Exam of 31.08.1999 — Solutions

1

1a

The point (U, V) is distributed uniformly on the square $(10, 20) \times (15, 25)$ (in minutes; we omit 8 hours). The random variable U - V is a linear function on the square, equal to +5 at one vertex, -5 on a diagonal, and -15 at the opposite vertex. Calculating needed areas (of triangles) we get

$$\mathbb{P}(U - V \ge a) = \frac{(5 - a)^2}{2 \cdot 100} \quad \text{for } -5 \le a \le 5,$$

$$\mathbb{P}(U - V \le a) = \frac{(a + 15)^2}{2 \cdot 100} \quad \text{for } -15 \le a \le -5.$$

X is a function of U-V, namely,

$$X = \begin{cases} U - V & \text{for } U - V \ge 0, \\ 0 & \text{for } U - V \le 0. \end{cases}$$

Therefore

$$F_X(0) = \mathbb{P}\left(X = 0\right) = \mathbb{P}\left(U - V \le 0\right) = \frac{7}{8};$$

$$F_X(x) = \mathbb{P}\left(X \le x\right) = \mathbb{P}\left(U - V \le x\right) = 1 - \frac{(5-x)^2}{200} \quad \text{for } 0 \le x \le 5;$$

 $F_X(x) = 0 \text{ for } x < 0, F_X(x) = 1 \text{ for } x \ge 5.$

 X^* is inverse to F_X ; for $p \in (7/8, 1)$ we have $1 - (5 - x)^2/200 = p$; $x = 5 - \sqrt{200(1 - p)}$. So,

$$X^*(p) = \begin{cases} 0 & \text{for } 0
$$x_{1/2} = X^*\left(\frac{1}{2}\right) = 0.$$$$

1b

Also Y is a function of U - V, namely,

$$Y = \begin{cases} V - U & \text{for } U - V \le 0, \\ 0 & \text{for } U - V \ge 0. \end{cases}$$

Therefore

$$F_Y(0) = \mathbb{P}(Y = 0) = \mathbb{P}(U - V \ge 0) = \frac{1}{8};$$

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(U - V \ge -y) = \begin{cases} \frac{(5+y)^2}{200} & \text{for } 0 \le y \le 5, \\ 1 - \frac{(15-y)^2}{200} & \text{for } 5 \le y \le 15; \end{cases}$$

 $F_Y(y) = 0$ for y < 0, $F_Y(y) = 1$ for $y \ge 15$.

$$Y^*(p) = \begin{cases} 0 & \text{for } 0
$$y_{1/2} = Y^*\left(\frac{1}{2}\right) = 5.$$$$

1c

$$F_{X} = \frac{7}{8} F_{X,d} + \frac{1}{8} F_{X,ac};$$

$$F_{X,d}(x) = \begin{cases} 0 & \text{for } x < 0, \\ 1 & \text{for } x \ge 0; \end{cases}$$

$$F_{X,ac}(x) = 8 \left(F_X(x) - \frac{7}{8} F_{X,d}(x) \right) = \begin{cases} 0 & \text{for } x \le 0, \\ \frac{25 - (5 - x)^2}{25} & \text{for } 0 \le x \le 5, \\ 1 & \text{for } x \ge 5; \end{cases}$$

$$f_{X,ac}(x) = F'_{X,ac}(x) = \begin{cases} 0 & \text{for } x < 0, \\ \frac{2(5 - x)}{25} & \text{for } 0 < x < 5, \\ 0 & \text{for } x > 5. \end{cases}$$

1d

$$F_{Y,\mathrm{ac}}(y) = \begin{cases} 0 & \text{for } y < 0, \\ 1 & \text{for } y \ge 0; \end{cases}$$

$$F_{Y,\mathrm{ac}}(y) = \begin{cases} 0 & \text{for } y \le 0, \\ 1 & \text{for } y \ge 0; \end{cases}$$

$$F_{Y,\mathrm{ac}}(y) = \frac{8}{7} \left(F_Y(y) - \frac{1}{8} F_{Y,\mathrm{d}}(y) \right) = \begin{cases} 0 & \text{for } y \le 0, \\ \frac{(5+y)^2 - 25}{175} & \text{for } 0 \le y \le 5, \\ \frac{175 - (15-y)^2}{175} & \text{for } 5 \le y \le 15, \\ 1 & \text{for } y \ge 15; \end{cases}$$

$$f_{Y,\mathrm{ac}}(y) = F'_{Y,\mathrm{ac}}(y) = \begin{cases} 0 & \text{for } y < 0, \\ \frac{2(5+y)}{175} & \text{for } 0 < y < 5, \\ \frac{2(15-y)}{175} & \text{for } 5 < y < 15, \\ 0 & \text{for } y > 15. \end{cases}$$

First, $\mathbb{E}X = \int_0^1 X^*(p) \, dp = \int_{7/8}^1 \left(5 - \sqrt{200(1-p)}\right) \, dp = \left(5p + \sqrt{200} \cdot \frac{2}{3}(1-p)^{3/2}\right)|_{7/8}^1 = 5 + 0 - 5 \cdot \frac{7}{8} - \sqrt{200} \cdot \frac{2}{3} \cdot \frac{1}{8\sqrt{8}} = 5 \cdot \frac{1}{8} - \sqrt{25} \cdot \frac{2}{3} \cdot \frac{1}{8} = \frac{5}{8}\left(1 - \frac{2}{3}\right) = \frac{5}{24}.$ Second, $\mathbb{E}X = \int x \, dF_X(x) = \frac{7}{8} \int x \, dF_{X,d}(x) + \frac{1}{8} \int x \, dF_{X,ac}(x) = 0 + \frac{1}{8} \int x \, f_{X,ac}(x) \, dx = \frac{1}{8} \int_0^5 x \frac{2(5-x)}{25} \, dx = \frac{1}{8} \cdot \frac{2}{25} \int_0^5 (5x - x^2) \, dx = \frac{1}{100} \left(\frac{5x^2}{2} - \frac{x^3}{3}\right)|_0^5 = \frac{1}{100} \left(\frac{5^3}{2} - \frac{5^3}{3}\right) = \frac{5^3}{100} \cdot \frac{1}{6} = \frac{5}{4} \cdot \frac{1}{6} = \frac{5}{24}.$

1f

Y-X=V-U, since for $U-V\leq 0$ we have Y-X=(V-U)-0=V-U, and for $U-V\geq 0$ we have Y - X = 0 - (U - V) = V - U. Therefore $\mathbb{E} Y - \mathbb{E} X = \mathbb{E} V - \mathbb{E} U = \frac{15 + 25}{2} - \frac{10 + 20}{2} = 5$, and so, $\mathbb{E}Y = 5 + \mathbb{E}X = 5 + \frac{5}{24}$.

2

2a

We know that X and Y are functions of U-V (see 1a,

$$(X,Y) = \begin{cases} (U - V, 0) & \text{if } U - V \ge 0, \\ (0, V - U) & \text{if } U - V \le 0; \end{cases}$$

thus, the point (X,Y) always belongs to the union of the two axis. Therefore the 2-dim distribution has no absolutely continuous part. The random variable U-V is nonatomic, and different values of U-V lead to different (2-dim) values of (X,Y); therefore the 2-dim distribution has no atoms. It is singular.

2b

Yes, X and Y are dependent. Indeed,

$$0 = \mathbb{P}(X > 0, Y > 0) \neq \underbrace{\mathbb{P}(X > 0)}_{\neq 0} \underbrace{\mathbb{P}(Y > 0)}_{\neq 0}.$$

2c

If X = x > 0 then necessarily Y = 0; thus,

$$F_{Y|X=x}(y) = \begin{cases} 0 & \text{if } y < 0, \\ 1 & \text{if } y \ge 0 \end{cases}$$

for x > 0.

The condition X=0 is equivalent to the condition Y>0, thus $F_{Y|X=0}$ describes the conditional distribution of Y given that Y>0, that is, Y does not belong to its set of atoms. We get just the nonatomic (absolutely continuous) part of the distribution of Y calculated in 1d. So,

$$F_{Y|X=0}(y) = F_{Y,ac}(y) = \begin{cases} 0 & \text{for } y \le 0, \\ \frac{(5+y)^2 - 25}{175} & \text{for } 0 \le y \le 5, \\ \frac{175 - (15-y)^2}{175} & \text{for } 5 \le y \le 15, \\ 1 & \text{for } y \ge 15. \end{cases}$$

3 _____

3a

Yes, the distribution of X determines uniquely the distribution of Y. Indeed, the distribution of X determines X^* (except for values at jumps), therefore, Y^* , therefore, the distribution of Y.

No, the distribution of Y does not determine uniquely the distribution of X. Indeed, two increasing functions can be equal on $(\frac{1}{3}, \frac{2}{3})$ but quite different on $(0, \frac{1}{3})$ or/and $(\frac{2}{3}, 1)$.

3b

We know that for any a, the set $\{p \in (0,1) : X^*(p) \leq a\}$ is either $(0, F_X(a))$ or $(0, F_X(a)]$. The distinction is of no importance for the argument; I'll use the first possibility; the second one gives the same.

If a is such that $\frac{1}{3} < F_X(a) < \frac{2}{3}$ then $\{p \in (0,1) : Y^*(p) \le a\} = \{p \in (0,1) : \frac{1+p}{3} \in (0,F_X(a))\} = (0,3F_X(a)-1)$, thus, $F_Y(a) = 3F_X(a)-1$. Otherwise, if $F_X(a) \le \frac{1}{3}$, we have $\{p \in (0,1) : Y^*(p) \le a\} = \{p \in (0,1) : \frac{1+p}{3} \in (0,F_X(a))\} = \emptyset$, thus, $F_Y(a) = 0$. Similarly, if

 $F_X(a) \ge \frac{2}{3}$ then $F_Y(a) = 1$. So,

$$F_Y(y) = \begin{cases} 0, & \text{if } F_X(y) \le \frac{1}{3}, \\ 3F_X(y) - 1, & \text{if } \frac{1}{3} \le F_X(y) \le \frac{1}{3}, \\ 1, & \text{if } F_X(y) \ge \frac{2}{3}. \end{cases}$$

3c

No, not every distribution is possible for Y, since not every increasing function on $(\frac{1}{3}, \frac{2}{3})$ can be extended to an increasing function on (0,1). Only a bounded function can be extended (indeed, say, $X^*(\frac{1}{6})$ is a lower bound for the whole Y^*). And every bounded function can be extended (say, as a constant on $(0,\frac{1}{3})$ and another constant on $(\frac{2}{3},1)$). So, a necessary and sufficient condition is, that Y^* is bounded; that is, $Y^*(0+) > -\infty$ and $Y^*(1-) < +\infty$; that is, Y has a bounded support.

No. For example, let X^* be 0 on $(0,\frac{1}{3})$ and 1 on $(\frac{1}{3},1)$, then $\mathbb{E}X=\frac{2}{3}$ but $\mathbb{E}Y=1$.

3e

Yes. Indeed, $\mathbb{E}|Y| = \int_0^1 |Y^*(p)| dp = \int_0^1 |X^*(\frac{1+p}{3})| dp = 3 \int_{1/3}^{2/3} |X^*(p)| dp \le 3 \int_0^1 |X^*(p)| dp = 3 \mathbb{E}|X| \le 10 \mathbb{E}|X|$.

4

4a

The joint distribution of X,Y is invariant under rotations. Vectors $\left(\frac{3}{\sqrt{10}},\frac{-1}{\sqrt{10}}\right)$, $\left(\frac{1}{\sqrt{10}},\frac{3}{\sqrt{10}}\right)$ are orthogonal unit vectors. Therefore the joint distribution of $\frac{3X-Y}{\sqrt{10}}$ and $\frac{X+3Y}{\sqrt{10}}$ is the same as the joint distribution of (X,Y). So,

$$\mathbb{E}\left(\cos(3X - Y)\sin(X + 3Y)\right) = \mathbb{E}\left(\cos(\sqrt{10}X)\sin(\sqrt{10}Y)\right) =$$

$$= \mathbb{E}\left(\cos(\sqrt{10}X)\right)\mathbb{E}\left(\sin(\sqrt{10}Y)\right) = 0,$$

since $\sin(\sqrt{10}Y)$ is symmetric w.r.t. 0.

5

5a

Denote by A_n the event $\max(X_{n^2+1}, X_{n^2+2}, \dots, X_{n^2+2n}) \leq 3$. We have $\mathbb{P}(A_n) = \mathbb{P}(X_{n^2+1} \leq 3, \dots, X_{n^2+2n} \leq 3) = \mathbb{P}(X_{n^2+1} \leq 3) \dots \mathbb{P}(X_{n^2+2n} \leq 3) = p^{2n}$, where $p = \mathbb{P}(X_1 \leq 3)$.

Thus,

$$\sum_{n} \mathbb{P}\left(A_{n}\right) < \infty.$$

By the first Borel-Cantelli lemma, only a finite number of events A_n occur (almost surely). It means existence of a (random) N such that $\forall n > N \mod(X_{n^2+1}, X_{n^2+2}, \dots, X_{n^2+2n}) > 3$.

5b

No, $n^2 + 2n$ cannot be replaced with $n^2 + 20$. Indeed, denote by B_n the event $\max(X_{n^2+1}, X_{n^2+2}, \ldots, X_{n^2+20}) \leq 3$. We have $\mathbb{P}(B_n) = p^{20}$ (where $p = \mathbb{P}(X_1 \leq 3)$, still). Thus,

$$\sum_{n} \mathbb{P}\left(B_{n}\right) = \infty.$$

Also, B_n are independent for n large enough (since $n^2 + 20 < (n+1)^2 + 1$). By the second Borel-Cantelli lemma, an infinite number of events B_n occur (almost surely). It means nonexistence of a (random) N such that $\forall n > N \mod(X_{n^2+1}, X_{n^2+2}, \ldots, X_{n^2+20}) > 3$.