MATH 253 - SEC 104 - W2011T1

1. Let

$$f(x,y) = \frac{xy^3 - x^3y}{x^2 + y^2}.$$

- (a) What is the domain of definition of f?
- (b) Calculate f_x, f_y, f_{xy}, f_{yx} and verify that $f_{xy} = f_{yx}$.
- (c) Calculate $\lim_{x\to 0} f_{xy}(x,0)$ and $\lim_{y\to 0} f_{xy}(0,y)$. Does $\lim_{(x,y)\to(0,0)} f_{xy}(x,y)$ exist?

Solution:

(a) $(x, y) \neq (0, 0)$

(b)
$$f_x(x,y) = \frac{y^5 - x^4y - 4x^2y^3}{(x^2 + y^2)^2}$$

$$f_y(x,y) = \frac{-x^5 + xy^4 + 4x^3y^2}{(x^2 + y^2)^2}$$

$$f_{xy}(x,y) = f_{yx}(x,y) = \frac{-x^6 - 9x^4y^2 + 9x^2y^4 + y^6}{(x^2 + y^2)^3}$$

(c) For any $x \neq 0$, $f_{xy}(x,0) = \frac{-x^6}{x^6} = -1$ so $\lim_{x\to 0} f_{xy}(x,0) = -1$. Similarly, $\lim_{y\to 0} f_{xy}(0,y) = \lim_{y\to 0} \frac{y^6}{y^6} = 1$. Since $1 \neq -1$ we see that $\lim_{(x,y)\to(0,0)} f_{xy}(x,y)$ does not exist.

2. Let

$$f(x,y) = x \arctan(x^2 - y)$$
.

- (a) What is the domain of definition of f?
- (b) Calculate f_x and f_y and find the only point where the tangent plane is horizontal.
- (c) Find the second order Taylor approximation at the point from (b). Can you say whether this point is a local minimum, a local maximum or neither?

Solution:

(a) f is defined on the entire plane.

(b)
$$f_x(x,y) = \arctan(x^2 - y) + \frac{2x^2}{1 + (x^2 - y)^2}$$
.

$$f_y(x,y) = \frac{-x}{1 + (x^2 - y)^2}.$$

The tangent plane is horizontal when both $f_x(x,y)$ and $f_y(x,y)$ are zero, i.e. when (x,y) is a critical point for f. The equation $\frac{-x}{1+(x^2-y)^2}=0$ yield that x=0. Putting this back into $\arctan(x^2 - y) + \frac{2x^2}{1 + (x^2 - y)^2} = 0$ we get $\arctan(-y) = 0$ and so y = 0 too. So our point is (0,0).

(c)
$$f_{xx}(x,y) = \frac{2x^5 + 4x^3y - 6x - 6xy^2}{(1 + (x^2 - y)^2)^2}$$
 so $f_{xx}(0,0) = 0$.
 $f_{xy}(x,y) = \frac{1 - 3x^4 + 2x^2y + y^2}{(1 + (x^2 - y)^2)^2}$ so $f_{xy}(0,0) = 1$.

$$f_{xy}(x,y) = \frac{1-3x^4+2x^2y+y^2}{(1+(x^2-y)^2)^2}$$
 so $f_{xy}(0,0) = 1$

$$f_{yy}(x,y) = \frac{2x^3 - 2xy}{(1 + (x^2 - y)^2)^2}$$
 so $f_{yy}(0,0) = 0$.

$$f(0,0) = 0$$

Hence, the 2nd order Taylor polynomial of f around (0,0) is $T_2(x,y) = xy$. function describes a hyperbolic paraboloid and so (0,0) is a saddle point for f.

3. Let

$$f(x,y) = \sqrt{1 - x^2 - y^2}$$
.

(a) What is the domain of definition of f?

(b) Write the equation of the tangent plane at the point (a, b, f(a, b)) in terms of a and b.

(c) Find a and b such that this tangent plane passes through the points (1,1,1) and (1,-2,4).

Solution:

(a) $x^2 + y^2 \le 1$ - the disc of radius 1 around the origin.

(b)
$$f_x(x,y) = \frac{-x}{\sqrt{1-x^2-y^2}}$$

$$f_y(x,y) = \frac{-y}{\sqrt{1-x^2-y^2}}$$

The tangent plane at (a, b, f(a, b)) is described by

$$z = \sqrt{1 - a^2 - b^2} - \frac{a}{\sqrt{1 - a^2 - b^2}} (x - a) - \frac{b}{\sqrt{1 - a^2 - b^2}} (y - b).$$

(c) We want to solve the following equations for a and b:

$$1 = \sqrt{1 - a^2 - b^2} - \frac{a}{\sqrt{1 - a^2 - b^2}} (1 - a) - \frac{b}{\sqrt{1 - a^2 - b^2}} (1 - b).$$

$$4 = \sqrt{1 - a^2 - b^2} - \frac{a}{\sqrt{1 - a^2 - b^2}} (1 - a) - \frac{b}{\sqrt{1 - a^2 - b^2}} (-2 - b).$$

Multiplying by $\sqrt{1-a^2-b^2}$ and simplifying yields

$$\sqrt{1 - a^2 - b^2} = 1 - a - b$$

$$4\sqrt{1 - a^2 - b^2} = 1 - a + 2b$$
(1)

This implies that

$$4(1 - a - b) = 1 - a + 2b$$

SO

$$a = 1 - 2b$$
.

Putting this back into equation 1 gives

$$\sqrt{1-(1-2b)^2-b^2}=1-(1-2b)-b$$
.

Squaring yields

$$1 - (1 - 4b + 4b^2) - b^2 = b^2$$

SO

$$4b - 6b^2 = 0$$

which means that either b=0 (and a=1) or $b=\frac{2}{3}$ (and $a=1-2\frac{2}{3}=-\frac{1}{3}$).

Note that the first solution (a,b)=(0,1) is on the boundary of our domain and the partial derivatives are not defined there. The second solution $(a,b)=(\frac{2}{3},-\frac{1}{3})$ is the only solution.