6 Some non-smooth stochastic flows: reflection

6a Usual Brownian flow

Stochastic flows will give us interesting examples of nonclassical noises. However, we start with a very simple (and classical) case.

In discrete time, $t \in \varepsilon \mathbb{Z}$, we consider random signs $\tau(k\varepsilon)$ as before (independent equiprobable ± 1), and random maps

(6a1)
$$\xi_{k\varepsilon} = \begin{cases} f_{+} & \text{if } \tau(k\varepsilon) = +1, \\ f_{-} & \text{if } \tau(k\varepsilon) = -1; \end{cases}$$

$$f_{+}, f_{-} : \mathbb{R} \to \mathbb{R}, \quad f_{+}(x) = x + \sqrt{\varepsilon}, \quad f_{-}(x) = x - \sqrt{\varepsilon}.$$

$$\downarrow^{f_{+}} \qquad \downarrow^{f_{-}} \qquad \downarrow^{\varepsilon\mathbb{Z}}$$

$$\downarrow^{\bullet} \qquad \downarrow^{\bullet} \qquad$$

Imagine that for any s < t we can measure the composition $\xi_{s,t} : \mathbb{R} \to \mathbb{R}$ defined as¹

(6a2)
$$\xi_{s,t} = \xi_{l\varepsilon} \circ \xi_{(l-1)\varepsilon} \circ \cdots \circ \xi_{(k+1)\varepsilon} \circ \xi_{k\varepsilon} \quad \text{for } (k-1)\varepsilon \leq s < k\varepsilon \,, \ l\varepsilon \leq t < (l+1)\varepsilon \,.$$

Note that $f_- \circ f_+ = f_+ \circ f_- = \text{id}$ (the identity mapping). Therefore, every composition (say, $f_- \circ f_+ \circ f_- \circ f_+)$ boils down to f_+^n , or f_-^n , or id. All maps $\xi_{s,t}$ belong to a one-parameter family,

(6a3)
$$\xi_{s,t} = f_a, \quad a = \sqrt{\varepsilon} \left(\tau(k\varepsilon) + \dots + \tau(l\varepsilon) \right) = \sqrt{\varepsilon} \sum_{i:i\varepsilon \in (s,t]} \tau(i\varepsilon),$$

$$f_a(x) = x + a; \qquad f_a \circ f_b = f_b \circ f_a = f_{a+b};$$

measuring $\xi_{s,t}$ means measuring $a = \sqrt{\varepsilon} (\tau(k\varepsilon) + \cdots + \tau(l\varepsilon))$, which is a special case of 'observables' $\sqrt{\varepsilon} \sum \varphi(k\varepsilon)\tau(k\varepsilon)$ introduced in Sect. 1. Clearly, the scaling limit is basically the Brownian motion,

$$\xi_{s,t} = f_{B(t)-B(s)}.$$

¹Composition is understood as $(g \circ f)(x) = g(f(x))$ (note the order).

6b Reflecting Brownian flow

We replace (6a1) with

(6b1)
$$\xi_{k\varepsilon} = \begin{cases} f_{+} & \text{if } \tau(k\varepsilon) = +1, \\ f_{-} & \text{if } \tau(k\varepsilon) = -1; \end{cases}$$

$$f_{+}, f_{-} : [0, \infty) \to [0, \infty), \quad f_{+}(x) = x + \sqrt{\varepsilon}, \quad f_{-}(x) = \max(0, x - \sqrt{\varepsilon}).$$

$$\downarrow^{f_{+}} \qquad \downarrow^{f_{-}} \qquad \downarrow^{\varepsilon \mathbb{Z}_{+}} \qquad \downarrow^{\varepsilon$$

Note that $f_- \circ f_+ = \operatorname{id}$ (but $f_+ \circ f_- \neq \operatorname{id}$). Therefore every composition boils down to some $f_+^m \circ f_-^n$. The maps f_-, f_+ , as well as their compositions $\xi_{s,t}$ (defined like (6a2)) belong to a two-parameter family $f_{a,b} : [0, \infty) \to [0, \infty)$,

(6b2)
$$f_{a,b}(x) = \begin{cases} x+a & \text{if } x \ge b, \\ a+b & \text{if } 0 \le x \le b \end{cases} \qquad a+b$$

for $b \ge 0$, $a + b \ge 0$, as we'll see now.

6b3 Exercise.

$$\begin{array}{lll} \text{(a)} & f_{+} = f_{\sqrt{\varepsilon},0}; & f_{-} = f_{-\sqrt{\varepsilon},\sqrt{\varepsilon}};\\ \text{(b)} & f_{+}^{n} = f_{n\sqrt{\varepsilon},0}; & f_{-}^{n} = f_{-n\sqrt{\varepsilon},n\sqrt{\varepsilon}};\\ \text{(c)} & f_{+}^{m} \circ f_{-}^{n} = f_{(m-n)\sqrt{\varepsilon},n\sqrt{\varepsilon}};\\ \text{(d)} & f_{a,b} = f_{a+b,0} \circ f_{-b,b};\\ \text{(e)} & f_{a_{2},0} \circ f_{a_{1},0} = f_{a_{1}+a_{2},0}; & f_{-b_{2},b_{2}} \circ f_{-b_{1},b_{1}} = f_{-b_{1}-b_{2},b_{1}+b_{2}};\\ \text{(f)} & f_{-b,b} \circ f_{b,0} = \mathrm{id};\\ \text{(g)} & f_{-b,b} \circ f_{a,0} = \begin{cases} f_{a-b,0} & \text{if } a \geq b,\\ f_{a-b,b-a} & \text{if } a \leq b;\\ \end{cases}\\ \text{(h)} & f_{a_{2},b_{2}} \circ f_{a_{1},b_{1}} = f_{a,b} & \text{where } a = a_{1} + a_{2}, b = \max(b_{1},b_{2} - a_{1}). \end{array}$$

Prove it.

You see, our non-commutative two-dimensional semigroup is generated by two (commutative) one-parameter semigroups (see 6b3(e)) with a (quite simple and natural) relation (see 6b3(f)).

Measuring $\xi_{s,t}$ means measuring the corresponding parameters a, b.

6b4 Exercise. $\xi_{s,t} = f_{a,b}$ where $a = \sqrt{\varepsilon} \sum_{i:i\varepsilon \in (s,t]} \tau(i\varepsilon)$ is the same as in (6a3), and

$$b = -\sqrt{\varepsilon} \min_{m=k-1,k,k+1,\ldots,l} \left(\tau(k\varepsilon) + \tau((k+1)\varepsilon) + \cdots + \tau(m\varepsilon) \right)$$

for $(k-1)\varepsilon \leq s < k\varepsilon$, $l\varepsilon \leq t < (l+1)\varepsilon$ (if m=k-1, the empty sum is 0). Prove it.

Hint. Either use 6b3(h), or just look:

We see that $\xi_{s,t} = f_{a(s,t),b(s,t)}$ where a(s,t) is given by 6b4, and $b(s,t) = -\min_{u \in (s,t]} a(s,u)$. We guess that in the scaling limit

(6b5)
$$a(s,t) = B(t) - B(s), b(s,t) = -\min_{u \in [s,t]} (B(u) - B(s)).$$

No problems with a(s,t). However, b(s,t) is a new kind of 'observable'. The random walk (the discrete counterpart of the Brownian motion) converges in distribution to the Brownian motion, as far as a finite set of points $t_1 < \cdots < t_n$ is considered. Linear (or even nonlinear) integrals are also admissible, but the minimum is a challenge. The random walk moves by $\sqrt{\varepsilon}$ during the time ε , which means a high speed $1/\sqrt{\varepsilon}$. If the random walk has narrow peaks (at random points, of course),

then probably the minimum does not fit into the Brownian scaling limit.²

Fortunately, such peaks do not appear. A Brownian path is not at all differentiable, moreover,

$$\liminf_{t \to 0+} \frac{B(t)}{\sqrt{t}} = -\infty, \quad \limsup_{t \to 0+} \frac{B(t)}{\sqrt{t}} = +\infty;$$

however, it is continuous, moreover,

$$\sup_{0 < s < t < 1} \frac{B(t) - B(s)}{(t - s)^{1/3}} < \infty \quad \text{a.s.}$$

A similar estimation holds for the random walk uniformly in ε . This is why the following (well-known) result holds.

6b6 Proposition. Let $f: C[0,1] \to \mathbb{R}$ be a bounded continuous function on the space C[0,1], $B(\cdot)$ the Brownian motion, and $B_{\varepsilon}(\cdot)$ its piecewise linear discrete counterpart. Then

$$\mathbb{E} f(B_{\varepsilon}(\cdot)) \to \mathbb{E} f(B(\cdot))$$
 for $\varepsilon \to 0$.

²Similarly to the Poisson process as considered in 4a.

 $^{{}^3}C[0,1]$ is the Banach space of all continuous functions $g:[0,1] \to [0,1]$ with the norm ||g|| = $\max_{t \in [0,1]} |g(t)|$.

 $^{{}^4}B_{\varepsilon}((k+1)\varepsilon) - B_{\varepsilon}(k\varepsilon) = \sqrt{\varepsilon}\,\tau(k\varepsilon)$, and B_{ε} is linear on $[k\varepsilon, (k+1)\varepsilon]$.

6b7 Exercise. Formulate and prove (using 6b6) a correct interpretation of the incorrect relation

$$\operatorname{Lim} f(B_{\varepsilon}(\cdot)) = f(B(\cdot))$$

for a continuous $f: C[0,1] \to \mathbb{R}$.

Hint: recall 1b6, 1b7.

Does 6b6 contain our former 'linear' result 1b6, or even its 'nonlinear' generalization (mentioned in 3c)? To some extent. The linear stochastic integral $\int_0^1 \varphi(x) dB(x)$ is continuous (in B) on C[0,1] if and only if φ is a function of bounded variation.⁵

So, in the scaling limit we get (6b5).

In discrete time, the random process

(6b8)
$$X(t) = \xi_{0,t}(0) = f_{a(0,t),b(0,t)}(0) = a(0,t) + b(0,t), X(n\varepsilon) = \sqrt{\varepsilon} \max_{k=1,\dots,n,n+1} (\tau(k\varepsilon) + \dots + \tau(n\varepsilon))$$

is the reflecting random walk.

In the scaling limit it becomes

$$X(t) = a(0,t) + b(0,t) = B(t) - \min_{s \in [0,t]} B(s).$$

On the other hand, the reflecting random walk $X(\cdot)$ is distributed like a function of the usual random walk

(6b9)
$$Z(t) = a(0, t),$$

$$Z(n\varepsilon) = \sqrt{\varepsilon} (\tau(\varepsilon) + \dots + \tau(n\varepsilon)).$$

Namely,

(6b10)
$$X(\cdot) \sim \left| Z(\cdot) + \frac{\sqrt{\varepsilon}}{2} \right| - \frac{\sqrt{\varepsilon}}{2}.$$

6b11 Exercise. Prove that, indeed, these two processes are identically distributed.

Hint: for each process, find the conditional distribution of the next value (at $(k+1)\varepsilon$), given the past (at $\varepsilon, 2\varepsilon, \ldots, k\varepsilon$).

In the scaling limit, Z becomes the Brownian motion B, and we get $X(\cdot) \sim |B(\cdot)|$. So, we have two candidates to 'reflecting Brownian motion':

(6b12)
$$X(t) = B(t) - \min_{s \in [0,t]} B(s);$$
$$X(t) = |B(t)|;$$

these are different functions of $B(\cdot)$, of course; however, they are identically distributed; thus, we have two equivalent definitions of the distribution of the reflecting Brownian motion.

⁵Maybe, after a correction on a negligible set.

6c Counting reflections

Having the discrete reflecting flow,

we want to introduce a new 'observable' that counts reflections. We can do it by considering such a two-dimensional stochastic flow:

$$\xi_{k\varepsilon} = \begin{cases} g_{+} & \text{if } \tau(k\varepsilon) = +1, \\ g_{-} & \text{if } \tau(k\varepsilon) = -1; \end{cases}$$

$$(6c1)$$

$$g_{+}, g_{-} : \sqrt{\varepsilon} \mathbb{Z}_{+} \times \sqrt{\varepsilon} \mathbb{Z} \to \sqrt{\varepsilon} \mathbb{Z}_{+} \times \sqrt{\varepsilon} \mathbb{Z}_{+},$$

$$g_{+}(m\sqrt{\varepsilon}, n\sqrt{\varepsilon}) = ((m+1)\sqrt{\varepsilon}, n\sqrt{\varepsilon});$$

$$g_{-}(m\sqrt{\varepsilon}, n\sqrt{\varepsilon}) = ((m-1)\sqrt{\varepsilon}, n\sqrt{\varepsilon}) \text{ if } m > 0;$$

$$g_{-}(0, n\sqrt{\varepsilon}) = (0, (n+1)\sqrt{\varepsilon}).$$

You see, the x-projection is the (discrete) reflecting flow, while y counts reflections of x. Note also that x - y is just the 'usual flow' of 6a.

Though, we need not restrict ourselves to lattice points;

(6c2)
$$g_{+}, g_{-} : [0, \infty) \times \mathbb{R} \to [0, \infty) \times \mathbb{R},$$
$$g_{+}(x, y) = (x + \sqrt{\varepsilon}, y);$$
$$g_{-}(x, y) = (x - \sqrt{\varepsilon}, y) \quad \text{if } x \ge \sqrt{\varepsilon};$$
$$g_{-}(x, y) = (0, y + \sqrt{\varepsilon} - x) \quad \text{if } x \le \sqrt{\varepsilon}.$$

Similarly to 6b, we have $g_- \circ g_+ = \mathrm{id}$ (but $g_+ \circ g_- \neq \mathrm{id}$). The maps g_-, g_+ , as well as their compositions $\xi_{s,t}$ (defined like (6a2)) belong to a two-parameter family $g_{a,b}:[0,\infty)\times\mathbb{R}\to$ $[0,\infty)\times\mathbb{R},$

$$g_{a,b}(x,y) = \begin{cases} (x+a,y) & \text{if } x \ge b, \\ (a+b,y+b-x) & \text{if } 0 \le x \le b \end{cases}$$

for $b \ge 0$, $a + b \ge 0$, as we'll see now.

6c3 Exercise.

(a)
$$g_{+} = g_{\sqrt{\varepsilon},0}; \quad g_{-} = g_{-\sqrt{\varepsilon},\sqrt{\varepsilon}};$$

(b)
$$g_{+}^{n} = g_{n\sqrt{\varepsilon},0}; \quad g_{-}^{n} = g_{-n\sqrt{\varepsilon},n\sqrt{\varepsilon}};$$
 (c)
$$g_{+}^{m} \circ g_{-}^{n} = g_{(m-n)\sqrt{\varepsilon},n\sqrt{\varepsilon}};$$

$$(c) g_+^m \circ g_-^n = g_{(m-n)\sqrt{\varepsilon}, n\sqrt{\varepsilon}};$$

(d)
$$g_{a,b} = g_{a+b,0} \circ g_{-b,b};$$

(e)
$$g_{a_2,0} \circ g_{a_1,0} = g_{a_1+a_2,0}; \quad g_{-b_2,b_2} \circ g_{-b_1,b_1} = g_{-b_1-b_2,b_1+b_2};$$

$$(f) g_{-b,b} \circ g_{b,0} = \mathrm{id};$$

(g)
$$g_{-b,b} \circ g_{a,0} = \begin{cases} g_{a-b,0} & \text{if } a \ge b, \\ g_{a-b,b-a} & \text{if } a \le b; \end{cases}$$

(h)
$$g_{a_2,b_2} \circ g_{a_1,b_1} = g_{a,b}$$
 where $a = a_1 + a_2, b = \max(b_1, b_2 - a_1)$.

Prove it.

We see that the two semigroups, $(f_{a,b})$ and $(g_{a,b})$ are isomorphic, the isomorphism being simply $f_{a,b} \leftrightarrow g_{a,b}$. In other words, the same abstract semigroup acts on $[0, \infty)$ (by $f_{a,b}$) and on $[0, \infty) \times \mathbb{R}$ (by $g_{a,b}$). We see also that 6b4 is still applicable:

$$\xi_{s,t} = g_{a(s,t),b(s,t)},$$

$$a(s,t) = \sqrt{\varepsilon} \left(\tau(k\varepsilon) + \dots + \tau(l\varepsilon) \right),$$

$$b(s,t) = -\sqrt{\varepsilon} \min_{m=k-1,k,k+1,\dots,l} \left(\tau(k\varepsilon) + \tau((k+1)\varepsilon) + \dots + \tau(m\varepsilon) \right),$$

$$(k-1)\varepsilon \leq s < k\varepsilon, \ l\varepsilon \leq t < (l+1)\varepsilon.$$

Note that the map $g_{a,b}$ is uniquely determined by the point $g_{a,b}(0,0)$. Therefore, in order to find the distribution of the random map $\xi_{s,t}$, it suffices to find the distribution of the random point

(6c4)
$$(X,Y) = \xi_{s,t}(0,0) = g_{a,b}(0,0) = (a+b,b).$$

Denote by n the number of points in $(s,t] \cap \varepsilon \mathbb{Z}$. We treat X,Y as functions of n random signs, therefore, random variables. Note that $X \geq 0, Y \geq 0$.

6c5 Exercise. $\frac{X-Y}{2\sqrt{\varepsilon}} + \frac{n}{2} \sim \text{Binom}(n, \frac{1}{2}), \text{ that is,}$

$$\mathbb{P}(X - Y = (-n + 2k)\sqrt{\varepsilon}) = 2^{-n} \binom{n}{k} = \frac{n!}{2^n k! (n-k)!}$$
 for $k = 0, 1, ..., n$.

Prove it.

Hint:
$$X - Y = \sqrt{\varepsilon} (\tau(k\varepsilon) + \dots + \tau(l\varepsilon)).$$

6c6 Exercise. The probability $\mathbb{P}(X = l\sqrt{\varepsilon}, Y = (k-l)\sqrt{\varepsilon})$ does not depend on $l \in \{0, 1, ..., k\}$.

Prove it.

Hint: induction in n.

6c7 Exercise. $\mathbb{P}\left(X = k\sqrt{\varepsilon}, Y = 0\right) = \mathbb{P}\left(X - Y = k\sqrt{\varepsilon}\right) - \mathbb{P}\left(X - Y = (k+2)\sqrt{\varepsilon}\right)$. Prove it.

Hint: use 6c6.

It follows that

$$\mathbb{P}\left(X = k\sqrt{\varepsilon}, Y = l\sqrt{\varepsilon}\right) = \frac{n!}{2^n} \frac{k+l+1}{\left(\frac{n+k+l}{2}+1\right)! \left(\frac{n-k-l}{2}\right)!}$$

for $k \geq 0$, $l \geq 0$, $k + l \leq n$ such that n - k - l is even.

The scaling limit can be found now via the Stirling formula. However, the result can be guessed easily: X - Y becomes normal N(0, t - s); and 6c7 turns into⁷

$$f_{X,Y}(x,0) = -2f'_{X-Y}(x) = -2\frac{d}{dx}\frac{1}{\sqrt{2\pi(t-s)}}\exp\left(-\frac{x^2}{2(t-s)}\right);$$

so,

(6c8)
$$f_{X,Y}(x,y) = \frac{2(x+y)}{\sqrt{2\pi}(t-s)^{3/2}} \exp\left(-\frac{(x+y)^2}{2(t-s)}\right).$$

That is the joint density of random variables X = a(s, t) + b(s, t) and Y = b(s, t), recall (6c4). It gives us the joint density of a(s,t) = B(t) - B(s) and $b(s,t) = -\min_{u \in [s,t]} (B(u) - B(s))$ $(recall (6b5)):^{8}$

(6c9)
$$f_{a(s,t),b(s,t)}(a,b) = \frac{2(a+2b)}{\sqrt{2\pi}(t-s)^{3/2}} \exp\left(-\frac{(a+2b)^2}{2(t-s)}\right).$$

Note also that X and Y are identically distributed, and X is distributed like |B(t-s)|(recall (6b12)); thus,

(6c10)
$$f_X(x) = \frac{2}{\sqrt{2\pi(t-s)}} \exp\left(-\frac{x^2}{2(t-s)}\right) \quad \text{for } x \in (0,\infty),$$
$$f_Y(y) = \frac{2}{\sqrt{2\pi(t-s)}} \exp\left(-\frac{y^2}{2(t-s)}\right) \quad \text{for } y \in (0,\infty).$$

6c11 Exercise. Derive (6c10) from (6c8) just by integration.

6c12 Exercise. In discrete time,

$$\mathbb{P}\left(X = k\sqrt{\varepsilon}\right) = \mathbb{P}\left(Y = k\sqrt{\varepsilon}\right) = \begin{cases} 2^{-n} \binom{n}{(n+k)/2} & \text{for } n+k \text{ even,} \\ 2^{-n} \binom{n}{(n+k+1)/2} & \text{for } n+k \text{ odd.} \end{cases}$$

Prove it.

Hint: use 6c6 and (6b10).

 $^{{}^{6}\}mathrm{Var}(X-Y) = \varepsilon n = t - s + O(\varepsilon).$

⁷Here f_{X-Y} is the (one-dimensional) density of (the distribution of) X-Y, and $f_{X,Y}$ is the twodimensional density of (X, Y). ⁸The Jacobian $\frac{\partial(x,y)}{\partial(a,b)} = \left| \begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right| = 1$.

⁹Moreover, the pairs (X,Y) and (Y,X) are identically distributed (that is, have the same two-dimensional distribution), which follows from 6c6.

6d Local time

Returning to the idea of counting reflections, we see that in continuous time, the random process X(t) = a(0,t) + b(0,t) is the reflecting Brownian motion, while the process Y(t) = b(0,t) counts its reflections. The process $Y(\cdot)$ is called the *local time* of the reflecting Brownian motion $X(\cdot)$.

6d1 Exercise. Given a value x = X(1) of the reflecting Brownian motion (at t = 1), the (conditional) density of the local time y = Y(1) is

$$(x+y)\exp\left(-\frac{y^2}{2}-xy\right).$$

Prove it. Try to explain intuitively, why small y are improbable for small x, but highly probable for large x.

Hint: use 6c8.

The local time, is it a function of the reflecting Brownian motion? The (evident) positive answer in discrete time says nothing about continuous time.¹⁰ Both $X(\cdot)$ and $Y(\cdot)$ are functions of $B(\cdot) = a(0, \cdot) = X(\cdot) - Y(\cdot)$; however, is $Y(\cdot)$ a function of $X(\cdot)$? We know that Y(1) is not a function of X(1), but is it a function of the whole path $X(\cdot)$?

For every $\delta > 0$ the process¹¹

$$Y_{\delta}(t) = \frac{1}{\delta} \max\{s \in (0, t) : X(t) \le \delta\} = \frac{1}{\delta} \int_{0}^{t} \mathbf{1}_{[0, \delta]}(X(s)) ds$$

is a function of $X(\cdot)$. Maybe, it converges (when $\delta \to 0$) to the local time Y(t)? If it does, then $Y(\cdot)$ is a function of $X(\cdot)$.

The discrete counterpart of Y_{δ} is

$$Y_{\delta,\varepsilon}(t) = \frac{\varepsilon}{\delta} \cdot \#\{k : k\varepsilon \in [0,t], X_{\varepsilon}(k\varepsilon) \le \delta\} = \frac{\varepsilon}{\delta} \sum_{k: k\varepsilon < t} \mathbf{1}_{[0,\delta]} (X_{\varepsilon}(k\varepsilon)),$$

where $X_{\varepsilon}(\cdot)$ is defined by (6b8), or by (6b9)–(6b10), which is the same for now, since only the distribution of $X_{\varepsilon}(\cdot)$ is relevant to our question: the local time near 0, is it close to the local time at 0? Is $Y_{\delta,\varepsilon}(\cdot)$ close to $Y_{\varepsilon}(\cdot)$? I mean that δ is small, but ε is much smaller $(\sqrt{\varepsilon} \ll \delta)$; and $V_{\delta,\varepsilon}(\cdot)$?

$$Y_{\varepsilon}(t) = \sqrt{\varepsilon} \cdot \#\{k : k\varepsilon \in (0, t], X_{\varepsilon}((k-1)\varepsilon) = X_{\varepsilon}(k\varepsilon) = 0\},$$

the counter of reflections. Another natural discrete-time counterpart of the local time is

$$L_{\varepsilon}(t) = \frac{1}{2}\sqrt{\varepsilon} \cdot \#\{k : k\varepsilon \in [0, t], X_{\varepsilon}(k\varepsilon) = 0\},$$

the counter of visits to the origin. Sometimes (for some paths of $X_{\varepsilon}(\cdot)$) these Y_{ε} and L_{ε} are not close at all. Indeed, it may happen that $X_{\varepsilon}(\cdot)$ visits 0 many times, but every time leaves 0 immediately, without reflection. However, such a behavior is improbable, as we'll see now.

¹⁰Recall 4a, and other cases.

 $^{^{11}}$ "mes" stands for the Lebesgue measure.

¹²Sorry, the new notation " Y_{ε} " conflicts with the old " Y_{δ} ". Anyway, both Y_{ε} and Y_{δ} will be abandoned (replaced with L_{ε} and $L_{\varphi_{\delta}}$ respectively).

6d2 Exercise. The random process

$$M(k\varepsilon) = Y_{\varepsilon}(k\varepsilon) - L_{\varepsilon}((k-1)\varepsilon)$$
 for $k > 0$, and $M(0) = 0$,

is a martingale. That is, ¹³

$$\mathbb{E}\left(M((k+1)\varepsilon)\,\big|\,X_{\varepsilon}(0),X_{\varepsilon}(\varepsilon),\ldots,X_{\varepsilon}(k\varepsilon)\right)=M(k\varepsilon)\,.$$

Prove it.

Hint: just consider the two possibilities, $\tau((k+1)\varepsilon) = \pm 1$.

6d3 Exercise.

$$||M(k\varepsilon)||^2 = \sum_{i=0}^{k-1} ||M((i+1)\varepsilon) - M(i\varepsilon)||^2.$$

Prove it. (Each norm is taken in L_2 on the corresponding probability space.)

Hint: Martingale differences $M((k+1)\varepsilon) - M(k\varepsilon)$ are orthogonal; moreover, $M((k+1)\varepsilon) - M(k\varepsilon)$ is orthogonal to all functions of $X_{\varepsilon}(0), X_{\varepsilon}(\varepsilon), \ldots, X_{\varepsilon}(k\varepsilon)$.

6d4 Exercise.

$$||M((k+1)\varepsilon) - M(k\varepsilon)||^2 = \frac{\sqrt{\varepsilon}}{2} \mathbb{E} \left(L_{\varepsilon}(k\varepsilon) - L_{\varepsilon}((k-1)\varepsilon) \right).$$

Prove it. (Here $L_{\varepsilon}(-\varepsilon) = 0$.)

Hint: both are equal to $\frac{\varepsilon}{4}\mathbb{P}\left(X_{\varepsilon}(k\varepsilon)=0\right)$.

We have

$$||M((k+1)\varepsilon)||^2 = \frac{\sqrt{\varepsilon}}{2} \mathbb{E} L_{\varepsilon}(k\varepsilon);$$

$$||Y_{\varepsilon}(t) - L_{\varepsilon}(t-\varepsilon)|| = ||M(t)|| = \sqrt{\frac{\sqrt{\varepsilon}}{2}} \mathbb{E} L_{\varepsilon}(t-\varepsilon);$$

is $\mathbb{E}L_{\varepsilon}(t-\varepsilon)$ bounded when $\varepsilon \to 0$? We guess that $\mathbb{E}L_{\varepsilon}(t-\varepsilon) \to \mathbb{E}Y(t)$ for $\varepsilon \to 0$, but that is not proven yet. Rather, we know that the scaling limit of $Y_{\varepsilon}(t)$ is Y(t), and $\mathbb{E}Y(t) < \infty$ (see (6c10)); still, it does not ensure that $\mathbb{E}Y_{\varepsilon}(t) \to \mathbb{E}Y(t)$.

6d5 Exercise. $\sup_{\varepsilon \in (0,1]} \|Y_{\varepsilon}(t)\| < \infty.$

Prove it.

Hint: use 6c12.

We have

$$||L_{\varepsilon}(t-\varepsilon)|| \leq ||Y_{\varepsilon}(t)|| + \sqrt{\frac{\sqrt{\varepsilon}}{2}} \mathbb{E}L_{\varepsilon}(t-\varepsilon) \leq \left(\sup_{\varepsilon} ||Y_{\varepsilon}(t)||\right) + \sqrt{\frac{\sqrt{\varepsilon}}{2}} ||L_{\varepsilon}(t-\varepsilon)||,$$

¹³And, of course, $M(k\varepsilon)$ is a function of $X_{\varepsilon}(0), X_{\varepsilon}(\varepsilon), \dots, X_{\varepsilon}(k\varepsilon)$. It is a martingale w.r.t. the natural filtration of $X_{\varepsilon}(\cdot)$.

therefore $\sup_{\varepsilon} ||L_{\varepsilon}(t-\varepsilon)|| < \infty$ (think, why), and $||M(t)|| = O(\varepsilon^{1/4})$ uniformly in t on bounded intervals. So,

(6d6)
$$||Y_{\varepsilon}(t) - L_{\varepsilon}(t)|| \to 0 \text{ for } \varepsilon \to 0.$$

In the scaling limit, Y_{ε} and L_{ε} become the same, — the local time Y(t), denoted traditionally by L(t). We abandon Y_{ε} and use L_{ε} instead. For now we do not know, whether L_{ε} is close to $Y_{\delta,\varepsilon}$, or not.

Unfortunately, $Y_{\delta}(t)$ is a discontinuous function of a path $X(\cdot) \in C[0,t]$, which complicates the transition $Y_{\delta,\varepsilon} \to Y_{\delta}$. It is better to abandon $Y_{\delta,\varepsilon}$ and use instead

$$L_{\varphi_{\delta},\varepsilon}(t) = \varepsilon \sum_{k:k\varepsilon \leq t} \varphi_{\delta}(X_{\varepsilon}(k\varepsilon))$$

where $\varphi_{\delta}: [0, \infty) \to [0, \infty)$ is a continuous function such that $\int_0^{\infty} \varphi_{\delta}(x) dx = 1$, and φ_{δ} is concentrated on $(0, \delta)$. Say, we may take

$$\varphi_{\delta}(x) = \frac{2}{\delta^2} (\delta - x) .$$

The scaling limit of $L_{\varphi_{\delta},\varepsilon}$ is

$$L_{\varphi_{\delta}}(t) = \int_{0}^{t} \varphi_{\delta}(X(s)) ds.$$

Note that sometimes (for some paths of $X_{\varepsilon}(\cdot)$) these $L_{\varphi_{\delta},\varepsilon}$ and L_{ε} are not close at all. Indeed, it may happen that $X_{\varepsilon}(\cdot)$ spends a long time near 0 without hitting 0. Still, we may hope that such behavior is improbable. How could we prove it?

Here is a trick that helps. We consider the process $\psi_{\delta}(X(\cdot))$, where $\psi_{\delta}:[0,\infty)\to[0,\infty)$ is a smooth function concentrated on $[0,\delta]$ and such that

$$\frac{1}{2}\frac{d^2}{dx^2}\psi_{\delta}(x) = \varphi_{\delta}(x) . \quad \frac{2}{3}\delta \psi_{\delta} \qquad 2 \psi_{\delta} \qquad \frac{2}{\delta} x \qquad \frac{2}{\delta} \chi_{\delta}$$

Say, for $\varphi_{\delta}(x) = \frac{2}{\delta^2}(\delta - x)$ we have $\psi_{\delta}(x) = \frac{2}{3\delta^2}(\delta - x)^3$. Let us use just these functions.

6d7 Exercise.

$$\mathbb{E}\left(\psi_{\delta}(X_{\varepsilon}((k+1)\varepsilon)) - \psi_{\delta}(X_{\varepsilon}(k\varepsilon)) \mid X_{\varepsilon}(0), X_{\varepsilon}(\varepsilon), \dots, X_{\varepsilon}(k\varepsilon)\right) = \\ = \mathbb{E}\left(\psi_{\delta}(X_{\varepsilon}((k+1)\varepsilon)) \mid X_{\varepsilon}(0), X_{\varepsilon}(\varepsilon), \dots, X_{\varepsilon}(k\varepsilon)\right) - \psi_{\delta}(X_{\varepsilon}(k\varepsilon)) = \varepsilon\varphi_{\delta,\varepsilon}(X_{\varepsilon}(k\varepsilon)),$$

where $\varphi_{\delta,\varepsilon}: \varepsilon \mathbb{Z}_+ \to \mathbb{R}$ satisfies

$$\varphi_{\delta,\varepsilon}(0) = \frac{1}{2\sqrt{\varepsilon}} \psi_{\delta}'(0) + o\left(\frac{1}{\sqrt{\varepsilon}}\right) = -\frac{1}{\sqrt{\varepsilon}} + o\left(\frac{1}{\sqrt{\varepsilon}}\right),$$

$$\varphi_{\delta,\varepsilon}(k\varepsilon) = \frac{1}{2} \psi_{\delta}''(k\varepsilon) + o(1) = \varphi_{\delta}(k\varepsilon) + o(1) \quad \text{if } k > 0$$

for $\varepsilon \to 0$. (This "o(1)" is uniform in $x = k\varepsilon$, but not in δ .)

Prove it.

Hint: check the two possibilities $\tau((k+1)\varepsilon) = \pm 1$, and use the Taylor formula.

Thus, the process

$$M_{\delta,\varepsilon}(k\varepsilon) = \psi_{\delta}(X_{\varepsilon}(k\varepsilon)) - \varepsilon \sum_{i=0}^{k-1} \varphi_{\delta,\varepsilon}(X_{\varepsilon}(i\varepsilon))$$

is a martingale. We have

$$\psi_{\delta}(X_{\varepsilon}((k+1)\varepsilon)) - M_{\delta,\varepsilon}((k+1)\varepsilon) = \varepsilon \sum_{i=0}^{k} \varphi_{\delta,\varepsilon}(X_{\varepsilon}(i\varepsilon)) =$$

$$= \varepsilon \sum_{i:X_{\varepsilon}(i\varepsilon)=0} \left(-\frac{1}{\sqrt{\varepsilon}} + o\left(\frac{1}{\sqrt{\varepsilon}}\right) \right) + \varepsilon \sum_{i:X_{\varepsilon}(i\varepsilon)>0} \left(\varphi_{\delta}(X_{\varepsilon}(i\varepsilon)) + o(1) \right) =$$

$$= \varepsilon \sum_{i:X_{\varepsilon}(i\varepsilon)=0} \left(-\frac{1}{\sqrt{\varepsilon}} + o\left(\frac{1}{\sqrt{\varepsilon}}\right) + O(1) \right) + \varepsilon \sum_{i=0}^{k} \left(\varphi_{\delta}(X_{\varepsilon}(i\varepsilon) + o(1)) \right) =$$

$$= -\underbrace{\sqrt{\varepsilon} \cdot \#\{i : X_{\varepsilon}(i\varepsilon) = 0\}}_{L_{\varepsilon}(k\varepsilon)} \cdot (1 + o(1)) + \varepsilon \underbrace{\sum_{i=0}^{k} \varphi_{\delta}(X_{\varepsilon}(i\varepsilon))}_{L_{\varphi_{\delta},\varepsilon}(k\varepsilon)} + o(1) ,$$

thus

$$M_{\delta,\varepsilon}((k+1)\varepsilon) - L_{\varepsilon}(k\varepsilon)(1+o(1)) + L_{\varphi_{\delta},\varepsilon}(k\varepsilon) = \underbrace{\psi_{\delta}(X_{\varepsilon}((k+1)\varepsilon))}_{\in [0,\delta]} + o(1)$$

for $\varepsilon \to 0$. We see that the difference $L_{\varepsilon} - L_{\varphi_{\delta},\varepsilon}$ is close to the martingale $M_{\delta,\varepsilon}$. Is it small? Martingale differences are orthogonal, therefore

$$||M_{\delta,\varepsilon}((k+1)\varepsilon)||^2 = \sum_{i=0}^k ||M_{\delta,\varepsilon}((i+1)\varepsilon) - M_{\delta,\varepsilon}(i\varepsilon)||^2.$$

However, $M_{\delta,\varepsilon}((k+1)\varepsilon) - M_{\delta,\varepsilon}(k\varepsilon)$ is equal to $\psi_{\delta}(X_{\varepsilon}((k+1)\varepsilon)) - \psi_{\delta}(X_{\varepsilon}(k\varepsilon))$ minus its conditional expectation; it follows that

$$||M_{\delta,\varepsilon}((k+1)\varepsilon) - M_{\delta,\varepsilon}(k\varepsilon)||^2 \le ||\psi_{\delta}(X_{\varepsilon}((k+1)\varepsilon)) - \psi_{\delta}(X_{\varepsilon}(k\varepsilon))||^2 = \varepsilon ||\psi_{\delta}'(X(k\varepsilon))||^2 + o(\varepsilon),$$
thus (assuming $k = O(1/\varepsilon)$),

$$||M_{\delta,\varepsilon}((k+1)\varepsilon)||^2 \le \varepsilon \sum_{k=0}^k ||\psi'_{\delta}(X(k\varepsilon))||^2 + o(1).$$

Taking into account that $|\psi'_{\delta}(x)| \leq 2$ for $x \in [0, \delta]$ and $\psi'_{\delta}(x) = 0$ for other x, we guess that the right-hand side is small. There are several ways to prove it; here is one. We note that our ψ_{δ} satisfies $|\psi'_{\delta}(x)|^2 \leq 2\delta\varphi_{\delta}(x)$ for all x. Thus,

$$\varepsilon \sum_{i=0}^{k} \|\psi_{\delta}'(X(k\varepsilon))\|^{2} \leq 2\delta \mathbb{E} \underbrace{\varepsilon \sum_{i=0}^{k} \varphi_{\delta}(X(i\varepsilon))}_{L_{\varphi_{\delta},\varepsilon}(k\varepsilon)},$$
$$\|M_{\delta,\varepsilon}((k+1)\varepsilon)\|^{2} \leq 2\delta \mathbb{E} L_{\varphi_{\delta},\varepsilon}(k\varepsilon) + o(1),$$

which gives us

$$||L_{\varepsilon}(k\varepsilon)(1+o(1)) - L_{\varphi_{\delta},\varepsilon}(k\varepsilon)|| \leq \sqrt{2\delta \mathbb{E} L_{\varphi_{\delta},\varepsilon}(k\varepsilon) + o(1)} + \delta + o(1);$$

$$||(1+o(1))L_{\varepsilon}(t) - L_{\varphi_{\delta},\varepsilon}|| \leq \sqrt{2\delta \mathbb{E} L_{\varphi_{\delta},\varepsilon}(t) + o(1)} + \delta + o(1);$$

these "o(1)" (for $\varepsilon \to 0$) are uniform in t on bounded intervals (but not in δ). Taking into account that $\sup_{\varepsilon} ||L_{\varepsilon}(t)|| < \infty$ (due to (6d6) and 6d5), we get

$$||L_{\varphi_{\delta},\varepsilon}(t)|| \le O(1) + \sqrt{||L_{\varphi_{\delta},\varepsilon}(t)|| + O(1)}$$

thus $\sup_{\varepsilon} ||L_{\varphi_{\delta},\varepsilon}(t)|| < \infty$, and so,

$$\limsup_{\varepsilon \to 0} \|L_{\varepsilon}(t) - L_{\varphi_{\delta},\varepsilon}(t)\| \le \operatorname{const} \cdot \sqrt{\delta}.$$

In the scaling limit we get¹⁴ $||L(t) - L_{\varphi_{\delta}}(t)|| \leq \text{const} \cdot \sqrt{\delta}$, and finally,

$$L_{\varphi_{\delta}}(t) \to L(t)$$
 in $L_2(\Omega)$ for $\delta \to 0$;

here L(t) is the local time (just the same as Y(t)). So, the local time is a function of the reflecting Brownian motion.

¹⁴In general, if $Z_n \to Z$ in distribution, then $||Z|| \le \limsup_n ||Z_n||$ (think, why).