Markov Chains Mixing Times

Ori Gurel-Gurevich Ariel Yadin

December 27, 2007

1 convergence to stationary distribution

Assume the chain is irreducible, so we have a stationary distribution, π . Does $\mu_0 P^t = \mu_t \rightarrow \pi$ for any μ_0 ?

What exactly do we mean by \rightarrow here? There are several notions of convergence, the simplest is pointwise, i.e. $\mu_t(x) \rightarrow \pi(x)$ for any $x \in \Omega$. In other words, convergence as a vector in \mathbb{R}^{Ω} .

However, sometimes we want to be more specific about how *close* are we to stationarity. So we want to define what is the distance between distributions. We can consider known norms on \mathbb{R}^n .

$$L_{\infty}: d_{\infty}(\mu, \nu) = \max_{x \in \Omega} |\mu(x) - \nu(x)|$$

$$L_{2}: d_{2}(\mu, \nu) = \sqrt{\sum_{x \in \Omega} (\mu(x) - \nu(x))^{2}}$$

$$L_{1}: d_{1}(\mu, \nu) = \sum_{x \in \Omega} |\mu(x) - \nu(x)|$$

and more

They are all equivalent w.r.t. convergence, but may be different when considering mixing times.

Obvious inequalities:

$$d_{\infty} \le d_1 \le \sqrt{n} d_2 \le n d_{\infty}$$

One may consider more "exotic" distances:

$$d(\mu, \nu) = \max_{x \in \Omega} |\log \mu(x) - \log \nu(x)|$$

What do they all mean? We will work mainly with the L_1 distance, which has a very natural probabilistic interpretation.

Suppose that we have μ and ν and we know $d_1(\mu, \nu)$. Given an event A, if we know $\mu(A)$ what does this tells us about $\nu(A)$?

Exercise. $d_1(\mu, \nu) = 2 \max_{A \subset \Omega} |\mu(A) - \nu(A)|$

 L_1 is also called *total variation* norm.

Periodic example for non-convergence.

SRW on a bipartite graph.

These examples have a period - all the times for which $P^t(x, x) > 0$ are divisible by some m > 1.

Definition. A Markov chain is aperiodic if $\forall x \in \Omega \gcd\{t | P^t(x, x) > 0\} = 1$. It is called periodic otherwise.

Like irreducibility, this is a property of the underlying graph, not of the specific probabilities.

Exercise. Show that a SRW on a non-bipartite graph is aperiodic.

Lemma. If P is irreducible and aperiodic, exists r such that for all $x, y \in \Omega$, $P^{r}(x, y) > 0$.

Proof. First we prove that for all $x \in Omega$ we have $P^r(x, x) > 0$ for all large enough r. Since the gcd is 1, we have a finite number of loops with lengths with gcd = 1. If these lengths are n_i then there are integers a_i such that $\sum a_i n_i = 1$. Let $A = -\min\{a_i\}$ then any number greater then $A \prod n_i$ can be expressed as a linear combination of the n_i 's with natural coefficients.

Now the same is true for also for paths from x to y. Since Ω is finite, the proof is concluded.

Exercise. Prove that if P is irreducible then $gcd\{t|P^t(x,x)>0\}$ is the same for all choices of $x \in \Omega$. Conclude that if $gcd\{t|\exists y \in \Omega P^t(y,y)>0\} = 1$ then the chain is aperiodic.

Theorem. If a chain is irreducible and aperiodic then $\mu P^t \rightarrow \pi$. More specifically, there exists $\alpha < 1$ such that $|\mu P^t - \pi| \leq \alpha^t$, for any distribution μ on Ω .

Proof. Assume P(x, y) > 0 for all $x, y \in \Omega$. Since Ω is finite, there is $\beta > 0$ such that $P(x, y) > \beta \pi(y)$. This implies that for any distribution μ , one can decompose $\mu P = \beta \pi + \alpha \nu$, for $alpha = 1 - \beta$ and ν some probability measure depending on μ .

Fix μ_0 and let $mu_t = \mu_0 P^t$. Then $\mu_1 = \beta \pi + \alpha \nu_1$. Decomposing $\nu_1 P$ we get $\nu_1 P = \beta \pi + \alpha \nu_2$. Therefore,

$$\mu_2 = \beta \pi + \alpha (\beta \pi + \alpha \nu_2) = (1 - \alpha^2) \pi + \alpha^2 \nu_2$$

By induction we see that

$$\mu_t = (1 - \alpha^t)\pi + \alpha^t \nu_t$$

Thus,

$$\|\pi - \mu_t\|_1 = \|\alpha^t (\pi - \nu_t)\| \le 2\alpha^t$$

Do we really need irreducibility? Recalling our discussion of the communication graph and the stationary distributions on the irreducible components, it is easy to see that the theorem holds with π replaced by some stationary distribution, dependent on μ .

Exercise. prove that.