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1. SINGLE VARIABLE

Definition 1.1. The n-th order Taylor’s Polynomial of f around x0 is

Tn(x) =

f (x0)+ f ′(x0)(x−x0)+ f ′′(x0)
(x −x0)2

2
+ f ′′′(x0)

(x −x0)3

6
+·· ·+ f (n) (x −x0)n

n!
.

For a fixed x0, Tn is a polynomial of degree at most n, whose coeffi-

cients depend on x0 and f .

Example 1.2. T1(x) = f (x0) + f ′(x0)(x − x0) is the line tangent to f at

(x0, f (x0)).

Example 1.3. If f (x) = log(x) (where log is the natural logarithm - base

e) then f ′(x) = 1/x and f ′′(x) =−1/x2. The 2nd order Taylor Polynomial

around 1 is T2(x) = 0+ (x −1)− 1
2 (x −1)2.

This Tn has the property that its value and first n derivatives at the

point x0 coincide with the value of f and its first n derivatives at x0,

causing Tn to behave very similarly to f near x0. To see this, notice that

g (x) = (x−x0)k

k ! has the following properties:

g (`)(x) =


(x−x0)k−`

(k−`)! `< k

1 `= k

0 `> k

In particular,

g (`)(x0) =
{

1 `= k

0 ` 6= k

So, the k-th term in the definition of Tn(x) contribute exactly f (k)(x0) to

the k-th derivative of Tn at x0 and nothing to the other derivatives.

Other examples and more explanations can be found in the book (sec-

tion 12.10 and 12.11).
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Definition 1.4. The remainder or error of Tn is defined to be Rn(x) =
f (x)−Tn(x), so we can write f (x) = Tn(x)+Rn(x).

Notice that the remainder at x0 is 0. Actually, something much stronger

is true:

Theorem 1.5. If f (n)(x0) exists, and Tn is the n-th order Taylor Polynomial

around x0, then

lim
x→x0

Rn(x)

(x −x0)n
= 0.

Proof. Apply l’Hopital’s rule n times. ■
So the remainder goes to 0 faster than (x − x0)n . There are ways to

bound the remainder at specific points (Taylor’s inequality, section 12.10).

We will not use this, but here’s an example.

Example 1.6. We use the second order Taylor Polynomial of log(x) around

1, which we calculated in example 1.3 to approximate the value of log(5/4).

We get T2(5/4) = 1/4−1/32 = 0.21875. The true value of log(5/4) is about

0.2231 so the error here is about R2(5/4) ≈ 0.0044.

Exercise 1.7. Find the 5-th order Taylor polynomial of sin(x) around 0 and

use it to estimate sin(1).

Exercise 1.8. Find the 4-th order Taylor polynomial of
p

x around 4 and

use it to estimate
p

3.

Exercise 1.9. Find the 4-th order Taylor polynomial of ex around 0.

Exercise 1.10. Find the 4-th order Taylor polynomial of ex around 1.

2. MULTIPLE VARIABLES

Like in single variable, the n-th order Taylor’s polynomial of f (x, y)

around (x0, y0) is the unique polynomial of degree at most n, such that

all of its partial derivatives up to order n at (x0, y0) are the same as those

of f at (x0, y0).

The 0-th order Taylor’s polynomial of f around (x0, y0) is

T0(x, y) = f (x0, y0) .

The 1-st order Taylor’s polynomial of f around (x0, y0) is

T1(x) = f (x0, y0)+ fx(x0, y0)(x −x0)+ fy (x0, y0)(y − y0) .
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This is exactly the function describing the tangent plane at (x0, y0, f (x0, y0)).

In other words, z = T1(x) is the equation of this tangent plane.

The 2nd order Taylor’s Polynomial of f around (x0, y0) is

T2(x) = f (x0, y0)+ fx(x0, y0)(x −x0)+ fy (x0, y0)(y − y0)+

+ fxx(x0, y0)

2
(x −x0)2 + fx y (x0, y0)(x −x0)(y − y0)+ fy y (x0, y0)

2
(y − y0)2 .

Recall that for "reasonable" functions Clairaut’s theorem apply and we

get that fx y = fy x explaining why only one of them appear in the formula

(for functions where fx y 6= fy x we will generally not be interested in T2

since it won’t be a good approximation).

In general, The n-th order Taylor’s Polynomial of f around (x0, y0) is

Tn(x, y) =
n∑

k=0

n−k∑
`=0

∂k∂` f

∂xk∂y`
(x0, y0)

(x −x0)k (y − y0)`

k !`!

For more than 2 variables the formula is similar. For example, in 3 vari-

ables, the terms would be of the form

∂k∂`∂m f

∂xk∂y`∂zm
(x0, y0, z0)

(x −x0)k (y − y0)`(z − z0)m

k !`!m!

and we would sum over all indices such that k +`+m ≤ n.

Example 2.1. Let f (x, y) = log(x + y2 −1).

Then fx(x, y) = 1/(x + y2 −1), so fx(1,1) = 1.

fy (x, y) = 2y/(x + y2 −1) so fy (1,1) = 2.

fxx(x, y) =−1/(x + y2 −1)2, so fxx(1,1) =−1.

fx y (x, y) =−2y/(x + y2 −1)2, so fx y (1,1) =−2.

Finally, fy y (x, y) = 2/(x + y2 −1)−4y2/(x + y2 −1)2, so fy y (1,1) =−2.

Therefore, the second order Taylor’s polynomial around (1,1) is

T2(x, y) = 0+ (x −1)+2(y −1)− 1

2
(x −1)2 −2(x −1)(y −1)− (y −1)2 .

Example 2.2. Let f (x, y, z) = ex y z . Then calculating all derivatives up to

3rd order, we find that the only nonzero one at (0,0,0) is fx y z(0,0,0) = 1.

Therefore, T3(x, y, z) = 1+x y z.

Once more, we define the remainder Rn(x, y) = f (x, y)−Tn(x, y). We

also have a theorem bounding the rate that the remainder tends to 0 at

(x0, y0).
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Theorem 2.3. If all n-th order partial derivatives of f at (x0, y0) exist and

are continuous near (x0, y0) and Tn is the n-th order Taylor Polynomial

around (x0, y0), then

lim
(x,y)→(x0,y0)

Rn(x, y)(√
(x −x0)2 + (y − y0)2

)n = 0.

In words, the error is small compared to the distance between (x, y)

and (x0, y0) to the n-th power. This finally allows us to rigorously define

the tangent plane:

Definition 2.4. A linear function L(x, y) = Ax+B y+C is the tangent plane

to f (x, y) at (x0, y0, f (x0, y0)) if

lim
(x,y)→(x0,y0)

f (x, y)−L(x, y)√
(x −x0)2 + (y − y0)2

= 0.

We will focus mostly on the case of 2nd order Taylor Polynomial of a 2

variables function.

Exercise 2.5. Find the 1st, 2nd and 3rd order Taylor Polynomial of f (x, y) =
x3 +x y2 around (1,2). Is T3(x, y) identical to f (x, y)? Why?


