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1a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For x ∈ (−0.5, 0.5) the corresponding section {y : (x, y) ∈ Bϕ} of Bϕ is the interval
(−0.5−x cos ϕ

sinϕ
, 0.5−x cos ϕ

sin ϕ
) of length 1/ sinϕ. The length does not depend on x, therefore the

distribution of X is uniform, X ∼ U(−0.5, 0.5).
For a given y the corresponding section {x : (x, y) ∈ Bϕ} of Bϕ is either empty or an

interval. The length of the interval depends on y (which is evident on the picture), therefore
the distribution of Y is not uniform.

1b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fX(x) = 1(−0.5,0.5)(x), since X ∼ U(−0.5, 0.5).
fY |X=x(y) = sin ϕ · 1(−0.5−x cos ϕ

sin ϕ
, 0.5−x cos ϕ

sin ϕ
)(y), since the conditional distribution is uniform

on the section.
fX,Y (x, y) = fX(x)fY |X=x(y) = sin ϕ · 1(−0.5,0.5)(x)1(−0.5−x cos ϕ

sin ϕ
, 0.5−x cos ϕ

sin ϕ
)(y). That is,

fX,Y (x, y) = sin ϕ for (x, y) ∈ Bϕ.
However, fX,Y = (1/Sϕ)1Bϕ

. Therefore Sϕ = 1/ sin ϕ.

1c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E
(

Y
∣

∣ X = x
)

= −x cos ϕ
sinϕ

= −x cot ϕ, the center of the corresponding (conditional) uniform

distribution. Thus, E
(

Y
∣

∣ X
)

= −X cot ϕ.

1d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Given X = x, x ∈ (−0.5, 0.5), the conditional distribution of Y − E
(

Y
∣

∣ X
)

= Y +X cotϕ
is uniform on (−0.5

sin ϕ
, 0.5

sinϕ
). The conditional distribution does not depend on x, therefore the

random variable is independent of X.

1e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E X = 0, the center of the uniform distribution.
E Y = 0, since the distribution of Y is symmetric around 0 (according to the central

symmetry of Bϕ). Another way (if you want): E Y = E ( E
(

Y
∣

∣ X
)

) = E (−X cot ϕ) = 0.
Var X = 1/12, the variance of the uniform distribution (can be calculated by a simple

integration).
By the independence (and using again the variance of a uniform distribution), Var Y =

Var(Y + X cot ϕ) + Var(−X cotϕ) = 1
12

1
sin2 ϕ

+ 1
12

cot2 ϕ = 1
12

1+cos2 ϕ
sin2 ϕ

.
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2a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B = B1 ∩ B2 ∩ . . . where Bk = {ω ∈ (0, 1) : αk+1 ≤ 1 + αk}.
For each k the set Bk is a finite union of intervals (some of the 10k intervals indexed by

α1, . . . , αk).
Thus, each Bk is a Borel set, and therefore B is a Borel set.

2b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yes, it can happen that p < 1. In particular, it happens for any two independent, identically
distributed random variables X, Y , except for degenerate (constant) cases. For example,
X ∼ U(0, 1), Y ∼ U(0, 1), independent; here FX = FY but p = 1/2.

No, it cannot happen that p = 0. Proof. Assume that p = 0, then X > Y a.s. (al-
most surely), which implies FX ≤ FY everywhere. [Warning: it does not imply FX < FY

everywhere.] Thus, FX = FY , that is, X and Y are identically distributed.
A contradiction follows easily if we assume in addition that X, Y are integrable. In this

case, E X = E Y (since they are identically distributed), but on the other hand, E X > E Y
(since X > Y a.s).

The general case may be reduced to the integrable case by a strictly monotone trans-
formation of R into a bounded interval. We may use (for instance) the arctan function:
E arctanX = E arctanY (since they are identically distributed), but on the other hand,
E arctanX > E arctanY (since arctan X > arctanY a.s).

2c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yes, it can happen that lim sup An2 6= lim sup An. Example. Let An = ∅ if n is a square, oth-
erwise An = Ω. Then lim sup An2 = ∅, but lim sup An = Ω. Another example (if you want):
let An be independent events such that P

(

An

)

= 1/n, then by Borel-Cantelli Lemma(s),
lim sup An2 is of probability 0, while lim sup An is of probability 1.

No, this cannot happen for an increasing sequence. Proof. Any increasing sequence (of
sets) converges; and any its subsequence converges to the same limit. Thus, lim sup An2 =
lim An2 = lim An = lim sup An.

2d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yes, it can happen that fX,Y is bounded but fX,Y 2 is unbounded. Example. Let X ∼ U(0, 1),
Y ∼ U(0, 1), and X, Y be independent. Then fX,Y (x, y) = 1 for x ∈ (0, 1), y ∈ (0, 1).
However, fY 2(t) = 1/(2

√
t) for t ∈ (0, 1), therefore fX,Y 2(x, t) = 1/(2

√
t) for x ∈ (0, 1),

t ∈ (0, 1).
Yes, it can happen that fX,Y is unbounded but fX,Y 2 is bounded. Example. Let

X ∼ U(0, 1) again, and Y be such that Y > 0 a.s. and Y 2 is distrubuted uniformly on
an unbounded set B ⊂ (1,∞) of finite measure. (For instance, B = (1, 1 + 2−1) ∪ (2, 2 +
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2−2) ∪ (3, 3 + 2−3) ∪ . . . ) Then fY 2(t) = const for t ∈ B and fY (y) = const · 2y for y such
that y2 ∈ B. Thus fY is unbounded, and fX,Y (x, y) = fX(x)fY (y) is also unbounded.

3

3a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have fX,Y = E fX,Y |Φ, the expectation of the conditional density. Thus, fX,Y (x, y) =
2
π

∫ π/2

0
sin ϕ · 1Bϕ

(x, y) dϕ.

If
√

x2 + y2 < 0.5 then 1Bϕ
(x, y) = 1 for all ϕ (since Aϕ results from A0 by rotation),

and we get fX,Y (x, y) = 2
π

∫ π/2

0
sin ϕ dϕ = 2

π
.

If
√

x2 + y2 > 0.5 then 1Bϕ
(x, y) = 0 for ϕ of some interval (since Aϕ results from A0 by

rotation), and we get fX,Y (x, y) < 2
π

∫ π/2

0
sin ϕ dϕ = 2

π
.

3b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Every given n belongs to the set with the probability 1/2 (the integral of the density 2/π
over the disk of the area π/4). The expected number of these events is equal to the sum of
their probabilities, 100 · 0.5 = 50.

3c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have an infinite sequence of independent events, each of probability 1/2. The sum of the
probabilities is infinite; by the second Borel-Cantelli Lemma, infinitely many events occur,
a.s. That is, the considered set is infinite with probability 1.

3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have an infinite sequence of events; the probability of the n-th event (except for n = 1)
is equal to 2/n2 (the integral of the density 2/π over the disk of the area π/n2). The sum of
the probabilities is finite; by the first Borel-Cantelli Lemma, only finitely many events occur,
a.s. That is, the considered set is infinite with probability 0.

3e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The countable set is an infinite sample from a two-dimensional distribution; almost surely,
its closure is equal to the support of the distribution. The distribution is a mixture of the
uniform distributions on the diamonds Bϕ. Its support is equal to the closed unbounded
strip {(x, y) : −0.5 ≤ x ≤ 0.5}. (I do not prove these claims.)


