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6 Some non-smooth stochastic flows: reflection

6a Usual Brownian flow

Stochastic flows will give us interesting examples of nonclassical noises. However, we start
with a very simple (and classical) case.

In discrete time, ¢ € €Z, we consider random signs 7(ke) as before (independent equiprob-
able 1), and random maps

£ = fi if m(ke) = +1,

e f- if 7(ke) = —1;
f-f—af—:R_)Rv f+($):$+\/g, f_(m):x—\/g
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Imagine that for any s < ¢ we can measure the composition &;; : R — R defined as'

(632) fs7t = é-ls o f(l—l)s O0---0 §(k+1)5 o é-ks for (k — 1)8 <s< ke, le <it< (l + 1)8 .
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Note that f_ o f, = f, o f_ =id (the identity mapping). Therefore, every composition (say,
f-ofiofiof_ofy) boils down to f7, or f", orid. All maps &, belong to a one-parameter
family,

Ep=fa, a=+e(T(ke)+---+7(le)) = Ve Z (i),

11 €(s,1]

(6a3) A

fa(x):m+a; 4 faofb:fbofa:fa+b;

measuring &;; means measuring a = \/(7(ke) + --- + 7(le)), which is a special case of
‘observables’ \/e > ¢(ke)T(ke) introduced in Sect. 1. Clearly, the scaling limit is basically
the Brownian motion,

s = fBt)-B(s) -

! Composition is understood as (g o f)(z) = g(f(z)) (note the order).
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6b Reflecting Brownian flow

We replace (6al) with

(6b1) f- if r(ke) = —1;

f+,f,I[0,00)—>[0,00), f+($):{1§'+\/§, f_(x):max(O,x—\/E).
VEL 4

{f+ if 7(ke) = +1,
ke =

f+ f-

e o 0 0 7

+ — — + (random signs)

Note that f_o f, =id (but f, o f_ # id). Therefore every composition boils down to some
T o f*. The maps f_, f, as well as their compositions &, (defined like (6a2)) belong to a
two-parameter family f,; : [0, 00) — [0, 00),

r+a ifx>b, fap
6b2 b(z) = a+b '
(6b2) Jap(@) {a+b f0<z<b

for b > 0, a+ b > 0, as we’ll see now.

6b3 Exercise.

(a) f+:fﬁ,0§ f—:f—\/g,\/g;

(b) T =taveos 2= fonyenyes

(c) o M= fonn)vemye s

(d) Jap = Jarb00 fobp;

(e) Ja2,0© fa1,0 = farta2,05  Sobaba © fobrpr = J—b1—ba,brtb2
() Jobp 0 foo =1id;

_ fafb,O ifa > ba
(®) T-4p© Jap = {fa—b,b—a if a < b;

(h) fasps © far py = fap Where a = ay + az,b = max(by, by —ay) .
Prove it.

You see, our non-commutative two-dimensional semigroup is generated by two (commu-
tative) one-parameter semigroups (see 6b3(e)) with a (quite simple and natural) relation
(see 6b3(f)).

Measuring &, ; means measuring the corresponding parameters a, b.
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6b4 Exercise. {; = fop where a = /€, (, 4 T(i€) is the same as in (6a3), and

b= _\/Em:k—llchl,Ili—f—l,...,l(T(ks) +7((k +1)e) + - - + 7(me))
for (k —1)e <s < ke, le <t<(l+1)e (if m =k — 1, the empty sum is 0).
Prove it.

CANY
Hint. Either use 6b3(h), or just look: &/

We see that &1 = fa(s,),6(s,¢) Where a(s, ) is given by 6b4, and b(s, t) = — minye 4 a(s, u).

We guess that in the scaling limit
G,(S,t) = B(t) - B(S) )
(6b5) b(s,t) = — min (B(w) = B(s)) .
ug|s,t

No problems with a(s,t). However, b(s,t) is a new kind of ‘observable’. The random walk
(the discrete counterpart of the Brownian motion) converges in distribution to the Brownian
motion, as far as a finite set of points ¢; < --- < ¢, is considered. Linear (or even nonlinear)
integrals are also admissible, but the minimum is a challenge. The random walk moves by
/€ during the time €, which means a high speed 1/4/¢. If the random walk has narrow peaks
(at random points, of course),

then probably the minimum does not fit into the Brownian scaling limit.2
Fortunately, such peaks do not appear. A Brownian path is not at all differentiable,
moreover,
B(t)

Bt
lim inf *) —00, limsup —= = +4o00;

150+ F 10+ VT

however, it is continuous, moreover,

sup M<oo a.s.

o<s<i<1 (t—s)Y/3

A similar estimation holds for the random walk uniformly in €. This is why the following
(well-known) result holds.

6b6 Proposition. Let f : C[0,1] — R be a bounded continuous function on the space
C[0,1],> B(-) the Brownian motion, and B.(-) its piecewise linear discrete counterpart.?
Then

Ef(B.()) = Ef(B(-)) fore—0.

2Similarly to the Poisson process as considered in 4a.
3C[0,1] is the Banach space of all continuous functions g : [0,1] — [0,1] with the norm ||g|| =

maxefo,1] |9(t)|-
*B.((k + 1)) — Be(ke) = /e 7(ke), and B. is linear on [ke, (k + 1)e].
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6b7 Exercise. Formulate and prove (using 6b6) a correct interpretation of the incorrect
relation
Lim f(B.(-)) = /(B("))
for a continuous f : C[0,1] — R.
Hint: recall 1b6, 1b7.

Does 6b6 contain our former ‘linear’ result 1b6, or even its ‘nonlinear’ generalization
(mentioned in 3c¢)? To some extent. The linear stochastic integral fol ©(x) dB(z) is continu-
ous (in B) on C]0, 1] if and only if ¢ is a function of bounded variation.®

So, in the scaling limit we get (6b5).

In discrete time, the random process

X(t) =&4(0) = fa(o,t),b(o,t) (0) = a(0,t) +b(0,1),
X (ne) = \/Ek—1m%zxn+1(7(k8) + -+ 7(ne))

=1,...4n,

(6b8)

is the reflecting random walk. -

In the scaling limit it becomes

X(t) = a(0,t) + b(0,¢) = B(t) — min B(s).

s€[0,t]

On the other hand, the reflecting random walk X (-) is distributed like a function of the usual
random walk

o 2(t) = a(0, 1),

Z(ne) =e(r(e) + -+ 7(ne)) .
Namely,
(6b10) X() ~ ‘Z(-) + 75 - 75

6b11 Exercise. Prove that, indeed, these two processes are identically distributed.
Hint: for each process, find the conditional distribution of the next value (at (k + 1)),
given the past (at €,2¢, ..., ke).

In the scaling limit, Z becomes the Brownian motion B, and we get X(-) ~ |B(-)|. So,
we have two candidates to ‘reflecting Brownian motion’:

X(t) = B(t) — min B(s);
(6b12) $€[0,1]
X(t) = [B(1)];

these are different functions of B(-), of course; however, they are identically distributed; thus,
we have two equivalent definitions of the distribution of the reflecting Brownian motion.

5Maybe, after a correction on a negligible set.
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6¢c Counting reflections

Having the discrete reflecting flow,

v ; \z
we want to introduce a new ‘observable’ that counts reflections. We can do it by considering
such a two-dimensional stochastic flow:

Y 9+ Y g9-
T=+1 T=-1

[ — {g+ if 7(ke) = +1,
g if 7(ke) = —1;
94,9 VELy X \EL — \EL, X \/EL,
g+(mv/e, n/e) = ((m + 1)ve, nv/e) ;
g-(my/e,nve) = (m — 1)ve,n/e) ifm>0;
9-(0,nv/3) = (0, (n+ 1VE).
You see, the z-projection is the (discrete) reflecting flow, while y counts reflections of z.

Note also that x — y is just the ‘usual flow’ of 6a.
Though, we need not restrict ourselves to lattice points;

(6c1)

(6c2)

Similarly to 6b, we have g_og, =id (but g, og_ # id). The maps g_, g, as well as their
compositions & ; (defined like (6a2)) belong to a two-parameter family g, : [0,00) X R —
[0,00) X R,

(x + a,y) if x > b,
(a+by+b—2) if0<z<b

ga,b(x, y) = {

for b > 0, a+ b > 0, as we’ll see now.

6¢3 Exercise.

(a) 9+ =900 9- =9 veEs
(b) 9% = Gnves 90 = Jonvemes

(C) g-T © gﬁ = Y(m—-n)vEnyz 3
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(d) Ya,b = Ga+b,0 © G—bb ;
(e) 94,0 © Ga1,0 = Jar+as,0;  G—babs © G—brbs = G—bi—bsbr+bs 5
(f) 90 goo = id;
Jdabo ifa>0b,
(8) 9-b60Y9a0 = {gab,ba if 0 < b:
(h) Garps © Gaz.pr = Jap Where a = a; + ag,b = max(by, by — a;) .
Prove it.

We see that the two semigroups, (f,s) and (ga,) are isomorphic, the isomorphism being
simply fup <> gap- In other words, the same abstract semigroup acts on [0, c0) (by f,p) and
on [0,00) X R (by g45). We see also that 6b4 is still applicable:

é‘s,t = Ga(s,t),b(s,t) »
a(s, t) = Ve(r(ke) +- -+ 7(le)),
b(s,t) = —\/2 min (t(ke) + T((k+ 1)e) + - - - + 7(me))

m=k—1,k,k+1,...,]
(k—1e<s<kele<t<(l+1)e.
Note that the map g, is uniquely determined by the point g,4(0,0). Therefore, in order

to find the distribution of the random map &, it suffices to find the distribution of the
random point

(6c4) (X,Y) =&4(0,0) = g4(0,0) = (a + b, b).
Denote by n the number of points in (s,t] N eZ. We treat X,Y as functions of n random
signs, therefore, random variables. Note that X > 0, Y > 0.

-Y
NG + g ~ Binom(n, %), that is,

n n!
P(X-Y=(- 2 =2" =—— fi =0,1,...,n.
( (—n +2k)Ve) (k) K (n — F) ork=0,1,...,n

6¢5 Exercise.

Prove it.

Hint: X — Y = \/e(r(ke) + - + 7(le)).
6c6 Exercise. The probability P(X = I/, Y = (k —[)y/e) does not depend on | €
{0,1,...,k}.

Prove it.

Hint: induction in n.

6c7 Exercise. P(X =k, Y =0)=P(X -Y =ke) —P(X -Y = (k+2)/e).
Prove it.

Hint: use 6¢6.
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It follows that

n! k+1+1
]P’(X =kve,Y = l\/E) “on (n+k+l + 1)!(_n—k—l)!
2 N2

for k>0,1>0, k+1 <nsuch that n — k — [ is even.
The scaling limit can be found now via the Stirling formula. However, the result can be
guessed easily: X — Y becomes normal N(0,¢ — 5);% and 6¢7 turns into’

Fr (2,0) = —2ff () = —2-L

vl =)l

_ ety (@)
(6¢8) fxy(z,y) = \/%(t _ 8)3/2 P < 2(t — 8)) .

That is the joint density of random variables X = a(s,t)+b(s,t) and Y = b(s, t), recall (6c4).
It gives us the joint density of a(s,t) = B(t) — B(s) and b(s,t) = — minye[s,4(B(u) — B(s))
(recall (6b5)):®

2
(6¢9) fa(s,0) (s, (@, b) = 2(a +20) p ( - M) -

Var(t—spz P\ T 2t —s)

Rasoval

t—s

Note also that X and Y are identically distributed,” and X is distributed like |B(t — s)|
(recall (6b12)); thus,

2

2 T
(6¢10) fx@) = mexp <_ m> for z € (0,00),
2 (- y? - .
= V2m(t —s) p( 2(t—s)> for y & (0, 00)

6cl1 Exercise. Derive (6¢10) from (6¢8) just by integration.

6¢c12 Exercise. In discrete time,

]P’(X:k\/g):]P’(Y:k\@):{

2 ((njﬁc)/?) for n + k even,

2~ n ((n+k11)/2) for n + k odd.

Prove it.
Hint: use 6¢6 and (6b10).

Var(X —Y)=en=1t— s+ O(e).

"Here fx_y is the (one-dimensional) density of (the distribution of) X — Y, and fxy is the two-
dimensional density of (X,Y).

8The Jacobian g((i’g)) =[5t =1

9Moreover, the pairs (X,Y) and (Y, X) are identically distributed (that is, have the same two-dimensional
distribution), which follows from 6c6.
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6d Local time

Returning to the idea of counting reflections, we see that in continuous time, the random pro-
cess X (t) = a(0,t)+b(0, t) is the reflecting Brownian motion, while the process Y (¢) = b(0, t)
counts its reflections. The process Y(+) is called the local time of the reflecting Brownian
motion X (-).

6d1 Exercise. Given a value z = X (1) of the reflecting Brownian motion (at ¢ = 1), the
(conditional) density of the local time y = Y (1) is

(z +y)exp (—y;—xy)-

Prove it. Try to explain intuitively, why small y are improbable for small z, but highly
probable for large x.
Hint: use 6¢8.

The local time, is it a function of the reflecting Brownian motion? The (evident) positive
answer in discrete time says nothing about continuous time.'® Both X(-) and Y(-) are
functions of B(-) = a(0,-) = X(-) — Y (-); however, is Y (-) a function of X (-) ? We know that
Y (1) is not a function of X (1), but is it a function of the whole path X (-)?

For every § > 0 the process'!

Yy(t) = %mes{s € (0,1): X(t) < 6} = %/0 1057 (X (s

is a function of X (-). Maybe, it converges (when § — 0) to the local time Y (¢) ? If it does,
then Y'(-) is a function of X ().
The discrete counterpart of Yy is

YJ,E(t)_ #{k : kse[Ot]X(k5<5}_ D 1 (Xe(ke)),

k ke<t

where X,(-) is defined by (6b8), or by (6b9)—(6b10), which is the same for now, since only
the distribution of X.(-) is relevant to our question: the local time near 0, is it close to the
local time at 07 Is Yj.(:) close to Yz(-)? I mean that ¢ is small, but ¢ is much smaller

(Ve < 6); and™
Y.(t) = e - #{k : ke € (0,t], X.((k — 1)¢) = X, (ke) = 0},
the counter of reflections. Another natural discrete-time counterpart of the local time is
1
L.(t) = 5\/5 -#{k : ke € ]0,t], X.(ke) = 0},

the counter of visits to the origin. Sometimes (for some paths of X.(-)) these Y; and L, are
not close at all. Indeed, it may happen that X.(-) visits 0 many times, but every time leaves
0 immediately, without reflection. However, such a behavior is improbable, as we’ll see now.

10Recall 4a, and other cases.

1 ¢mes” stands for the Lebesgue measure.

12G0rry, the new notation “Y.” conflicts with the old “Y3”. Anyway, both Y, and Y; will be abandoned
(replaced with L. and L, respectively).
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6d2 Exercise. The random process
M (ke) = Ye(ke) — L.((k —1)e) for k>0, and M(0)=0,
is a martingale. That is,!
E(M((k+1)e) | Xc(0), X.(e), ..., Xc(ke) ) = M(ke).

Prove it.
Hint: just consider the two possibilities, 7((k + 1)e) = £1.

6d3 Exercise.
| M (ke)||? = Z M ((i + 1)e) — M (ig)||> .
Prove it. (Each norm is taken in Ly on the corresponding probability space.)

Hint: Martingale differences M((k + 1)¢) — M(ke) are orthogonal; moreover,
M ((k + 1)) — M (ke) is orthogonal to all functions of X.(0), X.(¢),..., X.(ke).

6d4 Exercise.
I8((k +1)e) ~ Mke) | = OB (Lu(ke) ~ L((k — 1)2))

Prove it. (Here L.(—¢) =0.)
Hint: both are equal to P ( X.(ke) =0).

We have

1Mk + 1)) = VIR L. (ke):

V() = Le(t — )|l = [M ()] = \/%ELs(t —¢);

is EL, (t — ) bounded when ¢ — 0?7 We guess that EL, (t —¢) — EY (¢) for € — 0, but that
is not proven yet. Rather, we know that the scaling limit of Y.(¢) is Y (¢), and EY (¢) < o0
(see (6¢10)); still, it does not ensure that EY, (¢) — EY (¢).
6d5 Exercise. sup ||Y.(¢)] < oo.
€€(0,1]
Prove it.
Hint: use 6¢12.

We have
L.l < 101+ LR -2 < (st ) + Lo,

13And, of course, M (ke) is a function of X.(0), X (g),...,Xc(ke). It is a martingale w.r.t. the natural
filtration of X.(-).
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therefore sup, ||L.(t — ¢)|| < oo (think, why), and ||M(t)|| = O(¢/*) uniformly in ¢ on
bounded intervals. So,

(6d6) IYa(t) — Lo(t)]| = 0 fore — 0.

In the scaling limit, Y, and L. become the same, — the local time Y (¢), denoted traditionally
by L(t). We abandon Y, and use L. instead. For now we do not know, whether L, is close
to Ys., or not.

Unfortunately, Y3(¢) is a discontinuous function of a path X(-) € C[0,¢], which compli-
cates the transition Y5, — Y;. It is better to abandon Y5, and use instead

Lyse(t) =2 Y o5(X.(ke))

where @5 : [0,00) — [0,00) is a continuous function such that [°¢;(z)dz = 1, and ¢; is
concentrated on (0,6). Say, we may take

The scaling limit of L, . is
¢
L, (t) = / 05 (X (s)) ds.
0

Note that sometimes (for some paths of X,(-)) these L, . and L. are not close at all.
Indeed, it may happen that X.(-) spends a long time near 0 without hitting 0. Still, we may
hope that such behavior is improbable. How could we prove it?

Here is a trick that helps. We consider the process 1)s (X()), where 15 : [0,00) — [0, 00)
is a smooth function concentrated on [0, J] and such that

1 d2 2 .l'lb”:QO
5@’(&5(&?) = @5(3?) . gdf s f _"P:; 2 ’
s T * T T

)

Sl

2

Say, for p5(z) = % (0 — x) we have 15(z) = 55

(0 — ). Let us use just these functions.

6d7 Exercise.

E (s (Xo((k +1)e)) — 5 (Xc(ke)) | Xo(0), X (e), ..., Xo(ke) ) =
=E (¢s(X((k+1)e)) | Xo(0), Xc(e), ..., Xe(ke) ) — hs(Xe(ke)) = epse(Xe(ke)),

where @5, : €Z; — R satisfies

@s.e(ke) = %wg'(ks) +0(1) = @s(ke) +o(1) ifk>0
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for ¢ — 0. (This “o(1)” is uniform in z = ke, but not in 4.)
Prove it.
Hint: check the two possibilities T((k + 1)5) = +1, and use the Taylor formula.

Thus, the process

M; . (ke) = s (Xg(ke)) —¢ Z Vs, (X (ie)

is a martingale. We have

Us (Xel(h+ 1)6)) = Mac((k+1)e) = 3 s (Xeli2)) =
e Y [~ ho( L)) e 3 (ea(Xeli0) +0(1) =
1: X (ie)=0 ( \/g <\/g)) 1: Xe(i€)>0 '
e Y L +0(1) ) +2) (ps(Xclic) +o(1)) =
i X o (ie) 0< Ve (\/_> ) =0
= — Ve #{i: X.(ie) = 0} -( +eZw +o(1),
La(ks) ~ -

thus

for e = 0. We see that the difference L, — L, . is close to the martingale M;,. Is it small?
Martingale differences are orthogonal, therefore

1M ((k + De)I> =Y 1Moo ((i + 1)e) = M (i)

1=0

However, Ms.((k + 1)e) — Ms.(ke) is equal to ¢s(X.((k + 1)) — vs(X.(ke)) minus its
conditional expectation; it follows that

1M5.((k + 1)) — Mo (ke)|I* < [|vhs (Xo((k + 1)) — 5 (Xe(ke)) II* = ell5 (X (ke) I* + o(e) ,
thus (assuming & = O(1/¢)),

[ Mse((k +1)e ||2<€Z||¢a (ke))II* + o(1) .
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Taking into account that [5(z)| < 2 for x € [0, d] and ¢§(x) = 0 for other z, we guess that
the right-hand side is small. There are several ways to prove it; here is one. We note that
our 95 satisfies [15(z)? < 28ps(z) for all z. Thus,

6ZII% (ke)) ||2<25]E62s05 (i€))

z 0

-~
Lyg.e(ke)

M5 ((k + D)e)l|* < 20 E Ly, (ke) +o(1),

which gives us

|Le(ke) (1 + 0(1)) = Ly, o (k)| < /26 E Ly (k) + 0(1) + 6+ 0(1) ;
11+ 0(1)) Let) — Lipgell < \/20E L 1(8) + (1) +6 + 0(1):

these “o(1)” (for ¢ — 0) are uniform in ¢ on bounded intervals (but not in §). Taking into
account that sup, ||L.(t)|| < oo (due to (6d6) and 6d5), we get

|Lgpe @)l < OQ) + /I Ly 2l + O(1).

thus sup, || Ly, - (t)|| < oo, and so,

limsup || L. (t) — Ly, «(£)|| < const - V3.

e—0
In the scaling limit we get!* ||L(¢) — Ly, (t)|| < const - /4, and finally,
L, (t) = L(t) in Ly(Q2) ford — 0;

here L(t) is the local time (just the same as Y (¢)). So, the local time is a function of the
reflecting Brownian motion.

"Tn general, if Z,, — Z in distribution, then || Z|| < limsup,, || Z,|| (think, why).



