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1 convergence to stationary distribution

Assume the chain is irreducible, so we have a stationary distribution, π. Does

µ0P
t = µt→π for any µ0?

What exactly do we mean by → here? There are several notions of

convergence, the simplest is pointwise, i.e. µt(x)→π(x) for any x ∈ Ω. In

other words, convergence as a vector in RΩ.

However, sometimes we want to be more specific about how close are we to

stationarity. So we want to define what is the distance between distributions.

We can consider known norms on Rn.

L∞: d∞(µ, ν) = maxx∈Ω |µ(x)− ν(x)|
L2: d2(µ, ν) =

√∑
x∈Ω(µ(x)− ν(x))2

L1: d1(µ, ν) =
∑

x∈Ω |µ(x)− ν(x)|
and more

They are all equivalent w.r.t. convergence, but may be different when

considering mixing times.

Obvious inequalities:

d∞ ≤ d1 ≤
√

nd2 ≤ nd∞

One may consider more ”exotic” distances:

d(µ, ν) = max
x∈Ω

| log µ(x)− log ν(x)|
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What do they all mean? We will work mainly with the L1 distance, which

has a very natural probabilistic interpretation.

Suppose that we have µ and ν and we know d1(µ, ν). Given an event A,

if we know µ(A) what does this tells us about ν(A)?

Exercise. d1(µ, ν) = 2 maxA⊂Ω |µ(A)− ν(A)|

L1 is also called total variation norm.

Periodic example for non-convergence.

SRW on a bipartite graph.

These examples have a period - all the times for which P t(x, x) > 0 are

divisible by some m > 1.

Definition. A Markov chain is aperiodic if ∀x ∈ Ω gcd{t|P t(x, x) > 0} = 1.

It is called periodic otherwise.

Like irreducibility, this is a property of the underlying graph, not of the

specific probabilities.

Exercise. Show that a SRW on a non-bipartite graph is aperiodic.

Lemma. If P is irreducible and aperiodic, exists r such that for all x, y ∈ Ω,

P r(x, y) > 0.

Proof. First we prove that for all x ∈ Omega we have P r(x, x) > 0 for all

large enough r. Since the gcd is 1, we have a finite number of loops with

lengths with gcd = 1. If these lengths are ni then there are integers ai such

that
∑

aini = 1. Let A = −min{ai} then any number greater then A
∏

ni

can be expressed as a linear combination of the ni’s with natural coefficients.

Now the same is true for also for paths from x to y. Since Ω is finite, the

proof is concluded.

Exercise. Prove that if P is irreducible then gcd{t|P t(x, x) > 0} is the same

for all choices of x ∈ Ω. Conclude that if gcd{t|∃y ∈ ΩP t(y, y) > 0} = 1

then the chain is aperiodic.
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Theorem. If a chain is irreducible and aperiodic then µP t→π. More specif-

ically, there exists α < 1 such that |µP t − π| ≤ αt, for any distribution µ on

Ω.

Proof. Assume P (x, y) > 0 for all x, y ∈ Ω. Since Ω is finite, there is β > 0

such that P (x, y) > βπ(y). This implies that for any distribution µ, one can

decompose µP = βπ+αν, for alpha = 1−β and ν some probability measure

depending on µ.

Fix µ0 and let mut = µ0P
t. Then µ1 = βπ + αν1. Decomposing ν1P we

get ν1P = βπ + αν2. Therefore,

µ2 = βπ + α(βπ + αν2) = (1− α2)π + α2ν2

By induction we see that

µt = (1− αt)π + αtνt

Thus,

‖π − µt‖1 = ‖αt(π − νt)‖ ≤ 2αt

Do we really need irreducibility? Recalling our discussion of the communi-

cation graph and the stationary distributions on the irreducible components,

it is easy to see that the theorem holds with π replaced by some stationary

distribution, dependent on µ.

Exercise. prove that.
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