
Topics in Probability: Random Walks and

Percolation

Ori Gurel-Gurevich Gideon Amir

December 7, 2005

1 Random Walks and Electric Networks

1.1 Basic Notions

In this part we shall explore the tight relation between (simple) random

walks and electric networks. This will provide us with an exact criteria for

recurrency and with the monotonicity law which states that a subgraph of a

recurrent graph is recurrent. This part is based on Doyle and Snell [3], which

is a much longer, more detailed, but easy, read.

Exercise. Try to prove the monotonicity law. Also, can a finite change

(addition or removal of finitely many edges, retaining connectivity) to the

graph change its recurrency?

Definition. Let G be a graph with positive weights, we, assigned to the edge

set. The Weighted (simple) Random Walk is a random walk where the

transition probabilities are:

Prob(Xn+1 = y|Xn = x) =
w(x,y)∑
z∼x w(x,z)

i.e. proportional to the weight of the edge.
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If all the weights are 1, we get a simple random walk. We can actually

forgo the graph structure (i.e. the edges) and just define the weight of tran-

sitions where there is no edge as 0. The reason we might still consider this

as a simple random walk is that putting weight 2 to an edge is the same as

putting 2 edges connecting the same vertices (as long as we’re not interested

in which of the two edges was traversed). If all the weights are integers, or

even if they are all commeasurable (there is a number w such that all weights

are multiples of w), then there is an equivalent simple random walk.

Now, let’s turn our attention to electric networks. An Electric Network

is a graph G with nonnegative weights on the edges called Conductances,

denoted Cxy. The reciprocal of conductance is called resistance, denoted

Rxy. Given a finite (for now) electric network and two special vertices in

that network a, and b, the theory of electric networks defines two functions -

voltage and current. The voltage, denoted v, is a real function of the vertices

and the current, denoted i, is a real function of the (directed) edges. The

usual setting is when we apply some voltage to a and b (usually 0 and 1) and

the rest of the values are determined by the following two rules:

Theorem. (Ohm’s Law) for x ∼ y the current satisfies the equality:

ixy = Cxy(v(x)− v(y)) =
v(x)− v(y)

Rxy

Theorem. (Kirchhoff’s Law) For any vertex x, other than a or b:

∑
y∼x

ixy = 0

We will be more interested in the voltage function, the current being a

simple function of the voltage. Substituting the current in Kirchhoff’s law

we get

∑
y∼x

Cxy(v(x)− v(y)) = 0
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Let Cx =
∑

y∼x Cxy. Thus, we get another formulation of Kirchhoff’s

Law.

Theorem. (Kirchhoff’s law, equivalent formulation) For any vertex x, other

than a or b:

v(x) =
∑
y∼x

Cxy

Cx

v(y)

What this means is that the voltage is a harmonic function at all points

other than a and b. Note that Cxy/Cx are exactly the probabilities of tran-

sition from x to y in the weighted random walk with weights Cxy. Also, the

function p(x), denoting the probability of reaching a before b when starting

a (weighted) random walk from x is also harmonic everywhere but a and

b, with the same coefficients (i.e. Cxy/Cx). From uniqueness of harmonic

functions we deduce:

Conclusion. For an electric network, the voltage at x is exactly the proba-

bility of a weighted random walk, with weights equal to the conductances of

the network and starting at x, to reach a before b.

This is the fundamental connexion between random walks and electric

network.

1.2 Effective Conductance

Definition. Given a network (with specified a and b) the ratio between the

total current flowing through the network and the voltage difference of a and

b is called the Effective Conductance of the network. In other words:

Ceff (G, a ↔ b) =

∑
y∼a iay

v(a)− v(b)

The reciprocal of the effective conductance is called the Effective Resistance,Reff .
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Exercise. prove that the definition does not depend on the voltages chosen

for a and b

Equivalently, if we want to express everything in term of voltages, we get:

Ceff (G, a ↔ b) =

∑
y∼a Cay(v(a)− v(y))

v(a)− v(b)

Exercise. Prove that the current flowing out of a is exactly the current flow-

ing into b. Thus,

Ceff (G, a ↔ b) =

∑
x∼b Cxb(v(x)− v(b))

v(a)− v(b)

What is the significance of effective conductance? If we have a network,

G and two vertices c and d in it, such that when we remove c and d the

network splits into two networks, G1 and G2, disconnected from each other,

with a and b both in G1, then we can replace G2 with a single edge from c

to d with a conductance equal to the effective conductance of G2 from c to

d. We can replace means that voltages (and thus currents) computed for the

transformed network are the same as for the original network.

Exercise. Prove this fact.

Since this is true for electric networks, it is also true for random walks.

This is useful when we want to compute hitting probabilities.

Two important cases for computing effective conductance are serial and

parallel composition.

XXX enter figures

If our network is composed of just two vertices a and b and two edges be-

tween them with conductances C1 and C2, then the currents flowing through

them are Ci(v(a)− v(b)) respectively. Therefore the effective conductance is

Ceff =
C1(v(a)− v(b)) + C2(v(a)− v(b))

v(a)− v(b)
= C1 + C2
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Exercise. Find and prove the formula for effective conductance of serial

composition, i.e. a is connected to c which is connected to b with conductances

C1 and C2 respectively.

Note that although these two formulas are very useful, they are not

enough to calculate the effective conductance of a general network. Even

very simple network like this

XXX enter figure

cannot be analyzed using these simple rules.

Now let’s turn our attention back to random walks. We have already seen

that v(x) is exactly the probability of a random walk, starting at x to reach

a before b (assuming that v(a) = 1 and v(b) = 0). Now let’s ask ourselves:

what is the probability that a random walk, starting at a will reach a before

b, when we ignore time 0? i.e. we don’t count starting at a as reaching a.

The answer is simple: for each neighbor of a we already know the answer

- it is v(x), so we just have to average v(x) over all neighbors of a with the

correct probabilities. All in all we get:

preturn =

∑
x∼a Caxv(x)

Ca

If we’re interested in the probability of escape rather then return, i.e. of

reaching b before returning to a, we get:

pescape = 1−preturn =
Ca −

∑
x∼a Caxv(x)

Ca

=

∑
x∼a Cax(v(a)− v(x))

Ca

=

∑
x∼a iax

Ca

Recall that Ceff =
∑

x∼a iax/(v(a)− v(b)), and since in our case v(a) = 1

and v(b) = 0 we get:

pescape =
Ceff

Ca
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Now things gets interesting. Suppose we have an infinite graph G. Choose

some vertex to be a and let Gr be the ball of radius r around a. Let ∂r be

all the outermost vertices (i.e. at distance r from a). Now we have:

Prob(a SRW goes to distance r before visiting a) =
Ceff (Gr, a ↔ ∂r)

Ca

Definition. For an infinite graph G and some vertex a in it:

Ceff (G, a ↔∞) = lim
r→∞

Ceff (Gr, a ↔ ∂r)

Now we can prove the following.

Theorem. A weighted SRW on a graph G (with weights) is recurrent if and

only if Ceff (G, a ↔ ∞) = 0, for some (and every) a ∈ G. More precisely,

pesc(G, a) = Ceff (G, a ↔∞)/Ca.

Proof. Let xt be a weighted SRW. Denote the event ”x goes to distance

r before visiting returning to x0” by Er. We’ve shown that Prob(Er) =

Ceff (x0 ↔ ∂r). Obviously, Er+1 ⊂ Er. Let E =
⋂

r∈NEr. Since Er is a

monotone sequence of events

Prob(E) = lim
r→∞

Prob(Er) =
Ceff (G, a ↔∞)

Cx0

All that is left to show is that E ≡ F where F is the event ”x never returns

to x0” and equivalent is in measure (i.e. Prob(E4F ) = 0). Obviously,

E ⊂ F , since if x travels infinitely far before returning to x0, it never returns

to x0. Conversely, we have to prove that the probability that x never reaches

∂r nor x0 is zero.

Exercise. Prove that.

Now we have a nice characterization of recurrence. It immediately proves

that Z is recurrent, for instance. It is also easy to prove that way that the
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binary tree is transient and, more generally, solve the prolonged binary tree

exercise in part 2. It still isn’t clear how to use this characterization to show

that Z2 is recurrent or that Z3 isn’t because we haven’t provided a way to

compute the effective conductance, except by solving the linear equations

which describe the voltage. If we only had a way to estimate, or bound, the

effective conductance of a network...

Luckily, there is such a way.

Before we get into that, let’s see how we handle the binary tree case. For

this we need the following lemma.

Lemma. For any network G, if we have two vertices with v(x) = v(y) and

Cxy < ∞ we can change Cxy to any value without affecting the voltage or

currents.

Exercise. The trivial proof is left as an exercise to the reader.

At first, it might seem that this lemma is not of any value when we want

to compute effective conductances, for we have to find the voltages before

using it. Closer inspection reveals that we can sometimes find pairs of vertices

that must have the same voltage by symmetry considerations.

Example. The binary tree.

Example. The n-th dimensional hypercube, Hn = {0, 1}n. Calculate the

effective conductance between 0n and 1n and conclude that the corresponding

hitting probability tends to 1
2
.

1.3 Energy

Definition. For a single edge xy with conductance Cxy, given voltages v(x)

and v(y) the Energy Dissipation is

Exy = ixy(v(x)− v(y)) = Cxy(v(x)− v(y))2 = Rxyi
2
xy
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For a network G with given voltages v(a) and v(b) at the endpoints, the

Total Energy Dissipation, E, is the sum of the energy dissipation over all the

edges.

We are not physicists, so we’ll call it simply Energy.

Since the energy is unchanged when we reverse x and y, we can write

E(G) =
1

2

∑
x,y∈G

ixy(v(x)− v(y)) =
1

2

∑
x,y∈G

Cxy(v(x)− v(y))2 =
1

2

∑
x,y∈G

Rxyi
2
xy

Theorem. (conservation of energy) For any network G we have:

E(G) = Ceff (G, a ↔ b)(v(a)− v(b))2

What this means is that we can regard a network as a single edge, also

for the purpose of energy.

Proof. By the definition of energy

E(G) =
1

2

∑
x,y∈G

ixy(v(x)− v(y)) =
1

2
(
∑

x,y∈G

ixyv(x)−
∑

x,y∈G

ixyv(y))

=
1

2
(
∑
x∈G

v(x)
∑
y∈G

ixy −
∑
y∈G

v(y)
∑
x∈G

ixy)

For any x 6= a, b we have
∑

y∈G ixy = 0. Therefore

E(G) =
1

2
(v(a)

∑
y∈G

iay + v(b)
∑
y∈G

iby − v(a)
∑
x∈G

ixa − v(b)
∑
x∈G

ixb)

Recall that ixy = −iyx and that
∑

x∈G iax =
∑

y∈G iyb = Ceff (G, a ↔
b)(v(a)− v(b)). Put together, this yields

E(G) = Ceff (G, a ↔ b)(v(a)− v(b))2
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Note that what we actually proved is that

1

2

∑
x,y∈G

ixy(v(x)− v(y)) =
∑
x∈G

iax(v(a)− v(b))

for any function v and any flow from a to b. We haven’t used Ohm’s law

that connects the current and voltage.

Theorem. (Thomson’s Principle, one form) Among all functions u, with

given boundary values u(a) and u(b), the function which minimizes the energy

E(u) =
∑

x,y∈G

Cxy(v(a)− v(b))2

is the voltage, v.

Proof. For some x ∈ G, take the part of the sum which involves x, i.e.

s =
∑
y∈G

Cxy(u(x)− u(y))2

Differentiate with respect to u(x) to get

s′ = 2
∑
y∈G

Cxy(u(x)− u(y))

This is equal to 0 if u(x) =
∑

y∈G(Cxy/Cx)u(y), i.e. if u is harmonic at x.

This is the minimum of s over values of u(x). This means the if u is not v, it

is not harmonic at some point, x and the energy can be lowered by changing

the value of u(x).

This theorem has a dual form, dealing with the current, instead of voltage.

Theorem. (Thomson’s Principle, dual form) Among all flows j, with total

flow out of a (and into b) of 1, the flow which minimizes the energy

E(j) =
1

2

∑
x,y∈G

Rxyj
2
xy
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is the current, i.

Proof. Let j be such a flow and i the current. Let dxy = jxy− ixy. d is a flow

with total flow 0 (exercise: give an example of such a flow). Then

E(j) =
1

2

∑
x,y∈G

Rxyj
2
xy =

1

2

∑
x,y∈G

Rxy(ixy + dxy)2

=
1

2

∑
x,y∈G

Rxyi
2
xy +

∑
x,y∈G

Rxyixydxy +
1

2

∑
x,y∈G

Rxyd
2
xy

= E(i) +
∑

x,y∈G

(v(x)− v(y))dxy + E(d)

By the conservation of energy, we get that the middle term is 0. Since

E(d) ≥ 0 we get E(j) ≥ E(i).

The importance of Thomson’s principle is that it gives us Rayleigh’s

monotonicity law on a silver plate.

Theorem. (Rayleigh’s Monotonicity Law) if Cxy and Dxy are two sets of

conductances for graph G, with Cxy ≤ Dxy for all edges. Then the effec-

tive conductance of the network with conductances Cxy is at most that with

conductances Dxy.

Proof. Let v be the voltage function for conductances Cxy and u for Dxy.

Since Cxy ≤ Dxy we have

Ceff ({Cxy}) =
∑

x,y∈G

Cxy(v(x)− v(y))2 ≤
∑

x,y∈G

Cxy(u(x)− u(y))2

≤
∑

x,y∈G

Dxy(u(x)− u(y))2 = Ceff ({Dxy})
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Note the strict monotonicity does not hold. For some networks, we can

increase or decrease the conductance at some edges without changing the

effective conductance.

Corollary. A subgraph of a recurrent graph is recurrent.

Note that the monotonicity law allows us to change conductances to/from

0 or ∞ as well. 0 conductance means no edge, so changing conductance to 0

means deleting an existing edge. Conductance ∞ is formally not defined. If

we consider it as a limit of unbounded sequence of conductances, we can see

that it corresponds to merging the two vertices into one.

Exercise. prove the Nash-Williams criteria for recurrence based on the mono-

tonicity law.

Show recurrence of Z2.

Define branching tree T (b, l).

Reff (T (b, l)) =
∞∑
i=0

1

b
(
l

b
)i =

1

b− l

Show embedding of T (2, 2) into Z2, deduce that resistance to ∂r is Θ(log(r)).

Conclude that the number of points visited by SRW up to time n is Θ(n/ log(n)).

Show embedding of T (3, 2) (with Reff = 1) in Z3. Conclude that pesc ≥
1/6. Using 2 copies of T (3, 2) we get pesc ≥ 1/3. Using 8 copies of T (3, 2)

connected to the corners of a cube show that pesc ≥ 35/72. Actually, pesc
∼=

0.66.

Exercise. (?) Show that pesc(Zd) → 1 when d → ∞. Give explicit asymp-

totic bounds.

Exercise. (Important) Prove that the effective conductance function is con-

vex.
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