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Abstract

We consider a planar Poisson process and its associated Voronoi map. We
show that there is a proper coloring with 6 colors of the map which is a determin-
istic isometry-equivariant function of the Poisson process. As part of the proof
we show that the 6-core of the corresponding Delaunay triangulation is empty.

Generalizations, extensions and some open questions are discussed.

1 Introduction

The Poisson-Voronoi map is a natural random planar map. Being planar, a specific
instance can always be colored with 4 colors with adjacent cells having distinct colors.
The question we consider here is whether such a coloring can be realized in a way that
would be isometry-equivariant, that is, that if we apply an isometry to the underlying
Poisson process, the colored Poisson-Voronoi map is affected in the same way. In other
words, can a Poisson process be equivariantly extended to a colored Poisson-Voronoi
map process? How many colors are needed? Can such an extension be deterministic?

Extension of spatial processes, particularly of the Poisson process, have enjoyed a
surge of interest in recent years. The general problem is to construct in the probability
space of the given process, a richer process that (generally) contains the original process.
Notable examples include allocating equal areas to the points of the Poisson process
[14, 9, 10, 17, 6, 5]; matching points in pairs or other groups [13, 7, 12, 1]; thinning and
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Figure 1: A proper 4-coloring of a portion of the Poisson-Voronoi map.

splitting of a Poisson process [11, 2]. Coloring extensions of i.i.d. processes on Zd are
considered in [3].

We now proceed with formal definitions and statement of the main results. A
non-empty, locally finite subset S ⊂ Rd defines a partition of Rd, called the Voronoi
tessellation, as follows: The Voronoi cell C(x) of a point x ∈ S contains the points of
Rd whose distance to S is realized at x:

C(x) = {z ∈ Rd : d(z, x) = d(z, S)}.
Points in the intersection C(x) ∩ C(y) have equal distance to x and y. It follows that
the cells cover Rd and have disjoint interiors.

For the purposes of coloring, we consider the adjacency graph G of these cells, with
vertices S and edge (x, y) if C(x) ∩ C(y) 6= ∅. In the case d = 2, this graph is called
the Delaunay triangulation, and is a triangulation of the plane. (In general, this graph
is the 1-skeleton of a simplicial cover of Rd.) A k-coloring of the Voronoi tessellation is
a proper k-coloring of the Delaunay triangulation, i.e. an assignment of one of k colors
to each cell so that adjacent cells have distinct colors. Note that if S does not contain
four or more co-cyclic points, then no more than three cells meet at a single point. This
is a.s. the case for the Poisson process. However, for greater generality one needs the
more careful definition, where (x, y) is an edge if |C(x) ∩ C(y)| > 1. This ensures that
the graph is planar.

Given a standard (unit intensity) Poisson process P ⊂ R2, the Poisson-Voronoi map
is the Voronoi map of its support. By the 4 color theorem, the Poisson-Voronoi map can
always be properly colored with 4 colors. Our main question is whether it is possible
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to color the Poisson-Voronoi map in an isometry equivariant way and if so, how many
colors are needed.

To make this precise, let M be the space of locally finite sets in Rd, endowed with
the local topology and Borel σ-algebra.1 Let P be the probability on M which is the
law of the Poisson process. Each realization P ∈M has the Delaunay graph associated
with it. A (proper) k-coloring of P is a disjoint partition P = ∪k

i=1Pi such that if
x ∼ y in the Delaunay graph of P , then x, y are not in the same Pi. Thus the space of
k-colored maps is a subset of Mk.

A deterministic k-coloring scheme of the Voronoi map is a measurable function
F : M → Mk such that F (P) is P-a.s. a k-coloring of P . Informally, given the point
process, F assigns a color to each point so that the result is a proper coloring.

A randomized k-coloring scheme of the Voronoi map is a probability measure µ on
Mk, supported on proper k-colorings, such that the law under µ of P := ∪k

i=1Pi is
P. Given such a measure µ, one may consider µ conditioned on P . This conditional
distribution is defined P-a.s., and is supported on k-colorings of P . Thus a randomized
k-coloring can be interpreted as assigning to each P ∈ M a probability measure on k
colorings of P . Note that any deterministic coloring scheme is also a randomized one,
with µ being the push-forward of P by F .

A deterministic coloring scheme is said to be isometry equivariant if every isometry
γ of Rd, acting naturally on M and Mk, has γF (P) = F (γP). For randomized schemes
equivariance is defined by µ◦γ = µ. These definitions coincide for deterministic schemes.

Theorem 1.1. There exists a deterministic isometry equivariant 6-coloring scheme of
the Poisson-Voronoi diagram in R2.

The requirement of determinism complicates things significantly. In contrast, we
have the much simpler result

Proposition 1.2. There exists a randomized isometry equivariant 4-coloring scheme
of the Poisson-Voronoi diagram in R2.

In dimensions other than 2 the problem is not as interesting.

Proposition 1.3. In R, there is a randomized isometry equivariant coloring of the
Poisson-Voronoi map with 2 colors and a deterministic one with 3 colors. In both cases
this is the best possible.

In Rd for d > 2, the chromatic number of the Poisson-Voronoi map is a.s. ∞.

The rest of the paper is organized as follows: In section 2 we outline the proof
of Theorem 1.1, and present our deterministic coloring algorithm and the two main
propositions needed to prove its correctness. In Section 3 we discuss related questions:
randomized colorings, dimensions other than 2, and mention some open problems. Sec-
tion 4 contains the proof of our main theorem.

1It is also common to let M be the set of non-negative integer valued measures on Rd with µ({x}) ∈
{0, 1}. The distinction will not be important to us.
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2 Proof outline

We outline the proof of Theorem 1.1. The idea is to find an isometry equivariant adap-
tation to the Voronoi map of a 6 coloring algorithm for finite planar graphs, originating
in Kempe’s attempted proof of the four color theorem. By Euler’s formula it is known
that any finite planar graph G has a vertex of degree at most 5. The algorithm proceeds
by iteratively removing such a vertex until the graph is empty, then putting back the
vertices one by one in reverse order. As each vertex is put back into the graph, it is
assigned a color distinct from those already assigned to any of its neighbors. Since a
vertex has at most 5 neighbors when it is put back, this produces a proper 6 coloring.

To adapt this algorithm to the Poisson-Voronoi isometry equivariant setting, one
must deal with several issues. First, there exist infinitely many vertices of degree at
most 5 and there is no way to pick just one of them in an isometry-equivariant way.
Second, even if we iteratively remove all vertices of degree at most 5, the graph will not
become empty after any finite number of steps. Finally, when returning the vertices,
it is not clear in what order to do so (which may be important if some of them are
neighbors). We need a way to order them which is isometry-equivariant.

We overcome these issues by proving that for a Poisson-Voronoi map, the following
two properties hold almost surely. Let G = (V,E) be the Delaunay graph formed by
the Poisson-Voronoi map. For a cell v ∈ V write A(v) for its area as a planar region.
Inductively, define G0 = G and Gi+1 as the graph formed from Gi by removing all
vertices of degree (in Gi) at most 5.

Proposition 2.1. There exists an integer M > 0 such that, almost surely, GM contains
only finite connected components.

Proposition 2.2. Almost surely, all cells have different areas and there is no infinite
path in G with decreasing areas.

We now exhibit a deterministic algorithm which takes as input a graph G = (V, E)
with chromatic number at most 6 and an area function A : V → R+ satisfying the two
propositions above and returns a proper 6-coloring of the graph. Since the algorithm
only depends on the graph structure G and areas A which are preserved by isometries,
it is clear that when applying it to the Delaunay graph of a Poisson-Voronoi map we
will get a deterministic isometry-equivariant 6-coloring.

The algorithm starts with all vertices uncolored. Once a vertex is colored, its color
never changes. Consider first GM . Each of its components is finite and hence may be
colored with 4 colors in an isometry equivariant way (e.g. take the minimal coloring in
lexicographic order, when the vertices of the component are ordered by their area).

Next, having colored Gk, we color Gk−1 inductively. Once G = G0 is colored, we are
done. Consider the vertices of Gk−1 \ Gk. Each has at most 5 neighbors in Gk−1. We
order these vertices by increasing areas and wish to color them in order, i.e., coloring a
vertex v only after its neighbors of smaller area have been colored. The color of these
neighbors is determined using the same method in an iterative manner. Proposition 2.2
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implies that there are just finitely many vertices that need to be considered before v
(see also Lemma 4.18). Hence, going over these finitely many vertices in order of their
areas, we color each one by a color which is unused by its neighbors (say, the minimal
such color) until we finally color v.

Proposition 2.1 is more difficult than Proposition 2.2 and the main lemma required
for its proof (Lemma 4.9) says that if we consider a square of side length 6R and
iteratively remove vertices inside this square having degree at most 5, then the square
of side length 2R with the same center will eventually become empty with probability
tending to 1 as R → ∞. This is shown using several probabilistic estimates and uses
of Euler’s formula. We then show that for well separated squares of side length 6R,
the events just described, applied to these squares, are nearly independent. A small
variation on the above event (requiring that the boxes are also sealed; see below) makes
separated boxes completely independent. Proposition 2.1 then follows by standard k-
dependent percolation arguments. Proposition 2.2 is proved using a similar but easier
k-dependent percolation argument.

As a corollary of the proofs of the above propositions we obtain that our coloring
is finitary with exponential tails. That is, for any given point p ∈ R2, the probability
that the color of the cell containing p is not determined by the points of the Poisson
process within a ball of radius R around p is at most Ce−cR for some C, c > 0.

Note that instead of the area A, we could use any other parameter of the cell (e.g.
diameter) which satisfies Proposition 2.2 (in fact, one can relax the requirement that
all cells have different areas to the requirement that adjacent cells have different areas).
The sole purpose of A is to induce a well founded order on cells which would “break
ties” when putting back vertices. We chose to use the area because it is a very natural
parameter to consider, but it is as easy to prove the required properties for other
parameters (see Section 4.2). A related result is that there is no infinite path where
each Poisson point is the closest to the previous one in the path [15].

3 Generalizations, Extensions and Questions

In this section we explain some variants and extensions of the question and settings
discussed in our paper.

3.1 Randomized colorings

The fact that there is a randomized 4-coloring scheme of the Poisson-Voronoi map
follows from the four color theorem by a soft argument. This involves an averaging
consideration of ergodic theory and works for any amenable transitive space.

Proof of Proposition 1.2. The 4-color theorem implies existence of a measurable func-
tion F (not necessarily equivariant) which assigns each Voronoi diagram a 4-coloring.
E.g. the lexicographically minimal proper coloring is easily seen to be a measurable
function of the map.
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To get a randomized equivariant coloring, let τx be a translation by x ∈ R2, ρθ a
rotation by θ, and ε the reflection about the x axis. Let σ = τx ◦ ρθ ◦ εu be a random
isometry, where u ∈ {0, 1}, θ ∈ [0, 2π] and x ∈ B(0, R) are uniform and independent.

This defines a probability measure FR on 4-colored maps by conjugating F by σ. It
is clear (due to compactness of the space of distributions over 4-colorings) that {FR}
has a subsequential weak limit as R →∞, and any such limit is an isometry equivariant
4-coloring.

Explicit Randomized Colorings While the previous argument is clearly optimal
with respect to the number of colors used, it is not constructive. It is instructive
to consider an explicit construction with 7 colors. The construction below will be
algorithmic, i.e. there is an algorithm, that determines the color of each cell by accessing
a finite (but unbounded) number of cells along with a random independent bit for each
cell.

As a first stage, we explain how to get an 8-coloring. Start by assigning a fair coin
toss to each cell independently. Consider the subgraph of H ⊂ G where an edge is
present if its endpoints have the same coin result. The connected components in this
graph are components of site percolation on G with p = 1/2. By a result of Zvavitch
[23], almost surely all connected components of both the heads and tails will be finite (in
fact, Bollobás and Riordan [4] proved that the critical percolation threshold is indeed
p = 1

2
).

Color each “head” component independently with colors {0, 1, 2, 3} in some de-
terministic isometry-equivariant manner which is a function only of the cells of this
component (e.g., again, a lexicographically minimal coloring with vertex order based
on cell areas). Color the “tail” components with {4, 5, 6, 7}. The result is a.s. a proper
8-coloring of G. The randomness comes exclusively from the coin tosses. The color of a
cell is determined by its connected component in H (and the size of the corresponding
cells).

A trick suggested by Gady Kozma [16] reduces the number of colors required to 7
as follows. A finite planar graph embedded in the plane has a unique unbounded face,
called theexternal face. Attaching an additional vertex to the vertices of the external
face preserves planarity. Thus a finite planar graph can be 4-colored so vertices of
the external face do not use one specified color. Now color the “heads” components
using {0, 1, 2, 3} so that color 0 does not appear at vertices of the external face of any
component. Color the “tails” components using {0, 4, 5, 6} with the same constraint.
Whenever two connected planar graphs are jointly embedded in the plane, one is con-
tained in the external face of the other. Thus when a “tails” component is adjacent to
a “heads” component, it is impossible for them to have adjacent vertices colored 0, and
the coloring is proper.

As noted above, in order to determine the color of any cell, it is sufficient to know
the map structure and the coin-tosses within a ball of a certain random radius around
this cell. In addition, if one modifies the above algorithm by initially performing fair-
independent rolls of a 3-sided dice, instead of coin tosses (thus obtaining a proper
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10-coloring in the final outcome, after applying Kozma’s trick) then the distribution
of the aforementioned radius will have exponential tails (see [4]). The radius for our
deterministic 6-coloring also has exponential tails, as noted in the proof outline.

3.2 1-dimensional Poisson-Voronoi map

The deterministic isometry equivariant chromatic number of a graph may well be dif-
ferent from its usual chromatic number. For example, consider Zd translated by a
uniform random variable in [0, 1]d and rotated by a uniform random angle in [0, 2π].
Clearly, the distribution of this random graph is isometry invariant and it is almost
surely 2-colorable. Yet any deterministic isometry equivariant coloring must assign the
same color to all vertices and hence cannot be proper.

A different example is furnished by the 1-dimensional Poisson-Voronoi diagram, i.e.,
the “Voronoi” map composed of line segments around the points of a one-dimensional
standard Poisson process. This map is 2-colorable, but we claim that its deterministic
isometry equivariant coloring number is 3. First, it is seen to be at most 3 by considering
the following algorithm: First color green all cells which are shorter than both their
neighbors. Now, from each green cell, proceed to alternately color its neighbors to the
right by red and blue, until the next green cell is reached. This produces a deterministic
translation equivariant proper 3-coloring. To get an isometry equivariant coloring,
instead of coloring red and blue from left to right, start from the shorter of the two
green cells bounding the current stretch of uncolored cells.

The following lemma states that at least 3 colors are needed. A similar argument
appears in Holroyd, Pemantle, Peres and Schramm [12].

Lemma 3.1. There is no deterministic translation equivariant proper 2-coloring of the
1 dimensional Poisson-Voronoi map.

Proof. In order to reach a contradiction, suppose A is such a coloring scheme. Since
A is measurable there exists an integer L and another scheme B, such that the color
B assigns to the cell at the origin depends only on the Poisson process in the interval
[−L,L] and the probability that A and B assign the same color to a given cell is at
least 7

8
. Consider also another point x > 2L. By translation equivariance, the B-color

of the cell of x is determined by the Poisson points in [x− L, x + L].
Hence, with probability at least 3

4
the A-color of both these cells is the same as their

B-color. However, The A-colors of these cells determine the parity of the number of
cells (i.e. points) between them. But the parity of the number of points of the Poisson
process in [L, x−L] is independent of the B-colors of the origin and of x, and tends to
a uniform on {0, 1} as x → ∞. Therefore, when x is large enough there is a positive
probability of a contradiction between this parity and the A-colors of the origin and x,
so this A coloring cannot exist.

We remark that a variant of the 3-coloring above can be used to color any invariant
point process on R that is not an arithmetic progression (so that not all points are
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isomorphic). Furthermore, the proof of impossibility with 2 colors also applies to more
general processes as we only use the fact that the parity of the number of points in
[L, x− L] is not (nearly) determined by the process in [−L,L] and [x− L, x + L] for x
large enough.

3.3 Higher dimensional Poisson-Voronoi maps

A natural generalization of our setting is to consider the 3-dimensional Poisson-Voronoi
diagram. In this case it is not obvious whether one can properly color the diagram
with finitely many colors even without the isometry equivariant condition. Dewdney
and Vranch [8], and Preparata [21] discovered that n Voronoi cells in R3 may be all
pairwise adjacent. Indeed, [8] shows that in R3, the Voronoi cells of (xi, x

2
i , x

3
i )

n
i=1

satisfy this for any {x1, . . . , xn}. Since pairwise adjacency is preserved by sufficiently
small perturbations, and since such configurations a.s. appear in the Poisson process,
this implies that the chromatic number of the 3-dimensional Poisson-Voronoi diagram
is almost surely infinite. Higher dimensional analogues also exist.

Following Proposition 2.1, one can still ask, as a weaker result than having an
isometry equivariant coloring, what is the minimal k such that if we iteratively remove
all cells having degree at most k we remain with finite components only? Such a
k necessarily exists by arguments similar to those of Proposition 2.1. (Simulations
indicate that k = 12 may suffice in R3.)

3.4 Ramblings and open questions

Fewer colors. Is there a deterministic 4-coloring of the Poisson-Voronoi map? The-
orem 1.1 shows that 6 colors suffice, while obviously at least 4 are needed. Recent work
by Adam Timar [22] (in preparation) shows the existence of deterministic, equivariant
5-colorings using different methods. Our own methods are close to giving a 5-coloring
as well, in the following sense: Suppose we define Gk+1 by removing from Gk all ver-
tices of degree at most 4. If Proposition 2.1 still holds then the same argument gives a
5-coloring of G0. To show this, it is enough to prove a statement similar to Lemma 4.9
(roughly put, that the probability that a large component of the 5-core intersects the
boundary of a box of size R is small enough for some value of R). Simulations suggest
that this is indeed the case.

A small difficulty involved in the case of 5 colors is that not every vertex is removed
at some finite stage. Indeed, the 5-core of the Delaunay triangulation will not be empty,
since it contains finite sub-graphs with minimal degree 5. The smallest such sub-graph
is the dodecahedron, involving 12 vertices.

Applying the same proof for 4 colors cannot work, since the 4-core of the Delaunay
triangulation has an infinite component. Indeed, a vertex of degree 3 is necessarily in the
interior of the triangle formed by its neighbors. It is straightforward to check that there
are no infinite chains of triangles each one inside the next (since the probability of long
edges decays exponentially; see also Lemma 4.15 below). Therefore, one can consider
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all the maximal triangles in the Delaunay triangulation. This is also a triangulation of
the plane, since every triangle is contained in a maximal one, and these are all disjoint.
All the vertices of this triangulation also belong to G∞ (since none of them are in the
interior of another triangle), and they are all in the same connected component, which
is therefore infinite.

Finally, while we only prove that some GM (again, deleting vertices of degree < 6)
has only finite connected components, simulations suggest that M = 2 suffices while
M = 1 does not. In fact, it appears sufficient to delete in the second iteration roughly
half the vertices of degree at most 5. Can one prove any of these assertions?

Other properties of colorings. If there is no deterministic 4-coloring, one could
consider intermediate properties between deterministic and unrestricted randomized
colorings. For example, one may seek colorings that are ergodic, mixing, finitary, etc.
Such properties were first brought to our attention by Russ Lyons [20].

Other planar processes. It might be more interesting to consider other translation
or isometry equivariant graph processes in the plane. These could be the Voronoi
tessellation of some point process or more general planar graph processes. Except for
some obvious counterexamples (see remarks before and after Lemma 3.1), is it true that
every such process can be colored deterministically with 4 colors? The aforementioned
work of Timar [22] shows the existence of deterministic 5-colorings.

Hyperbolic geometry. What can be done in the hyperbolic plane? Our argument
can be adapted to give a deterministic coloring. However, the number of colors diverges
as the density of the Poisson process tends to 0, since the average degree diverges. For
high enough density we can get a deterministic 6-coloring. Is there a (deterministic or
randomized) k-coloring with k independent of the density? While the Poisson-Voronoi
map is 4-colorable by Proposition 1.2, our randomized constructions use amenability
and fail for the hyperbolic plane.

Prescribed color distribution. What color distributions are achievable (with de-
terministic or randomized colorings)? We only show that coloring schemes exist such
that the color of (say) the cell of 0 is supported on a finite set. If one asks for a partic-
ular distribution the question is interesting also in Rd for d > 2. For example, in Rd,
it is possible to get a coloring so that color i appears with exponentially (in i) small
probability. What is the minimal possible entropy of the color of a cell?

Fire percolation. Given a set S0 of vertices in the Delaunay triangulation, let Sk

be all vertices at graph distance exactly k from S0. Is it possible to select a set S0

in a deterministic equivariant manner, so that for all k, Sk has only finite connected
components? If the answer is yes, then coloring the components of Sk for even k with
colors {0, 1, 2, 3} and the components for odd k by {4, 5, 6, 7} results in a deterministic
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8-coloring of the Poisson-Voronoi map. Kozma’s aforementioned trick can be used to
get a 7-coloring in this way.

4 Proof of the main result

In this section we prove Theorem 1.1. As explained in the proof outline, the proof
is based on Propositions 2.1 and 2.2. These in turn will be proved by reduction to
k-dependent percolation. Section 4.1 below gives the basic fact about k dependent per-
colation we shall need and introduces sealed squares, the tool which allows us to deduce
that events taking place in distant locations are almost independent. In Section 4.2 we
prove the simpler Proposition 2.2 and in Section 4.3 the more difficult Proposition 2.1.
Section 4.4 shows how to deduce the main result from the two propositions.

Notation: Throughout we shall denote by G = (V, E) the Delaunay graph embed-
ded in the plane where V is the set of points of the Poisson process and the edges are
straight lines connecting these points (this can be seen to be a planar representation of
G). We will sometimes call the vertices centers and say that a Voronoi cell is centered
at its vertex. We also let A : V → R+ be the function which assigns to each vertex the
area of the corresponding Voronoi cell. For x ∈ R2 we denote Q(x,R) := x + [−R,R]2,
i.e., a square centered at x of side length 2R. We let BR(x) or B(x, R) stand for a
closed ball of radius R around x (in the Euclidean metric). We write d(x, y) for the
Euclidean distance between x, y ∈ R2. Similarly d(x, U) := inf{d(x, y) | y ∈ U} for sets
U ⊆ R2.

4.1 Dependent percolation and sealed squares

A process {Ax}x∈Z2 is said to be k-dependent if for any sets S, T ⊂ Z2 at `∞-distance
at least k, the restrictions of A to S and to T are independent. Our processes will
always take values in {0, 1}. Vertices x ∈ Z2 with Ax = 1 are called open (and others
are closed). An open component is a connected component in Z2 of open vertices.

A well known result of Liggett, Schonmann and Stacey [19] states that k-dependent
percolation with sufficiently small marginals (EAx) is dominated by sub-critical Bernoulli
percolation. The following simple lemma is weaker, and is a standard argument in per-
colation theory. We include a proof for completeness:

Lemma 4.1. For any k there is some p0 = p0(k) < 1 such that if {Ax}x∈Z2 is k-
dependent and for all x, P (Ax = 1) ≤ p0, then

P(∃ an infinite open component) = 0.

Proof. The number of simple paths of length L starting at a given x ∈ Z2 is bounded
by 4L. Any simple path of length L contains at least L

k2 coordinates which are pairwise
k-separated. Thus, the probability that any given path of length L is open is at most
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p
L/k2

0 . The expected number of open paths originating at x is bounded by

4L · pL/k2

0 =
(
4p

1/k2

0

)L

.

If p0 < 4−k2
this quantity tends to 0 as L tends to infinity. However, an infinite open

component must contain an open path of any length.

Definition 4.2. A set S ⊂ R2 is called α-sealed w.r.t. the Poisson process V if
d(x, V ) ≤ α for every point x ∈ ∂S.

Thus a set is sealed if the point process is not far from any point on the boundary
of S. This implies that the Voronoi cells of V which intersect the boundary of S
are centered near the boundary. The purpose of this notation is that it bounds the
dependency between the Voronoi map inside and outside the set. For a set S we denote

Sα = {x ∈ R2 : d(x, S) ≤ α}

i.e. the closed (Euclidean) α-neighborhood of S (so that α-sealed is equivalent to ∂S ⊂
V α). Note that being α-sealed is determined by V ∩ (∂S)α. We denote by S−α the
points at distance at least α from the complement Sc (the idea is that if S = BR(x)
then Sα = BR+α(x) for any α ≥ −R).

Lemma 4.3. Condition on the points of V ∩ (∂S)α. On the event that S is α-sealed,
the Voronoi map in S−α is determined by the process V ∩Sα. Moreover, the cell as well
as all neighbors of x ∈ V ∩ S−α are contained in Sα.

Proof. The lemma follows from the following simple geometrical fact: If V ∩ (∂S)α is
such that S is α-sealed, then the center of the cell of any z ∈ ∂S is in (∂S)α. Thus the
cells of centers in (∂S)α separate S−α from R2 \ Sα. It follows that the cell of x ∈ S−α

is contained in S, and is adjacent only to cells centered in Sα.

Next we argue that squares are likely to be α-sealed

Lemma 4.4. The probability that Q(0, R) is not α-sealed is at most

d8R/αee−πα2/4.

Proof. Take an α/2 net in ∂Q(0, R), of size d8R/αe. Each of these points fails to have
a center within distance α/2 from it with probability e−πα2/4. If none fail to have such
a nearby center then the square is α-sealed. A union bound gives the claim.

4.2 Areas behave — Proposition 2.2

Our present goal is to prove Proposition 2.2. To this end we need two properties of the
areas of Poisson-Voronoi cells.
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Lemma 4.5. Let µ be the law of the area of the cell containing the origin, then µ is
absolutely continuous w.r.t. the Lebesgue measure.

A partition of R+ is a finite union R+ =
⋃

i<M [xi, xi+1), given by a sequence 0 =
x0 < x1 < · · · < XM = ∞. The following is an immediate corollary of Lemma 4.5.

Corollary 4.6. For any R, ε > 0 there is some sufficiently refined partition A of R+

such that for every interval I ∈ A the probability that there exists v ∈ V ∩ BR(0) with
A(v) ∈ I is at most ε.

Proof. Given R and ε, there is a finite S ⊂ BR(0) such that with probability at least
1− ε

2
every cell of every v ∈ V ∩ BR(0) contains a point in S. Let A be a partition of

R+ such that µ(I) < ε
2|S| for all I ∈ A. Then for all I ∈ A the probability that there

exists v ∈ V ∩BR(0) with A(v) ∈ I is bounded by ε
2

+ ε
2|S| |S| = ε.

However, just knowing that the area distribution is continuous is not enough, since
the areas of different cells are not independent. For this reason we also need.

Lemma 4.7. Almost surely, all cells have different areas.

These two lemmas are intuitively obvious, though writing a precise proof is delicate.
It is possible to get a somewhat simpler proof by replacing the area of a cell by some
other quantity. For example, the distance to the nearest neighbor does not work since
some centers have the same distance. However, total distance to the neighbors in the
Delaunay graph does work.

Proof of Lemma 4.5. The idea of the proof is this: let x be the center of the cell of
the origin and let y be the center of an adjacent cell. Conditioned on the location
of all centers other than y, and on the direction of the vector y − x, we get that the
area of x is a differentiable function of r = ‖y − x‖, the distance between x and y,
with positive derivative. Thus, µ conditioned on this σ-algebra is absolutely continuous
w.r.t. Lebesgue and so µ itself must also be so.

To make this precise, we partition Rd into cubes of size εd centered around εZd. We
condition on the number of points of the Poisson process in each of these cubes. We
then use finer and finer partitions (say, with εi = 2−i) until we reach a partition which
already reveals in what cube lies the center of the cell of the origin (i.e. x) as well as
its nearest neighbor (i.e. y). We then continue according to the previous paragraph:
we condition on the exact location of all points of the Poisson process except y and
on the direction of y − x. After that we get that A(x) is now a monotone function of
r = ‖y − x‖ and its derivative is equal to the length of the intersection of the cells of
x and y, which is strictly positive. Since under this conditioning, the distribution of
r is absolutely continuous w.r.t. Lebesgue measure on some interval we get that the
conditioned µ is also absolutely continuous w.r.t. Lebesgue and so is µ itself.
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Proof of Lemma 4.7. The proof is similar to that of Lemma 4.5. Fixing any two points,
a and b we wish to show that the probability that they belong to different cells with
equal areas is zero. To that end, we find the two centers of the cells, x and y and find
a third cell, centered at z, which is adjacent to one of these cells, say, x, but not to the
other. (Such z exists for any x, y in any planar triangulation with no unbounded face.)
Now A(x) depends on the exact location of z, as in the proof of Lemma 4.5, but A(y)
does not. Of course, all this needs to be done using fine partitions, etc.

The lemma now follows by considering all possible values for a and b with rational
coordinates.

Note that the proof of Lemma 4.7 above does not apply as is to higher dimensions,
since in such dimensions, there are configurations with two distinct cells having the
same neighbors. Of course, Lemma 4.7 itself remain valid.

We now prove Proposition 2.2. The key idea is that cells with areas in any sufficiently
small interval are dominated by sub-critical percolation.

Proof of Proposition 2.2. We show that there is some sufficiently refined partition A of
R+, such that a.s. for any I ∈ A there is no infinite path in G with all areas in I. The
proposition will follow since an infinite path with decreasing areas will have all areas in
the same interval of A from some point on.

For some R to be determined later, consider the lattice L = (2RZ)2. For an interval
I, if there is an infinite path of cells with areas in I, then there is an infinite path
{xi} in L so that every Q(xi, R) intersects such a cell. The probability that a square
intersects a cell with area in I can be made arbitrarily small, but these events are not
independent. To overcome this we use sealed boxes.

For an interval I, call a point x ∈ L open if either Q(x,R) intersects a cell with
area in I, or if either one of Q(x,R + α) or Q(x,R + 3α) is not α-sealed. If there is an
infinite path in G with areas in I then there is also an infinite open path in L.

The event that the squares are sealed depends only on the Poisson process within
Q(x,R + 4α). We claim that on the event that they are sealed, the areas of cells
intersecting Q(x,R) also depend only on the process in Q(x,R + 4α). Taking α = R/8
it follows that the process of open boxes is 2-dependent. To see this claim, note that
the center of any cell intersecting Q(x, R) must be within Q(x,R + 2α). The second
seal implies that the cell of this center is contained in Q(x,R + 4α) and determined by
the process in this box.

To complete the proof, take some ε > 0 so that a 2-dependent percolation with
marginal ε is sub-critical (using Lemma 4.1). Using Lemma 4.4, fix R large enough so
that with α = R/8,

P(Q(x,R + iα) is not α-sealed) < ε/3 for i = 1, 3.

Next, using Corollary 4.6 take a partition A fine enough that for any I ∈ A, the
probability that there exists v ∈ V ∩Q(x,R + 2α) with area in I is at most ε/3. Then
for each I ∈ A, the probability that any fixed x is open is at most ε and so the process
of open points does not contain an infinite open path.

13



4.3 Deleting low degree vertices — Proposition 2.1

In this section we prove Proposition 2.1. Throughout the section R > 0 is a parameter,
assumed large enough as needed for the calculations which follow. We also define the
square annuli A(x, r, R) := Q(x,R) \Q(x, r).

We now introduce our main object of study in this section:

Definition 4.8. Inductively, let GR
0 := G and let GR

n+1 denote the graph obtained from
GR

n by deleting all vertices in Q(0, 3R) with GR
n -degree at most 5. Let GR

∞ := ∩∞n=0G
R
n .

Thus we iteratively delete vertices of degree at most 5, but only those vertices
contained in a fixed large square. We aim to prove the following

Lemma 4.9. We have P
(
GR
∞ ∩Q(0, R) 6= ∅) −−−→

R→∞
0.

Corollary 4.10. For any ε > 0, there are R,M so that P
(
GR

M ∩Q(0, R) 6= ∅) < ε.

Proof. Pick R such that P
(
GR
∞ ∩Q(0, R) 6= ∅) < ε. Since

{
GR
∞ ∩Q(0, R) 6= ∅

}
=

⋂
M

{
GR

M ∩Q(0, R) 6= ∅
}

,

the bound will hold for that R and sufficiently large M .

Before embarking on the proof of Lemma 4.9, let us explain how one can get a similar
and simpler result when deleting vertices of degree at most 6 (thus yielding a deter-
ministic 7-coloring). Suppose that GR

∞ contains a vertex in Q(0, R). By Lemma 4.13
GR
∞ is unlikely to contain edges longer then log R within Q(0, 3R). All vertices of GR

∞
in Q(0, 3R) have degree at least 7. It is an easy consequence of Euler’s formula that a
planar graph with minimal degree 7 has positive expansion (the boundary of any set
is proportional to its size). This implies (in the absence of long edges) that the num-
ber of vertices of GR

∞ in Q(0, 3R) is exponential in R. Of course, this too is unlikely.
When deleting vertices of degree at most 5, the remaining graph has minimal degree 6,
which is not as obviously unlikely. However, this can only happen if G contains a large
segment of a triangular lattice, which we rule out below.

We begin with two combinatorial lemmas on planar maps. For any finite graph H,
let LD = LD(H) be the number of vertices of low-degree, namely at most 5. For a
finite simple planar map H, let ME = ME(H) be the number of “missing edges”: the
number of edges that can be added to the map while keeping it planar and simple. A
face of size k can be triangulated using k − 3 edges, after which no further edges can
be added, and so ME =

∑
f (deg[f ]− 3) (where the sum also includes the external face

and where we assume |H| ≥ 3 so that deg[f ] ≥ 3 for all faces).

Lemma 4.11. For any finite, connected and simple planar map H with |V [H]| ≥ 3 we
have LD ≥ 2

5
ME + 12

5
.
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Proof. Add ME edges to make the map into a triangulation. Let d′v be the resulting
vertex degrees, than we have

∑
v(6 − d′v) = 12 (using Euler’s formula combined with

the triangulation property 3F = 2E =
∑

d′v), and therefore
∑

v(6− dv) = 12 + 2ME.
The claim follows since low-degree vertices contribute at most 5 to this sum, and high
degree vertices at most 0, so that

∑
v(6− dv) ≤ 5LD.

Lemma 4.12. Fix ρ > ` > 0. Let H be a simple planar graph embedded in R2 satisfying
the following:

1. All vertices in Q(0, 3ρ) have degree at least 6.

2. All edges of H with an endpoint in Q(0, 3ρ) have length at most `.

3. There exists a vertex of H in Q(0, ρ).

Then H has at least 8ρ2

5`2
vertices in Q(0, 3ρ).

Note that the order of magnitude (ρ/`)2 is achieved by a triangular lattice with edge
length `.

Proof. We assume that H has only finitely many vertices in Q(0, 3ρ) since otherwise the
conclusion is trivial. Fix a vertex v ∈ Q(0, ρ). For t ∈ [ρ, 3ρ], let H ′

t be the sub-graph
induced by vertices inside Q(0, t), and let Ht be the connected component of v in H ′

t.
Note that the connected component of v in H is not contained in Q(0, 3ρ) since

otherwise it would be a finite, connected and simple planar map with all degrees at
least 6 which is impossible by Lemma 4.11. By our assumptions, all vertices of Ht with
neighbors in H \Ht (which includes all vertices of degree at most 5 in Ht) must be in
the annulus A(0, t− `, t). It follows that the external face of Ht surrounds v and exits

Q(0, t− `) and so has degree at least 2(t−ρ−`)
`

. Thus

ME(Ht) ≥ 2(t− ρ− `)

`
− 3 =

2(t− ρ)

`
− 5.

By Lemma 4.11, the number of vertices in A(0, t− `, t) is at least 2
5
ME(Ht) + 12

5
≥

4
5

t−ρ
`

+ 2
5
. Let M = b2ρ/`c. Splitting A(0, ρ, 3ρ) into annuli A(0, ρ + (k − 1)`, ρ + k`)

for k = 1, . . . ,M one finds that the number of vertices of H in Q(0, 3ρ) is at least

1 +
M∑

k=1

(
4

5
k +

2

5

)
=

2(M + 1)2 + 3

5
≥ 2(2ρ/`)2

5
.

Next, a simple lemma showing that long edges in G are unlikely.

Lemma 4.13 (No long edges). The probability of having an edge of length at least ` in
E[G] which intersects the square Q(0, ρ) is at most

(√
32ρ

`
+ 8

)2

e−`2/32.
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Proof. Suppose (x, y) were such an edge, then some disc with x, y on its boundary has
no points in its interior. Consequently at least one of the two semi-circles with diameter
(x, y) has no points in its interior. This implies that there is an empty disc B`/4(z) for
some z ∈ Q(0, ρ + `) (z might be outside Q(0, ρ) since one of x, y may be outside the
square).

Cover Q(0, ρ + `) by
⌈

ρ+`

`/
√

32

⌉2

squares of side length `/
√

32. It follows that if such

a long edge exists than one of the squares (the one containing z) must be empty, and
the claim follows.

We continue by showing that after some low-degree vertices are deleted, many large
holes remain in the graph.

Definition 4.14. Call a square Q(x, ρ) a typical square if there exists some vertex
v ∈ Q(x, ρ) such that:

1. deg[v] < 6.

2. v is not in the interior of any triangle in the Delaunay Graph G.

Otherwise we call the square rare.

To make this clear, the second condition states that there are no v1, v2, v3 ∈ V
which are pairwise adjacent in G such that v is contained in the interior of the triangle
(v1, v2, v3).

Lemma 4.15 (Rare squares are rare). For some α, β > 0 we have P(Q(x, ρ) is rare) ≤
α exp(−βρ).

Proof. We may assume without loss of generality that ρ ≥ C for some large C > 0
(otherwise the claim is trivial). Let γ =

√
ρ. The square Q(0, ρ) contains at least cρ

disjoint squares Q(x, 4γ) for some c > 0. Call each of these squares good if it satisfies
the following:

1. Q(x, 3γ) is γ-sealed,

2. Q(x, γ) contains a vertex v of degree at most 5 which is not in the interior of any
triangle with vertices in Q(x, 2γ).

Note that by Lemma 4.3, the event that Q(x, 4γ) is good is determined by the Poisson
process within it, and so these events are all independent. Each square has some
probability p > 0 of being good (independent of ρ since long edges are unlikely by
Lemma 4.13), so the probability that no square within Q(0, ρ) is good is at most e−βρ

for some β > 0.
If the low-degree vertex in a good square is contained in a triangle of G then an edge

of that triangle must have length at least γ. Either the triangle intersects Q(0, ρ), which
by Lemma 4.13 has probability at most C1ρe−ρ/32 ≤ C2e

−ρ/33 for some C1, C2 > 0. Or
the triangle contains Q(0, ρ) in its interior, in which case for some integer m ≥ 1, its
longest edge has length at least mρ and intersects Q(0,mρ). By a union bound, this
has probability at most

∑∞
m=1 C2e

−m2ρ2/33 ≤ C3e
−ρ2/33 for some C3 > 0.
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In what follows, define

L := log R, r := R1/3.

L will be a bound on length of edges that appear (and can be reduced to C
√

log R
for large enough C). The role of r is more involved, and there is much freedom in the
choice of r. Primarily, we consider a partition of boxes of size of order R into boxes
of size r. For simplicity, we assume that 6R/r is an odd integer (R can be arbitrarily
large under this condition).

Define for each x ∈ rZ2 the square Qx := Q(x, r
2
). Note that Q(0, 3R) is precisely

tiled by the boxes {Qx, x ∈ rZ2 ∩ Q(0, 3R)}. We now define several events which we
will show to be unlikely.

Ω0 := {GR
∞ has a vertex in Q(0, R)},

Ω1 := {There exists e ∈ E[G] of length at least L that intersects Q(0, 3R)},
Ω2 := {Qx is rare for some x ∈ rZ2 ∩Q(0, 3R)},
Ω3 := {There exists x ∈ rZ2 ∩Q(0, 3R) and |V ∩Qx| ≥ 2r2},
Ω4 := {|V ∩ A| > 2Area(A)}, where A = A(0, 3R, 3R + L).

Thus Lemma 4.9 states that P(Ω0) is small.

Lemma 4.16. With L, r as above, P(Ωi) −−−→
R→∞

0 for i = 1, 2, 3, 4.

Proof. Lemma 4.13 implies that P(Ω1) = O(R2e−L2/32) is small. Lemma 4.15 implies
P(Ω2) = O(R4/3e−βr) (since there are (6R/r)2 squares to consider).
P(Ω3) and P(Ω4) are bounded by the fact that P

(
Poi(λ) > 2λ

) ≤ e−cλ for some

constant c. This gives respective bounds O(R2e−cr2
) and O(e−cRL).

Define the set

S :=
{
x ∈ rZ2 ∩Q (0, 3R) : Qx is typical and GR

∞ ∩Qx 6= ∅} .

Lemma 4.17. There exists C > 0 such that if Ωc
1 holds then

∣∣S
∣∣ ≤ C

∣∣∣V ∩ A(0, 3R, 3R + L)
∣∣∣.

Proof. Let H be the sub-graph of GR
∞ induced by vertices in Q(0, 3R+L). On the event

Ωc
1, the vertices of H ∩Q(0, 3R) all have degree at least 6. Thus low-degree vertices are

all in the annulus A(0, 3R, 3R + L) and by Lemma 4.11,

∣∣∣V ∩ A(0, 3R, 3R + L)
∣∣∣ ≥ LD(H) >

2

5
ME(H).

For each x ∈ S the square Qx is typical. Hence there is a vertex vx ∈ Qx of degree
at most 5 that is not contained in any triangle in G. The vertex vx is deleted in the first
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round and so is not in H. Let fx be the face of H surrounding vx. Note that fx must
have an edge ex that intersects Qx, since otherwise Qx is completely in the interior of
fx and there could be no vertex of H in Qx.

Now, on Ωc
1, the edge ex has length at most L < r and therefore can intersect at

most 3 different squares Qx (it can intersect 3 if it passes near a corner of Qx). Since
the face fx cannot be a triangle by definition of vx we deduce that

∑

f face of H
deg[f ]>3

deg[f ] ≥ 1

3
|S|.

Hence ME(H) =
∑

f∈H(deg[f ]− 3) ≥ 1
12
|S| proving the claim (with C = 30).

Proof of Lemma 4.9. We show that Ω0 ⊂
⋃4

i=1 Ωi. Assume by negation that Ω0 and
Ωc

i hold for i = 1, 2, 3, 4. Let H be the restriction of GR
∞ to Q(0, 3R + L), and apply

Lemma 4.12 with ρ = R, ` = L. Ωc
1 and Ω0 show that the lemma’s hypotheses hold,

thus H has at least 8R2

5L2 vertices in Q(0, 3R).
On the other hand we show that H is small. Tile Q(0, 3R) by boxes Qx with

x ∈ rZ2 ∩ Q(0, 3R). On Ωc
4, Lemma 4.17 implies that |S| ≤ CRL for some C. On Ωc

3

each of these includes at most 2r2 vertices, so the number of vertices of H in Q(0, 3R)
that are in typical boxes is at most 2r2|S| ≤ CRLr2. On Ωc

2 there are no vertices in
rare boxes.

Thus 8R2

5L2 ≤ CRLr2 which is a contradiction for R large enough and our choice of r
and L.

Proof of Proposition 2.1. Define GR,x
M similarly to GR

M , except that low degree vertices
are deleted in Q(x, 3R) instead of Q(0, 3R). Consider the following dependent percola-
tion process on the lattice Λ = RZ2. A point x is open in one of 3 cases:

1. The square Q(x, 4R) is not R-sealed,

2. GR,x
M has a vertex in Q(x,R),

3. G has an edge of length at least R/2 intersecting Q(x,R/2).

We first argue that the event {x is open} is determined by the Poisson process in
Q(x, 5R), so that the process is 11-dependent. Indeed, whether Q(x, 4R) is R-sealed
depends only on the process in Q(x, 5R). If it is R-sealed, the restriction of the Voronoi
map to Q(x, 3R) is determined by the process in Q(x, 5R), which determine the state
of x.

By Lemmas 4.4, 4.9 and 4.13, we can choose M, R so that P(x is open) is arbitrarily
small. In particular, for some M, R, using Lemma 4.1, this percolation is dominated
by sub-critical percolation, and has no infinite open component.

Finally, we argue that if there were an infinite component in GM then there would
also be an infinite component in our process on Λ. Consider all squares Q(x,R/2) which
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intersect the edges of some infinite open component in GM . For each such x, either
there is a vertex of GM in Q(x,R), or else the edge that passes through Q(x,R/2) has
both endpoints outside Q(x,R). Since GM ⊂ GR,x

M , either case implies x is open.

4.4 Equivariant Coloring

We now use Propositions 2.1 and 2.2 to construct a deterministic 6-coloring scheme.
Recall Gn is derived from Gn−1 by deleting low degree vertices. Define the level of a
vertex by

`(v) = max{n : v ∈ Gn}.
Thus a vertex has level 0 iff its degree is at most 5. For neighboring v, w we direct
the edge from v to w, and write v → w, if either `(w) > `(v) or (`(v) = `(w) and
A(w) < A(v)) (Proposition 2.2 gives that no two areas are equal).

Let ≺ to be the transitive closure of →. That is, w ≺ v iff there is a finite sequence
such that v = u0 → u1 → . . . → un = w.

Lemma 4.18. A.s. every v ∈ V has finitely many ≺-predecessors (in particular, ≺ is
well founded).

Proof. We first argue that there is no infinite directed path in G. By Proposition 2.2
there are no infinite A-monotone paths, so any infinite directed path must have `(v) →
∞. However, by Proposition 2.1 there are no infinite paths with ` > M .

Our conclusion then follows from König’s lemma: A locally finite tree with no infinite
paths is finite.

From this we get:

Proposition 4.19. There exists a unique function f : V → {0, . . . , 5} determined by
the recursive formula:

f(u) = mex{f(v) : u → v}
where mex S = min(N \ S) is the minimal excluded integer function.

Proof. The proof is by induction on ≺, which is a well founded order by Lemma 4.18
(see e.g. [18, Chapter 3]). Any u ∈ V has at most 5 neighbors v with `(v) ≥ `(u), so
|{v : u → v}| ≤ 5 and so f(u) < 6 is well defined.

Uniqueness holds since f(u) is determined by {f(v) : v ≺ u}.
Theorem 1.1 now follows, since Pi = f−1(i) defines a deterministic, isometry equiv-

ariant 6-coloring. Note that the resulting coloring is finitary, that is, for every x ∈ R2

there exists a finite (but random) R > 0 such that the color of the cell containing x
is a function of the Poisson process restricted to BR(x). Indeed, to determine f(v)
for v ∈ V , it is sufficient to know the graph G induced on the ≺-predecessors of v.
Furthermore, there exist C, c > 0 such that P(R > s) ≤ Ce−cs. This is the case because
Propositions 2.1 and 2.2 are proved using domination by sub-critical percolation.
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