Exam of 26.09.2006 — Solutions

2c

First, $\mathbb{E} X = \int_0^1 X^*(p) \, \mathrm{d}p = \int_0^{0.5} X^*(p) \, \mathrm{d}p + \int_{0.5}^1 X^*(p) \, \mathrm{d}p$. Second, $X^*(0.5) = 3$. (More exactly, $X^*(0.5-) \le 3$, $X^*(0.5+) \ge 3$.) Using monotonicity of X^* , $0 \le X^*(p) \le 3$ for $p \in (0,0.5)$, and $3 \le X^*(p) \le 5$ for $p \in (0.5,1)$. Therefore $0.5 \cdot 0 + 0.5 \cdot 3 \le \mathbb{E} X \le 0.5 \cdot 3 + 0.5 \cdot 5$, that is, $a \in [1.5,4]$.

On the other hand, every $a \in [1.5, 4]$ is of the form 0.5b + 0.5c where $b \in [0, 3]$ and $c \in [3, 5]$ (for instance, $b = 2 \cdot 0.6(a - 1.5)$ and $c = 2 \cdot 0.4(a - 1.5) + 3$), and we may take $X^*(p) = b$ for $p \in (0, 0.5)$, and $X^*(p) = c$ for $p \in (0.5, 1)$. (The median of X is not unique here, however, 3 is one of the medians.)

Finally, the set is [1.5, 4].

2d

Yes, it follows. We have

$$\mathbb{P}\left(3 + \frac{1}{n} < X < 3 + \frac{2}{n}\right) = \int_{3 + \frac{1}{n}}^{3 + \frac{2}{n}} f_X(x) \, \mathrm{d}x \in \left[\frac{1}{n} A_n, \frac{1}{n} B_n\right],$$

where

$$A_n = \inf_{3+\frac{1}{n} < x < 3+\frac{2}{n}} f_X(x), \quad B_n = \sup_{3+\frac{1}{n} < x < 3+\frac{2}{n}} f_X(x).$$

Both A_n and B_n converge to $f_X(3+)$ as $n \to \infty$; it remains to use the sandwich argument.

3 _____

3a

We take y such that $\mathbb{P}\left(X + e^X \in [y, y + 1]\right) \ge 0.9$ and x such that $x + e^x = y$ (such x exists, since the function is bijective). Using also monotonicity of the function we have $\mathbb{P}\left(X \in [x, x + 1]\right) = \mathbb{P}\left(X + e^X \in [x + e^x, x + 1 + e^{x + 1}]\right) \ge \mathbb{P}\left(X + e^X \in [x + e^x, x + 1 + e^x]\right) = \mathbb{P}\left(X + e^X \in [y, y + 1]\right) \ge 0.9$, thus, X is concentrated.

3b

We take y such that $\mathbb{P}\left(f(X) + g(X) \in [y, y+1]\right) \ge 0.9$ and consider sets $A = \{x: f(x) + g(x) \in [y, y+1]\}$, $B = f(A) = \{f(x): x \in A\}$. For all $x_1, x_2 \in A$ we have $y \le f(x_1) + g(x_1)$ and $f(x_2) + g(x_2) \le y + 1$, thus $(f(x_2) + g(x_2)) - (f(x_1) + g(x_1)) \le 1$, therefore $f(x_2) - f(x_1) \le 1$. It means that $y_2 - y_1 \le 1$ for all $y_1, y_2 \in B$, that is, $B \subset [z, z+1]$ for some z (for instance, $z = \inf B$). Finally, $\mathbb{P}\left(z \le f(X) \le z + 1\right) \ge \mathbb{P}\left(f(X) \in B\right) \ge \mathbb{P}\left(X \in A\right) \ge 0.9$; we see that f(X) is concentrated.

3c

Assume the contrary: $\mathbb{P}\left(y \leq Y \leq y+1 \mid X\right) < 0.9$ a.s. for every y. Then $\mathbb{P}\left(y \leq Y \leq y+1\right) = \mathbb{E}\,\mathbb{P}\left(y \leq Y \leq y+1 \mid X\right) < 0.9$ for every y, in contradiction to the concentration of Y.

3d

Assume the contrary: $\mathbb{P}\left(x \leq X \leq x+1\right) < 0.9$ for every x. By independence, $\mathbb{P}\left(z \leq X+Y \leq z+1 \mid Y=y\right) = \mathbb{P}\left(z \leq X+y \leq z+1 \mid Y=y\right) = \mathbb{P}\left(z \leq X+y \leq z+1\right) = \mathbb{P}\left(z-y \leq X \leq z-y+1\right) < 0.9$, which contradicts to Item (c) (and concentration of X+Y).

3e

First, $X_1 + X_2 = \max(X_1, X_2) + \min(X_1, X_2)$ is distributed like $X^*(\sqrt{V_1}) + X^*(V_2\sqrt{V_1})$ by Item 1(c); here V_1, V_2 are independent U(0, 1). Also, $\max(X_1, X_2)$ is distributed like $X^*(\sqrt{V_1})$. Thus, $X^*(\sqrt{V_1}) + X^*(V_2\sqrt{V_1})$ is concentrated; we have to prove that $X^*(\sqrt{V_1})$ is concentrated. (It does not follow from Item (d), since $X^*(\sqrt{V_1})$ and $X^*(V_2\sqrt{V_1})$ need not be independent!)

Assume the contrary: $X^*(\sqrt{V_1})$ is not concentrated. Conditionally, given $V_2 = v_2$, we may apply Item (b) to the increasing functions $X^*(\sqrt{V_1})$ and $X^*(v_2\sqrt{V_1})$ of the random variables V_1 . We know that $X^*(\sqrt{V_1})$ is not concentrated (the conditioning on V_2 being irrelevant here, by independence). Therefore, the sum $X^*(\sqrt{V_1}) + X^*(v_2\sqrt{V_1})$ cannot be concentrated, in contradiction to Item (c) (and the concentration of $X^*(\sqrt{V_1}) + X^*(V_2\sqrt{V_1})$).