Exam of 10.09.2001 — Solutions

1

1a

We have $Y = \varphi(X)$ where φ is defined by

$$\varphi(x) = 10 \int_x^{x+0.1} h(t) dt.$$

Also,

$$\mathbb{E}\varphi(X) = \int_0^1 \varphi(x) \, dx \,,$$

since X is distributed uniformly on (0,1). Fubini theorem gives

$$\mathbb{E}Y = \int_0^1 \left(10 \int_x^{x+0.1} h(t) \, dt \right) dx = 10 \iint_A h(t) \, dt \, dx \,,$$

where $A = \{(x, t) : 0 \le x \le 1, x \le t \le x + 0.1\}$. Further,

$$10 \iint_A h(t) dt dx = 10 \int \left(\int h(t) \mathbf{1}_A(x,t) dx \right) dt = \int h(t) \underbrace{\left(10 \int \mathbf{1}_A(x,t) dx \right)}_{v(t)} dt.$$

1b

$$v(t) = \begin{cases} 10t & \text{for } 0 \le t \le 0.1, \\ 1 & \text{for } 0.1 \le t \le 1, \\ 11 - 10t & \text{for } 1 \le t \le 1.1, \\ 0 & \text{otherwise.} \end{cases}$$

1c

The function v satisfies $v(t) \ge 0$ for all t, and $\int v(t) dt = 1$. Therefore it is the density of some random variable Z. We have

$$\mathbb{E}h(Z) = \int h(t)v(t) dt = \mathbb{E}Y.$$

2

2a

The conditional distribution of X given N=n is the distribution of $\frac{1}{2}(Z_1^2+\cdots+Z_{2n}^2)$. However, $\frac{1}{2}Z_1^2 \sim \text{Gamma}(0.5)$; thus $\frac{1}{2}(Z_1^2+\cdots+Z_{2n}^2) \sim \text{Gamma}(2n\cdot\frac{1}{2}) = \text{Gamma}(n)$, and so,

$$f_{X|N=n}(x) = \frac{1}{(n-1)!} x^{n-1} e^{-x}$$
.

The marginal density is

$$f_X(x) = \mathbb{E} f_{X|N}(x) = \sum_n f_{X|N=n}(x) \mathbb{P} \left(N = n \right) = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} x^{n-1} e^{-x} \cdot pq^{n-1} =$$

$$= e^{-x} p \sum_{k=0}^{\infty} \frac{1}{k!} (qx)^k = e^{-x} p e^{qx} = p e^{-(1-q)x} = p e^{-px},$$

thus X has an exponential distribution, $X \sim \text{Exp}(p)$.

2b

$$p_{N|X=x}(n) = \frac{f_{X|N=n}(x)\mathbb{P}\left(N=n\right)}{f_{X}(x)} = \frac{\frac{1}{(n-1)!}x^{n-1}e^{-x} \cdot pq^{n-1}}{pe^{-px}} = \frac{1}{(n-1)!}(qx)^{n-1}e^{-qx};$$

thus, \mathbb{P} ($N-1=k\mid X=x$) = $p_{N\mid X=x}(k+1)=\frac{1}{k!}(qx)^ke^{-qx}$, which means that the conditional distribution of N-1 (given X=x) is a Poisson distribution, P(qx).

We have $\mathbb{E}\left(N-1\mid X=x\right)=qx$ (according to the Poisson distribution), that is, $\mathbb{E}\left(N\mid X=x\right)=qx+1$, or $\mathbb{E}\left(N\mid X\right)=qX+1$. However, $\mathbb{E}X=1/p$ (according to the exponential distribution), and so,

$$\mathbb{E}\left(\mathbb{E}\left(\left.N\mid X\right.\right)\right) = \mathbb{E}\left(qX+1\right) = q\mathbb{E}X + 1 = q \cdot \frac{1}{p} + 1 = \frac{1}{p}.$$

Also $\mathbb{E}N = \frac{1}{p}$ (according to the geometric distribution). So, $\mathbb{E}(\mathbb{E}(N \mid X)) = \mathbb{E}N$ indeed.

3

 $3\mathrm{a}$

By Borel-Cantelli lemma(s), finiteness of the set $\{n: X_n^2 + Y_n^2 < 100\}$ depends on convergence of the series

$$\sum_{n} \mathbb{P}\left(X_n^2 + Y_n^2 < 100\right).$$

However,

$$\mathbb{P}\left(X_n^2 + Y_n^2 < 100\right) = \frac{\pi \cdot 100}{\pi r_n^2} = \frac{100}{r_n^2}$$

for n large enough.

If $r_n = n$ then the series converges, and the set is finite (almost surely).

If $r_n = \sqrt{n}$ then the series diverges, and the set is infinite (almost surely).

3b

The result of (a) holds for the set $\{n: X_n^2 + Y_n^2 < r^2\}$ for every $r \in (0, \infty)$ (not just r = 10). If $r_n = n$ then $\sqrt{X_n^2 + Y_n^2} \ge r$ for all n large enough; it means that $\sqrt{X_n^2 + Y_n^2} \to \infty$. If $r_n = \sqrt{n}$ then the inequality $\sqrt{X_n^2 + Y_n^2} \ge 1$ is violated for infinitely many n, therefore $\sqrt{X_n^2 + Y_n^2}$ does not tend to infinity. ('Almost surely' is meant.)

3c

If $r_n = n$ then the set is not dense, since its intersection with the disk $x^2 + y^2 < 1$ is finite. If $r_n = \sqrt{n}$ then the set contains infinitely many points inside any disk $x^2 + y^2 < r^2$ (with the center at the origin). More generally, the same holds for any other disk, $(x-a)^2 + (y-b)^2 < r^2$ (with the center at (a, b)), except for a set of probability 0. We take an appropriate countable set of such disks (say, a, b, r run over rational numbers), exclude the union of corresponding sets of probability 0, and see that (X_n, Y_n) are dense (almost surely).

4

4a

The random variable $Y_1 = -\ln X_1$ has an exponential distribution, $Y_1 \sim \text{Exp}(1)$; indeed,

$$\mathbb{P}(-\ln X_1 \le y) = \mathbb{P}(X_1 \ge e^{-y}) = 1 - e^{-y}.$$

Thus, $\mathbb{E}Y_1 = 1$ and $\mathrm{Var}(Y_1) = \sigma^2 \in (0, \infty)$. (In fact, $\sigma = 1$, but it does not matter.) By the central limit theorem, the distribution of Z_n (see the given hint) converges to the normal distribution $N(0, \sigma^2)$. We have

$$\mathbb{P}\left(X_1 \dots X_n \le e^{-n}\right) = \mathbb{P}\left(\ln X_1 + \dots + \ln X_n \le -n\right) =$$

$$= \mathbb{P}\left(Y_1 + \dots + Y_n \ge n\right) = \mathbb{P}\left(Z_n \ge 0\right) \xrightarrow[n \to \infty]{} \Phi(0) = \frac{1}{2},$$

so, $\lim_{n\to\infty} \mathbb{P}\left(X_1 \dots X_n \leq e^{-n}\right) = 0.5.$

¹I use r = 1 here; any other number may be used equally well.

²Though, it is unbounded, of course.

We have

$$\frac{1}{2} = \mathbb{P}\left(X_1 \dots X_n \le b_n\right) = \mathbb{P}\left(Y_1 + \dots + Y_n \ge -\ln b_n\right) = \\
= \mathbb{P}\left(\frac{Y_1 + \dots + Y_n - n}{\sqrt{n}} \ge \frac{-\ln b_n - n}{\sqrt{n}}\right) = \mathbb{P}\left(Z_n \ge -\frac{n + \ln b_n}{\sqrt{n}}\right),$$

which means that $-(n + \ln b_n)/\sqrt{n}$ is a median of Z_n . Therefore it converges (for $n \to \infty$) to the median of the normal distribution $N(0, \sigma^2)$,

$$-\frac{n+\ln b_n}{\sqrt{n}} \xrightarrow[n\to\infty]{} \sigma\Phi^{-1}(0.5) = 0.$$

Similarly, quartiles of \mathbb{Z}_n converge to normal quartiles,

$$-\frac{n+\ln a_n}{\sqrt{n}} \xrightarrow[n\to\infty]{} \sigma\Phi^{-1}(0.75),$$

$$-\frac{n+\ln c_n}{\sqrt{n}} \xrightarrow[n\to\infty]{} \sigma\Phi^{-1}(0.25).$$

In other words,

$$\ln a_n = -n - \sqrt{n}\sigma\Phi^{-1}(0.75) + o(\sqrt{n}),$$

$$\ln b_n = -n - \sqrt{n}\sigma\Phi^{-1}(0.5) + o(\sqrt{n}) = -n + o(\sqrt{n}),$$

$$\ln c_n = -n - \sqrt{n}\sigma\Phi^{-1}(0.25) + o(\sqrt{n}).$$

Therefore

$$\ln b_n - \ln a_n = \sqrt{n}\sigma \left(\Phi^{-1}(0.75) - \Phi^{-1}(0.5)\right) + o(\sqrt{n}) \xrightarrow[n \to \infty]{} + \infty,$$

which means that $a_n/b_n \to 0$. Similarly $b_n/c_n \to 0$.

By independence,

$$d_n = \mathbb{E}(X_1 \dots X_n) = (\mathbb{E}X_1) \dots (\mathbb{E}X_n) = \left(\frac{1}{2}\right)^n,$$

that is,

$$\ln d_n = -n \ln 2.$$

Therefore

$$\ln d_n - \ln c_n = -n \ln 2 + n + O(\sqrt{n}) = n \ln \frac{e}{2} + o(n) \xrightarrow[n \to \infty]{} + \infty,$$

which means that $c_n/d_n \to 0$. So,

$$a_n < b_n < c_n < d_n$$

for all n large enough.