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ABSTRACT. We show that the probability that a simple random walk

covers a finite, bounded degree graph in linear time is exponentially

small.

More precisely, for every D and C , there exists α=α(D,C ) > 0 such

that for any graph G , with n vertices and maximal degree D , the proba-

bility that a simple random walk, started anywhere in G , will visit every

vertex of G in its first C n steps is at most e−αn .

We conjecture that the same holds for α that does not depend on

D , provided that the graph G is simple.

1. INTRODUCTION

Let G = (V ,E) be a finite connected graph, let {X t }∞t=0 be a simple ran-
dom walk on G started at X0 = v . Let τcov be the cover time of the walk,
i.e. the first time t such that for every v ∈G there is s ≤ t such that Xs = v .
Our main result is:

Theorem 1.1. For every D and C , there exists α = α(D,C ) > 0 such that
for any graph G, with n vertices and maximal degree D, and every starting
vertex v ∈V we have

Pv (τcov ≤C n) ≤ e−αn .

In certain special cases, the result follows from a direct application of
Hoeffding’s inequality. For example, if the graph is a path of length n then
the probability to hit the end of the path within C n steps is exponentially
small. However, this approach fails in general since more typically there
is a fixed probability to have hit any specific vertex by time C n.

A naive approach to this problem would be to consider the Doob mar-
tingale of some related random variable. Natural choices include either
the cover time itself or the number of uncovered vertices. However, these
martingales could have large differences. For example when considering
a simple random walk on a complete binary tree of height h, if the walk
has already covered half of the tree and is now at the root, the next step
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would cause a very large change in the value of either of these martin-
gales.

The proof of Theorem 1.1 relies heavily on the following fact: The ex-
pected number of visits to a vertex v before covering Bv (r ) (the ball of
radius r around v) grows to infinity with r , even when we allow the walk
to behave arbitrarily outside of Bv (r ). To make this more precise, let us
make some definitions.

A stochastic process X t on the vertices of G is said to be a random walk
if X t+1 is a neighbor of X t , almost surely. For a subset of the vertices S ⊂V ,
a random walk in S-simple if the distribution of X t+1 given the history
X0, . . . , X t is uniform on the neighbors of X t whenever X t ∈ S.

For X a random walk on G and S a subset of vertices let τ∗cov(S) be the
first time t such that X t 6∈ S and for every v ∈ S there is s ≤ t such that
Xs = v . Let `v

t = |{s < t | Xs = v}| be the number of visits to v until time t .

Lemma 1.2. For every D and C , there exists r = r (D,C ), such that if G is a
graph of maximal degree at most D and v is a vertex of G such that Bv (r ) 6=
V , then any Bv (r )-simple random walk, started outside Bv (r ) satisfies

E(`v
τ∗cov(Bv (r ))) ≥C .

The proof of Theorem 1.1 then proceeds by constructing a certain sub-
martingale (which is reminiscent of the Doob martingale), which bounds
the cover time from below, has expectation 2C n and has bounded differ-
ences. Then by Hoeffding’s bounds, the value of this submartingale at
time C n is exponentially unlikely to be less then C n, which means that
the walk hasn’t covered the graph by this time.

Lemma 1.2 is of interest in itself. For example, a direct consequence
is the well-known fact that the expected cover time of bounded degree
graphs grows superlinearly in the number of vertices (see subsection 1.1).
A more subtle implication is that for this result to hold one only needs the
random walk to be simple in the vicinity of some constant fraction of the
vertices. In particular, the cover time of random walk on a bounded de-
gree graph which is simple in all but a sublinear number of vertice is also
superlinear. In fact, our main Theorem applies to these kind of random
walks as well.

An interesting open question is to determine the right quantitative ver-
sion of 1.2. One can obtain an exponential lower bounded for r in terms
of C (and fixed D) by considering a simple random walk on a d-dimensional
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torus, for d ≥ 3. The question is whether the power to change the be-
havior of the walk outside of Bv (r ) can reduce significantly the expected
number of visits to v before covering.

1.1. Related Works. The cover time of a simple random walk on graphs
is a fairly natural concept which has been studied extensively in the past
30 years. Almost all results about the cover time are about its expecta-
tion. The most important lower bound is that of Feige [3] who proved
that Eu(τcov) ≥ (1− o(1))n logn for any simple graph on n vertices and
any starting vertex u. This implies that the probability to cover the graph
in C n steps cannot be more than O(C /logn) uniformly for all vertices.

The only concentration-type result the authors are aware of is that of
Aldous [1] who proved that if maxu,v Eu(τv

hit) ¿ maxu Eu(τcov) (where τv
hit

is the first time the walk visits v) then for any starting vertex u we have
τcov/Eu(τcov) → 1 in distribution. Notice that our main result applies for
any bounded degree graph, even if the cover time is not concentrated
around its mean.

The interested reader is referred to [2, 4] for further information about
the cover time. More information about the importance of cover times in
Computer Science can be found in [5].

2. PROOF OF THE MAIN THEOREM

Given a graph G = (V ,E), a vertex v ∈V and r ∈N let Av (r ) be the annu-
lus of radius r around v and assume that Av (r ) 6= ;. (For the convenience
of the reader, we have included a legend of notation on the last page.)
Given a walk X t on G let Ft = σ(X0, . . . , X t ) and let `v (r ) = `v

τ∗cov(Bv (r )) be

the number of visits to v before covering and exiting Bv (r ) (or ∞ if the
walk never covers Bv (r )). Define

Lv
t (r ) = inf E(`v (r )(Y ) |Ft ) (2.1)

where the infimum is taken over all Bv (r )-simple random walks Y that
agree with X in the first t steps (i.e. P(Y0 = X0, . . . ,Yt = X t ) = 1). The sto-
chastic process {Lv

t (r ) : t ≥ 0} is adapted to the filtration Ft and is some-
what similar to the Doob martingale. However, here we take expectation
with respect to a different process than the random walk itself.

The next few Lemmas show that Lv
t (r ) is, in fact, a submartingale with

bounded differences and that it does not change its value when the walk
is outside of Bv (r ).
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Lemma 2.1. Lv
t (r ) is a sub-martingale.

Proof.

E(Lv
t+1(r ) |Ft ) = d−1

X t

∑
u∼X t

E(Lv
t+1(r ) |Ft , X t+1 = u)

= d−1
X t

∑
u∼X t

inf E(`v (r )(Y ) |Ft , X t+1 = u)

where for each summand the infimum is taken over all Bv (r )-simple ran-
dom walks which agree with X in the first t + 1 steps. Given a vector
{Y u}u∼X t of such random walks we can combine them into a single such
random walk Y in the following way: Ys = Xs for s ≤ t +1 and Ys = Y u

s for
s > t +1 if X t+1 = u. Obviously, E(Lv

t+1(r ) |Ft , X t+1 = u) is the same under
Y u and under Y . Hence

d−1
X t

∑
u∼X t

inf E(`v (r )(Y ) |Ft , X t+1 = u) ≥ inf E(`v (r )(Y ) |Ft ) (2.2)

where the infimum is now taken over all Bv (r )-simple random walks which
agree with X in the first t +1 steps. (In fact we have equality in equation
(2.2), but we don’t need this.) In comparison, in the definition of Lv

t (r )
we have the same expectation but the infimum is taken over all Bv (r )-
simple random walks which agree with X in the first t steps. This latter
set contains the former, hence

E(Lv
t+1(r ) |Ft ) ≥ Lv

t (r ) .

■
Lemma 2.2. If X t 6∈ Bv (r ) and X t+1 6∈ Bv (r ) then Lv

t+1(r ) = Lv
t (r ).

Proof. Since the infimum in the definition of Lv
t (r ) includes all the Bv (r )-

simple random walks Y where Yt+1 = X t+1 with probability 1, we see that
Lv

t+1(r ) ≥ Lv
t (r ). Similarly, if we have X t+2 = X t then Lv

t+2(r ) ≥ Lv
t+1(r ).

However, since Lv
t (r ) only depends on X t and on which vertices were vis-

ited in Bv (r ) and on `v
t and none of these changes between time t and

t +2 if X t+2 = X t , we get that Lv
t (r ) = Lv

t+2(r ) ≥ Lv
t+1(r ) ≥ Lv

t (r ). ■
In fact, when inside Bv (r ), this process is a martingale and when travers-

ing an edge outside of Bv (r ) its value doesn’t change, so the only times
when Lv

t (r ) exhibits its “sub”-ness is when taking a step from the outside
to the inside of Bv (r ).

Lemma 2.3. There exists M = M(D,r ), such that |Lv
t+1(r )−Lv

t (r )| ≤ M.
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Proof. Consider Lv
t (r )−`v

t . This is the infimum of the expected number
of visits to v between times t and τ∗cov(Bv (r )) where the infimum is with
respect to any Bv (r )-simple random walk that agrees with X in the first
t steps. This number is nonnegative and bounded above by the expecta-
tion when we take the walk X itself. This is at most D2Dr+1 +2Dr+1, since
after every visit to v there is a probability of at least D−2Dr+1

that X now
performs a depth first search of Bv (r ), and during such a search the walk
may visit v no more than 2Dr+1 times. Since |`v

t+1 −`v
t | ≤ 1 we get that

|Lv
t+1(r )−Lv

t (r )| ≤ D2Dr+1 +2Dr+1 +1.

■

Now we can turn to the proof of the main result.

Proof of Theorem 1.1. Given D and C , let r = r (D,4C ), as given by Lemma
1.2. If G = (V ,E) is a connected graph with maximal degree at most D ,
and n = |V | > Dr+1 then for every v ∈ V we have Av (r ) 6= ;. Hence, we
can define Lv

t (r ) and we have Lv
0 (r ) ≥ 4C for all v ∈V \ BX0 (r ).

Consider the sum

Lt =
∑

v∈G\BX0 (r )
Lv

t (r ) .

By Lemma 2.1 we know that Lt is a sub-martingale too, since all of the
Lv

t (r ) are adapted to the same filtration. Combining Lemmas 2.3 and 2.2
shows that |Lt+1−Lt | ≤ M , provided we incorporate a factor Dr+2 into the
constant M = M(D,r ) from Lemma 2.3. We now have

L0 ≥ 4C
∣∣V \ BX0 (r )

∣∣≥ 3C n ,

for sufficiently large n.
We can now apply the Hoeffding-Azuma inequality to get

P(Lt ≤ 2C n) ≤ e−n2/2t M

for any t .
Substituting t = 2C n we get

P(L2C n ≤ 2C n) ≤ e−n/4C M . (2.3)

Let τ∗cov be the first time t > τcov such that X t 6∈ BXτcov
(2r ). Note that

τ∗cov ≥ τ∗cov(Bv (r )) for all v ∈ V . Note also that if t ≥ τ∗cov(Bv (r )) then `v
t ≥
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`v
τ∗cov(Bv (r )) = Lv

t for all v ∈V , and summing this inequality over v gives

t = ∑
v∈V

`v
t

≥ ∑
v∈V

Lv
t = Lt .

Thus if Lt > t then we must have τ∗cov(Bv (r )) > t for some v ∈V and hence
τ∗cov > t as well. Thus P(τ∗cov ≤ t ) ≤ P(Lt ≤ t ). Substituting t = 2C n gives

P(τ∗cov ≤ 2C n) ≤ P(L2C n ≤ 2C n)

≤ e−n/4C M ,

by equation (2.3). Finally we note that P(τ∗cov −τcov ≥ t ) decays exponen-
tially fast, at a rate depending only on D and r , regardless of the history
until time τcov. Hence,

P(τcov <C n) ≤ P(τ∗cov ≤ 2C n)+P(τ∗cov −τcov ≥C n) ≤ e−αn ,

for a constant α that depends only on D and r which in turn depends
only on D and C . ■

3. PROOF OF THE MAIN LEMMA

Define

φ(r ) = minE(`v (r ))/dv

where the minimum is take over all connected graphs G = (V ,E) of max-
imal degree at most D and vertices v ∈ V such that Av (r ) 6= ; and over
all Bv (R)-simple random walks started outside of Bv (r ). Then one may
restate the main Lemma as

lim
r→∞φ(r ) =∞ .

We will prove this fact by induction on the value of φ(r ). More precisely,
we will show that if φ(r ) = K then there is some R > r such that φ(R) ≥
K +e−3K dv−4. Obviously, this is enough, as iterations of K 7→ K +e−3K dv−4

tend to infinity.
For a set of vertices S ⊂ V write BS(r ) = ∪v∈SBv (r ). The following is

a weaker, but more general version of Theorem 1.1, showing that the
weighted sum of the number of visits to a set S of vertices is unlikely to be
small for BS(r )-simple random walk.
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Lemma 3.1. Fix r ∈ N and let K = φ(r ). For any ε > 0 there is some
a = a(r,ε) > 0 such that if G = (V ,E) is a connected graph of maximal
degree at most D and {av }v∈V a probability distribution on some S ⊂ V
with maxv∈S av ≤ a then for any BS(r )-simple random walk started out-
side BS(r ) we have

P
( ∑

v∈S
av`

v (r ) < K
∑
v∈S

av dv −ε
)< ε .

Proof. For any submartingale Lt one can construct a martingale Mt such
that

(1) M0 = L0

(2) Mt ≤ Lt

(3) If Lt+1 = Lt then Mt+1 = Mt

(4) If the differences of Lt are bounded by L then the differences of
Mt are bounded by 2L

Now, apply this to Lv
t (r ) to get the martingales M v

t , and let

M v = lim
t→∞M v

t ≤ lim
t→∞Lv

t (r ) = `v (r ) .

It now follows that M v and M u are uncorrelated when the distance be-
tween v and u is more than 2r . This is since M v = ∑∞

t=0 M v
t+1(r )−M v

t (r )
and we have (M v

t+1 − M v
t )(M u

t+1 − M u
t ) = 0 by Lemma 2.2 and property

3 above and for s 6= t we have E((M v
t+1 − M v

t )(M u
s+1 − M u

s )) = 0 because
these are martingales. Also, the variance of each M v is bounded by the
second moment of `v (r ) which is bounded by some function of D and r
only, since `v (r ) has exponential tails with parameter depending only on
D and R (see Lemma 2.3). Let N = N (D,r ) be such a bound for Var(M v ).

Now let

M = ∑
v∈S

av M v ≤ ∑
v∈S

av`
v (r ) .

We bound Var(M) by

Var(M) = ∑
v∈S

∑
u∈S

av au Cov(M v , M u)

≤ ∑
v∈S

∑
ui nBv (r )

av au Cov(M v , M u)

≤ ∑
v∈S

av
∑

ui nBv (r )
au

√
Var(M v )Var(M u)

≤ ∑
v∈S

av aDr+1N

≤ aDr+1N .
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and the Lemma holds by choosing a small enough and applying Cheby-
shev’s inequality ■

Let τv (r ) be the positive hitting time of Av (r ) and for w ∈ Bv (r ) let
av

w (r ) = Ew (`v
τv (r )), where the expectation is with respect to a simple ran-

dom walk. Obviously, this expectation is the same for any Bv (r )-simple
random walk.

Lemma 3.2. Let G = (V ,E) be a finite graph, v ∈V a vertex and r ∈N such
that Av (r ) 6= ;. Then ∑

w∈Av (r )
dw av

w (r ) = dv .

Proof. av
w (r ) is equal to the sum of the probabilities of all paths which

start at w and end at v and do not return to Av (r ). For each of these
paths, the probability that a simple random walk would traverse it is ex-
actly dv /dw times the probability of traversing it in the reverse direction.
Hence, ∑

w∈Av (r )
dw av

w (r ) = dv
∑

w∈Av (r )
Pv (Xτv (r ) = w) = dv

where the last equality follows since the walk hits exactly one vertex of
Av (r ). ■

Let mv (r ) = maxw∈Av (r ) av
w (r ).

Lemma 3.3. Given a graph G = (V ,E) with maximal degree at most D and
a vertex v ∈V and r ∈N such that Bv (r ) 6=V , there is r ′ ≤ r such that

mv (r ′) ≤
√

dv av
v (r +1)

r

for any Bv (r )-simple random walk.

Proof. As in Lemma 3.2 we have

dw av
w (r ′) = dv Pv (Xτv (r ′) = w)

for every w ∈ Av (r ′) when r ′ ≤ r .
One may bound av

v (r ) by considering, for every r ′ ≤ r all the paths
which start at v , hit Av (r ′) at some specified vertex w and then hit v again
before returning to Av (r ′). For distinct r ′’s or distinct w in the same Av (r ′)
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these are disjoint sets. This summation yields

av
v (r +1) ≥ ∑

r ′≤r

∑
w∈Av (r ′)

Pv (Xτv (r ′) = w)av
w (r )

= ∑
r ′≤r

∑
w∈Av (r ′)

(av
w (r ′))2dw /dv

≥ ∑
r ′≤r

(mv (r ′))2/dv = r (mv (r ))2/dv

where the middle equality follows by reversibility. ■
We will also need the following useful Lemma.

Lemma 3.4. Let xi be a stochastic process on {0,1}, adapted to the filtration
Fi and let pi = E(xi |Fi−1). If pi ≤ 1

2 a.s. for all i , and τ is a stopping time
such that

∑τ
i=1 pi ≤ K a.s. then

P(∀i≤τxi = 0) ≥ e−3K .

Proof. Define Mi = ∏
j≤i (1−p j )−1 if ∀ j≤i xi = 0 and Mi = 0 otherwise. It

is easily checked that Mi is a martingale adapted to Fi and M0 = 1. Since
p j ≤ 1

2 for all j we have 1−p j ≥ e−3p j so
∏

j≤i (1−p j )−1 ≤ e3
∑

j≤i p j . Since∑τ
i=1 pi ≤ K , by the optional stopping Theorem we have P(∀i≤τxi = 0) ≥

e−3K . ■
Now we are ready to prove the main Lemma. Very roughly, we show

that for some radius R ′, by the time we cover Av (R ′), we visit v almost
K dv times in expectation and there is a non-negligible probability that
we haven’t visited v at all, in which case we will visit v at least once be-
fore covering, thus increasing the expected number of visits to v before
covering by this probability.

Proof of Lemma 1.2. Let r be such that K =φ(r ). Fix some ε to be chosen
later and let a = a(r,ε) from Lemma 3.1. Let R = D(K + e−3K dv−4)/a2. We
claim thatφ(R+r ) ≥ K+e−3K dv−4. This is enough to show that limr→∞φ(r ) =
∞.

Let G = (V ,E) be a graph with maximal degree at most D and let v ∈ V
a vertex such that Av (R) 6= ;. We want to show that for any Bv (R)-simple
random walk started outside Bv (R) we have E(`v (R)) ≥ K + e−3K dv−4. If
av

v (R) ≥ K + e−3K dv−4 then we are done (recall that av
w (R) is the expected

number of visits to v before hitting Av (R) for a simple random walk started
at w). Hence, from now on we assume that

av
v (R) ≥ K +e−3K dv−4 . (3.1)
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In this case, by Lemma 3.3 there is R ′ ≤ R such that for all w ∈ Av (R ′)
we have

av
w (R ′) ≤

√
dv av

v (R)

R
≤ a .

Let ti enumerate the times the walk is in Av (R ′) and define

bi =
i∑

j=0
av

X ti
(R ′)

and
ci = `v

ti+1
.

Claim 3.5. ci −bi is a martingale (adapted to the filtration Fti+1 ).

Proof. bi+1 −bi = av
X ti

(r ) = E(ci+1 − ci |Fti+1 ). ■
In words, we partition the walk into excursions, each of which start and

ends at Av (R ′), and for each excursion we count the number of visits to v
and subtract the expectation.

Let I be the first index such that either bI ≥ K dv −ε or τ∗cov(Bv (R+r )) ≤
tI . Obviously, this is a stopping time and also bI ≤ K dv +1 since av

w (R ′) ≤
1, for all w ∈ Av (R ′).

Claim 3.6.
P(cI = 0) ≥ e−3(K dv+1) .

Proof. The probability to hit v between ti and ti+1 is at most av
X ti

(R ′) and∑I
i=0 av

X ti
(R ′) = bI ≤ K dv +1. The claim now follows by Lemma 3.4. ■

Claim 3.7.
P
(
τ∗cov(Bv (R + r )) ≤ tI

)≤ ε
Proof. Obviously, τ∗cov(Bv (R+r )) ≥ τ∗cov(BS(r )) where S = Av (R ′). Let aw =
av

w (R ′) ≤ a by our assumption on R ′. Hence, by Lemma 3.1 and the choice
of a we have

P
( ∑

w∈S
aw`

w (r ) < K
∑

w∈S
aw dw −ε)< ε

which implies
P
(
bτ∗cov(Bv (R+r )) < K dv −ε

)< ε
and the claim follows by the definition of I . ■
Claim 3.8.

E(cI ) ≥ (K dv −ε)(1−ε) .
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Proof. E(cI ) = E(bI ) by Lemma 3.5 and since I is a stopping time.

E(bI ) ≥ (K dv −ε)P(bI ≥ K dv −ε) ≥ (K dv −ε)(1−ε)

by claim 3.7 and the definition of I . ■
Summing it all up, the expected number of visits to v before τ∗cov(Bv (R+

r )) is at least the expected number of these visits which occur before tI

plus the probability that v has not been visited at all by time tI (in which
case we need to visit it at least once). Lemma 3.8 and Lemma 3.6 bound
these from below yielding

E(`v (R + r )) ≥ E(cI )+P(cI = 0)

≥ (K dv −ε)(1−ε)+e−3(K dv+1)

≥ K dv +e−3K dv−4

for ε small enough. ■
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Legend:
Bv (r ) - the ball of radius r around v
Av (r ) = Bv (r ) \ Bv (r −1) - the annulus of radius r around v
τv (r ) the hitting time of Av (r )
`v

t the number of visits to v before time t
`v (r ) the number of visits to v before time τv (r )
τcov(S) the cover time of S
τcov the cover time of the graph
τ∗cov(S) the time to cover and exit S
τ∗cov the time to cover the graph and exit BXτcov

(2r )
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