1−2ε1 ) + e−Θ(k1−2ε2 )).

Proof. Follows from Cor. A.4 the same way as in the proof of Lemma 2.6.

Lemma B.3 (analogous to Lemma 2.7). Let G ∈ G(n, p, k, q) where k ≥ c0
√
n log n. Denote the

hidden dense graph by K and the set of k largest degree vertices by M . Then

P
(∣∣M \K

∣∣ > 0
)
≤ e−(q−p)k2/2n−logn−O(1) .

Proof. Define x = 1
2(q − p)k. Then by Thm. A.3

P
(
∃v ̸∈ K : d(v) ≥ pn+ x

)
≤ nP

(
B
(
n, p

)
≥ pn+ x

)
≤ nP

(∣∣B(
n, p

)
− pn

∣∣ ≥ x
)
≤ 2ne−(q−p)2k2/2n .

On the other hand,

P
(
∃v ∈ K : d(v) < pn+ x

)
≤ kP

(
B
(
n− k, p

)
+B

(
k, q

)
− p(n− k)− qk < x− (q − p)k

)
≤ kP

(∣∣B(
n− k, p

)
+B

(
k, q

)
− p(n− k)− qk

∣∣ ≥ x
)

≤ 2ke−(q−p)2k2/2n .

Therefore, the probability that there exist a vertex v ̸∈ K and a vertex u ∈ K such that d(u) < d(v)
is bounded by 2(n+ k)e−(q−p)2k2/2n.

Corollary B.4 (analogous to Cor. 2.8). If the algorithm does t iterations before finding K̃ and

succeeds in every iteration, then whp(e−Θ(( ρ
2

τ
)t)), K̃ is a subset of the original hidden dense graph.

Proof. The proof is analogous to the proof of Cor. 2.8, by noticing that whp(e−Θ( ρ
2tk2

τtn
)), every

hidden dense graph vertex in Gt has at least
(
q − q−p

4

)
kt − o(kt) neighbors in K ′ and every non-

hidden dense graph vertex in Gt has at most
(
p+ q−p

4

)
kt + o(kt) neighbors in K ′.
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Lemma B.5. We are given a random graph G ∈ G(n, p, k, q), and also a subset of the hidden dense
graph K̃ of size s. Denote the hidden dense graph in G by K. Suppose that either

(a) k = O(log n log log n) and s ≥
(

2
(q−p)2

+ ε
)
lnn for some ε > 0, or

(b) k ≥ ω(log n log log n) and s ≥ 2
(q−p)2

lnn+ 1.

Let K ′ denote the set of vertices containing K̃ and all the vertices in G that have at least 1
2(p+ q)s

neighbors in K̃. Define K∗ to be the set of vertices of G that have at least 1
2(p + q)k neighbors in

K ′. Then for every 0 < ε3 <
1
2 , whp(e

−Θ(s log k+logn) + e−Θ(k1−2ε3)), K∗ = K.

Proof. Look at an arbitrary subset S of K of size s. By Thm. A.3, the probability that a specific
vertex v ̸∈ K has more than 1

2(p+q)s neighbors in S is bounded by e−(q−p)2s/2. The probability that
a specific vertex v ∈ K has less than 1

2(p+ q)s neighbors in S is bounded by the same expression.
Therefore, the probability of having at least l0 “bad” vertices (where “bad” is defined by either a
vertex of K that is not in K ′ or a vertex not in K that is in K ′) is bounded by

∑n
l=l0

nle−(q−p)2sl/2.
Taking union bound over all subsets of size s of K gives that the probability that there exists a
subset with at least l0 bad vertices is bounded by

ks
n∑

l=l0

el(lnn−(q−p)2s/2) ≤ nes ln k−l0((q−p)2s/2−lnn) = elnn+s ln k−l0((q−p)2s/2−lnn) .

If we take l0 = 2(lnn+s ln k)
(q−p)2s/2−lnn

this probability is e− lnn−s ln k. Therefore, whp(e− lnn−s ln k) there are

at most l0 bad vertices in K ′. Specifically, this implies that K ′ contains at least k − l0 vertices
from K and at most l0 vertices not from K, and that |K ′| ≤ k + l0. By Thm. A.3 and the union
bound, the probability that there exists a vertex v ∈ K with less than qk − k1−ε3 neighbors in K
is bounded by e−Θ(k1−2ε3 ), and so is the probability that there exists a vertex v ̸∈ K with more
than pk+ k1−ε3 neighbors in K. Therefore, whp(e−Θ(k1−2ε3)) the number of neighbors every v ∈ K
has in K ′ is at least qk − k1−ε3 − l0, and the number of neighbors every v ̸∈ K has in K ′ is at
most pk + k1−ε3 + l0. Thus, if s and k are such that l0 = o(k) then whp(e− lnn−s ln k + e−Θ(k1−2ε3 ))
K∗ = K.
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