Probability — 2002, TAU 1

Exam of 01.07.2002 — Solutions

1

X,Y are independent, distributed uniformly U(0,1). Their joint distribution is uniform on
the square (0,1) x (0,1).

I

P(A) = 3, since the corresponding region (a triangle) is of area .
P(A|X=})=P(X<Y|X=1)=P (<Y |X=1)=P(i<V)=23

Simﬂarly,IP(A\X:x):IP(x<Y):1—xfora:e(0,1),thus1P(A|X3:1—X.
EP(A|X)=E(1-X)=1-%=1=P(A4).

o P

IP’(B) = 8 since the corresponding domain (the square minus two triangles) is of area

1—92-1.2. 2 _5

5
(A N 33 = %]P’ (B) = 18, according to the area of the corresponding domain.
Yes, A and B are independent, since P(ANB) =& =1-2=P(A)P(B).

P
P(B|X=3)=P(X-V|<5[X=5)=P([g-Y|<3|X=7)=P(z-Y|<
D=p(-i Sy <) =p(o<y <} =L
]P(AHB|X:%):IP’(%<Y<%)—§,
no,IP(AﬂB|X:é): d1ﬂersfromP(A|X:%)]P’(B|X:%):g %
I

For z € (2,1), conditionally on X = z, events A and B become Y € (z,1) and Y € (z—3,1).
Here, A implies B, therefore A and B are positively correlated.

For z € (0,5) we get A:Y € (z,1) and B:Y € (0,3 + ). Here A implies B; negative
correlation.

Forz e [3,2] weget A:Y € (z,1) and B:Y € (z — 5,2+ 3). The probability of A
is 1 — z. Given B, the conditional probability of A equals to % (Of course, everything is
conditioned by X = z.) For z € [3, 3] the conditional probability is smaller, which means

negative correlation. For z € [ ] the correlation is pos1t1ve So,

x<%: negative correlation, IP’(AﬁB|X—m)<IP’ A|X_x) ]P’(B‘X:a:);
x = %: no correlation;
x>%: positivecorrelation,IP’(AOB‘X:x)>]P’(A|X=x) ]P’(B|X:x).
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Fya(y) =P (Y <y|A4)= — 77 = =y forO<y<1

(the probability is calculated as the area of the triangle), therefore fy 4(y) = 2y fory € (0, 1),
otherwise 0.
Similarly, 1 — Fxja(z) =P ( X >z | A )= (1 — )% thus fxu(z) = 2(1 — ) for
€ (0,1), otherwise 0.

3 5
E(Y|A)=[yfvaly)dy= [y y-2ydy=2;

E(X‘A)zféx-?(l—x)dxz%.
P

The unconditional distribution of (X,Y") is uniform on the square, therefore the conditional
distribution is uniform on the triangle, which means

1/P(A)=2 for0<z<y<l,

0 otherwise.

fX,Y|A(‘T’ y) = {

The equality fx,yja(z,y) = fxja(z)fyja(y) does not hold. Indeed, if 0 < y < x < 1 then the
left-hand side vanishes but the right-hand side does not.

2

7.7 Y

The function f(z) = w is equal to +1 for z < s and to —1 for > ¢; in the middle,
for x € [s,t], we have —1 < f(x ) <1

On the other hand, 2Fx(s)—1 =P (X < s)
z < sand —1 for x > s. We observe that g(X)

which means

~P(X >s) =Eg(X), where g(z) = +1 for
< f(X) always, therefore Eg(X) < E f(X),

U(t) —U(s)
t—s
The other inequality is similar: f(x) < h(x), where h(z) = +1 for z < ¢t and —1 for z > ¢.

2FX(S) -1 S

7] o

For each € > 0,

Ult+e) —U()

2Fx(t) —1< <2Fx((t+¢e)—) —1<2Fx(t+e)—1.
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Fx is continuous at a given point ¢, therefore for e — 0+ we have 2Fx (t+¢)—1 — 2Fx(t)—1;
by the sandwich argument,
U(t+ At) - U(t)
At

— 2Fx(t)—1 for At — 0+ .

On the other hand,
Uit)—-U(t—e)
€
for e — 0+ we have 2Fx(t—¢) —1 — 2Fx(t—) — 1 = 2Fx(t) — 1; by the sandwich argument,

UO-U0=9) _, 9Fy(t) — 1, that is,
U(t+ At) = U(t)
At

7.7

QF)((t—&f)—lS

— 2Fx(t)—1 for At -0— .

X has a density fx, therefore Fx is continuous everywhere, and 2b gives us U'(t) = 2Fx (t)—1
for all ¢. Assume now that fx is continuous at a given point ¢. It follows that Fx is
differentiable at t, and F%(t) = fx(t). Therefore U’ is differentiable at ¢, and U"(t) =

2F () = 2fx (t).

3

% Y

We have to prove that the set {w : Y(w) < y} is an event, for every y € R. It follows from
the equality

0 for —co <y <0,

{w:Y(w)Sy}:{{M:X(w)gy}u(Q\A) for 0 <y < oco.

5] o U OO
P(Y < X) =1, therefore Y* < X*.

K T

First, P(Y > 0) = 1, therefore Y* > 0. Second, P(Y =0) > P(Q\A4) =1-P(A),
therefore Y* = 0 on an interval of length > 1 — P (A) The interval begins at 0, since Y* is
never negative.

0 SN—\—
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B T P
X 4100 > 05 (3d) gives

E ((X 4+100)1,4) < /1 (X +100)*(p) dp.
1-P(A)

Therefore
1
]E(X-1A+1OO-1A)§/ (X*(p) + 100) dp;
1-P(A)
1
]E(X.1A)+1001P(A)g/ X*(p)dp+100P (A);
1-P(A)
1
E(Y-1)< [ X()dy
1-P(A)
3 AP

For any M € (0,00) consider the random variable X, = max(X, —M). Similarly to (3e),
1

IE(XM-IA)g/ X (p)dp.

1-P(A)

However, X3,(p) = max(X*(p), —M) (monotone transformation); also, X3, > X always;
thus,

1
E(X-1,4) §/ max(X*(p),—M)dp.
1-P(A)

It holds for every M € (0,00), and (assuming P(A) # 1) we may choose M such that
X*(1-P(A)) > —M, getting

1
E(X-lA)gf X*(p)dp.
1-P(A)



