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5 Noises as semigroups of probability spaces

... the different possible formulations I hail a semi-group when I see one
may give clues about what might and I seem to see them everywhere!
happen in other circumstances. In Friends have observed, however, that
that case they are no longer equiva- there are mathematical objects which
lent. .. are not semi-groups.

Richard Feynman.! Einar Hille.?

5a Factorization: discrete case

Recall a very useful notion of a one-parameter semigroup of operators (Ut)ic[o,00), €ach Uy
being an operator (linear, continuous), say, on a Hilbert space. A semigroup must satisfy
multiplicativity condition,

(5al) Ust = U Uy for s,t € [0,00),

and some continuity (in t) condition. A special case is a semigroup of matrices n x n. A
more special case is a semigroup of numbers (here U; = e, of course).

Anyway, we do not need semigroups of operators. There are other mathematical objects
that can be multiplied. Recall the (Cartesian) product of sets, topological spaces, measure
spaces, etc. We may define a one-parameter semigroup of spaces (of a given sort). We'll see
that noises are naturally related to semigroups of probability spaces.

Recall the discrete model introduced in 1b:

(5a2) Qer = {—1, +1}Ln=MM]

Random signs 7(ke) are situated at lattice points ke € €Z N [—M, M], and the probability
space . s is the product of many two-point probability spaces {—1,+1}.3 If we split the
lattice interval in two,

(5a3) eZN[-M,M] = (eZN[-M,a]) U (¢ZN (a, M]),

we get the product of two probability spaces,

(5&4) {_1’+1}5Zﬂ[—M,M] — {_1’+1}5Zﬂ[—M,a] % {_1’+1}5Zﬂ(a,M] )
QE,M:S;:[—M,M] QE[:E/I,a] Qeazr,M]
Ty Ty |
| | |
L - - - S |

That is, each w € Q.[—M, M| may be thought of as a pair (', w") of W' € Q.[—M,a] and
w" € Q. (a, M].

IR. Feynman, “The character of physical law”, M.L.T. Press 1967; see p. 53 (Chapter 2).

2E. Hille, “Functional analysis and semi-groups”, Amer. Math. Soc. 1948 (AMS colloquium publications,
vol. XXXT); see Foreword.

31 omit the o-field and the probability measure, when they are evident enough.
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What happens to the corresponding spaces Ly of square integrable random vari-
ables? A simple and natural orthonormal basis of L, (Q.[—M, M]) consists of monomials
T(ki€) ... T(kne), where —M/e < ky < ky < --- < k, < M/e, and n = 0,1,2,...,1 +
2entier(M /). Similar bases exist in Ly (Q.[—M, a]) and Ly (€% (a, M]). Let (Xi,..., X)) be
the basis of Ly(Q.[—M,d]); that is, each X; : Q.[-M,a] — {-1,1} is a monomial; their
numbering does not matter; k = 2/¥40=M.al ' which also does not matter now. Let (Y1,...,Y))
be the similar basis of Ly (€. (a, M]). Then the basis of Ly(Q.[—M, M]) is nothing but

(Xi ® Y)) izt kijmt,.05

here (similarly to 3c) o

(5ab) (X ®Y) (v, w") =XW)Y(W").

It means that (see 5b)

(5a6) Ly ([~ M, M]) = Ly (%[~ M, a]) ® Ly(Qx(a, M]) .

5b Tensor products and independence

Generally, the tensor product H = H; ® Hy of two Hilbert spaces H;, H, may be defined as
a Hilbert space H equipped with a function (z,y) — x ® y € H of two variables x € H;,
y € Hy, such that

(z @y, u®v) = {(z,u)-(y,v) forall z,u € Hi,y,v € Hy;

(5b1) :
H is spanned by vectors x @ y, x € Hy,y € Hy;

the latter means that every vector of H can be approximated by linear combinations of
vectors x ® y. It follows that x ® y is bilinear:

(ax+by)Rz=a(z®z2)+ by z),
zQ(ay+bz) =a(z®@y) +b(z®2).

If (x;); is an orthonormal basis of H; and (y;); is an orthonormal basis of Hy then (z; ®y,);
is an orthonormal basis of H; ® H,. Therefore

be it finite or infinite.*

“Do not confuse the tensor product H; ® H, and the direct sum H; & Hs. You see, dim(H; ® Hy) =
dim H; + dim H,. Every vector of Hy & H, is of the form x @ y, but only some vectors of H; ® Hy (called
factorizable vectors) are of the form z ® y. Note also that Hy and H» are subspaces of H; ® Hs, but not
subspaces of H; ® Hs.
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Let (24, F1, P1) and (Qy, Fo, Py) be two probability spaces, and
(Q,F,P) = (0, F1, P) x (Qo, Fo, Py)
their product.> Then
Ly(Q2, F, P) = Lo(Q21, F1, P1) @ Ly(Qg, Fo, Ps)

the operation (X,Y) — X ® Y being defined by (5a5).

For Hilbert spaces in general, each vector y € Hs of unit norm gives us its own embedding
H 52— x®y € H ® Hy; no embedding is distinguished. However, Hilbert spaces of the
form Ly (2, F, P) are special; such a space contains a distinguished element 1 (the constant
function, equal to 1 everywhere on 2). We have the canonical embedding

Ly(2, F1,P1) 2 X = X ®1q, € Ly(Q,F, P);
(X ® 192)(w1,w2) = X(w).
Similarly,
Ly(Q, Fo, P) 5 Y = 10, QY € Ly(Q, F, P);
(191 ® Y) (w1, wq) =Y (wo).

Note that X @ Y = (X ® 1)(1 ® Y)); the pointwise multiplication is used (generally, not a
good operation on Hilbert spaces).

Basically, X ® 1 is the same as X; both are X(w), but X is a function of w; only,
while X ® 1 is a function of two variables wy,ws which depends on w; only. In other words,
the function X ® 1 is measurable not only w.r.t. the whole o-field F, but also w.r.t. its
sub-o-field®

Fi={AxQ: A€ F}CFQF.

Similarly, functions of the form 1 ® Y are fg—measurable,

Fo={UW xB:BeFR}CFQF.
These two sub-o-fields are independent:
(5b2) VAe F, VBe F, P(ANB)=P(A)P(B).

Here is another approach to the same matter. We may start with a single probability
space (2, F, P) (be it a product or not) and two independent” sub-o-fields F;, C F, F, C F.
All Fi-measurable square integrable functions on  form a Hilbert space Lo(S2, Fi, P) (or
Ly(Q2, F1, P|#)). The same for F»; we have

LQ(Q:flaP)CLQ(Q:f:P); LQ(QM}—2:P)CL2(Q"7:’P)‘

SThat is, 2 = U x Qs = {(w1,ws) : w1 € Q,w2 € Na}; and F is the o-field on Q generated by
product sets A x B for all A € F;, B € F»; and P is the (only) probability measure on (2, F) such that
P(A x B) = P, (A)P2(B) for all such A, B. And in addition, all P-negligible sets are added to F (thus, all
subsets of a measurable set of probability 0 are measurable).

60nce again, all P-negligible sets should be added. I stop repeating this reservation.

"Independence is defined as in (5b2).
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Do not think that these are orthogonal subspaces! (Both contain 1g.) Rather, the two
subspaces satisfy

VX € Ly(Q, F1, P) VY € Ly(Q, F, P) [|XY|| = [IX]| - IY]];

here XY is the pointwise product; its norm is taken in Ly(Q2, F, P); the norm of X is taken
in Ly(2, F1, P) (or equivalently in Ly(Q2, F, P)); the same for Y'; finiteness of || XY|| shows
that XY € Ly(Q, F, P).8

5b3 Exercise.
(XY, UV) =(X,UNY,V) for X,U € Ly(Q2, F1,P) and Y,V € Ly(Q2, F», P).

Prove it.
Hint: the expectation of the product of independent random variables. . .

Thus, Lo(Q, F1, P) @ La(Q2, Fa, P) C Lo(Q2, F, P); namely, it is the subspace generated
by all XY for X € Lo(Q, Fi, P), Y € Lo(Q, Fs, P). In fact,

L2(Q7f1ap)®L2(Qaf27P):L2(97f1®f27p)7

where F; ® F3 is the sub-o-field of F generated by A x B for A € F;, B € F,. Note that
F1 ® JF, is defined only for independent Fi, Fo.
If in addition F; ® F, = F then we get

L2(Q:F17P)®L2(Qvf27p):LZ(Q’fap)

and in fact, (2, F, P) may be thought of as the product of two probability spaces (such that
the second approach conforms to the first approach). These two spaces are so-called quotient
spaces,

(5b4) (QF,P) (QF,P)F @ (Q,F,P)/Fy;

here ‘»’ means a canonical isomorphism. A quotient space (2, F, P)/F; of a probability
space (2, F, P) modulo sub-o-field F; C F is the set of all equivalence classes of the equiv-
alence relation (partition) corresponding to F;. We cannot define the equivalence relation
simply by w ~ w' <= VA€ Fi(we A < w € A), because of P-negligible sets
contained in JF;. Rather, we choose a sequence Ai, Ay, ... generating the o-field F; and
define

wr~w = Vn(weA, < weA,).

(A different choice of (A,) changes the equivalence relation only on a negligible set.) On the
quotient set €2; we have a o-field of all sets A; whose inverse images (under the canonical

8Tn general, if X € Ly and Y € Ly then XY € L; but not L,. Independence of X and Y is a very special
case.
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projection 2 — ;) belong to F. The probability of such a set is the probability of its

inverse image.
Ay e

|_|_l|_| (Q,_’F,P)/]-l

So, we have two equivalent pictures of the same situation. One picture is the product of
two probability spaces,

(Q,f,P) :(leflapl) X (Q2af27p2)-

The other picture is, two independent sub-o-fields generating (together) the whole o-field F
of a given probability space (2, F, P),

.7: - fl ®.7:2 .
In any case, Lo(F) = Lo(F1) @ Lo(F2).

5¢ Factorization: continuous case

The white noise may be thought of as a (linear isometric) map Ly(R) 3 ¢ — [ @dB € Ly(9Q).
A point a € R splits Ly(R) in two orthogonal subspaces,

(5cl) Ly(—00,+00) = Ly(—00,a) & La(a, +00) .

Let (@1, ¢3, @5, - - - ) be an orthonormal basis of Ly(—00, a), and (@2, ¢4, s, - - - ) an orthonor-
mal basis of Ly(a, +00), then (1, @9, ¢3,...) is an orthonormal basis of Ly(—00, +00). The
probability space (2, F, P) = (R, v*°) carrying the white noise is the product of two similar
spaces:

R{L23,} = R{1,3,5,...} % R{2,4,6,...}’
oc2
) ® =( ® 7)o ® 7).
k=1,2,3,... k=1,3,5,... k=2,4,6,...

In other words, a configuration w of the white noise over the whole (—oo,+00) may be
thought of as a pair (w',w"”) of a configuration w’ of the white noise over (—oo,a) and a
configuration w” of the white noise over (a,+00).

Equivalently,

more generally,

(5¢3) Foo=Fsy®F,, for —co<z<y<z<+00,
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where F, , is the sub-o-field of F generated by random variables [ ¢ dB for all ¢ € Ly(z,y).?
Accordingly,'®

(5c4) Loy(Fy2) = Lo(Fuy) ® Lo(Fy ) -

In terms of the Wiener chaos we have

(g/“'/f(xla---,wn)dB(a:l)...dB(xn)>-
‘ <§%/"‘/X(xla---,CEn)dB(xl)...dB(xn)> =

T <<Tn
n

-y [ o mxtn ) Bl dB ).

n=0 k:()xl<---<zk<a<$k+1<---<mn

A two-parameter family (F, ,),<, of sub-o-fields F, , C F satisfying (5c3) and such that
F_ oo, 400 = F, will be called a factorization (of the probability space (2, F, P) over R).

The two main examples are the white (or Brownian) factorization, and the Poisson fac-
torization.

For the discrete case, we may define a factorization (of (2, F, P) over ¢Z) as a family
(F4,y) where z and y run over €(Z + 1), and z < y; and (5¢3) is assumed, of course.

Formally, the two cases look similar. However, there is a deep difference. Every sequence
(mke) of independent random variables generates a factorization over ¢Z, and the factorization
carries only a scanty information about these random variables. Knowing only the sub-o-
field generated by a single 7. we cannot restore the distribution of 7;.. For example, we
cannot distinguish such cases as ng. ~ U(0,1) and ng. ~ N(0,1). (Recall also (4d2).) In
contrast, the white noise factorization (over R) carries a considerable part of the structure
of the white noise. Strangely enough, normal distributions are somehow hidded in the
factorization. Several statements of that sort are contained in Sect. 4, somewhat implicitly.
Now we’ll formulate them explicitly in terms of the white noise factorization (F)z<y of the
probability space (2, F, P).

5c5 Exercise. Let (X;,).<, be a two-parameter family of random variables on (2, F, P)
such that for all x <y < z

9Here Lo(z,y) is treated as a subspace of Ly(—o0,+00); that is, ¢ is extended by 0 outside (z,y).
10We may use the convenient notation

Ly(Fzy) = Exp (L2 (z, y))

getting
Exp(La(z,y) ® La(y, 2)) = Exp(La(z,y)) ® Exp(La(y,2)) ,

which is a special case of the well-known formula

EXp(Hl D H2) = EXp(Hl) X EXP(HQ) .
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(2) Xoy € La(h Fyy, P);
(b) Xoy + Xyz = Xaz.
Then each X, , has a normal distribution.

Prove it.
Hint: recall 4c, 4d.

5c6 Exercise. Consider two families (X ,)z<, and (Y3, )z<y, €ach satisfying 5c5(a,b) and
in addition,

Var(X;,) =y—xz, Var(Y,) =y—uz,
Cov(Xzy, Yay) =0

whenever z < y.

Prove that it cannot happen!

Hint: recall 4e.

What about the weaker condition Var(X,,) > 0, Var(Y;,) > 0 instead of being equal to
y—x?

5c7 Exercise. Let (X, ,)y<y, and (Y, )z<y be two families, each satisfying 5¢5(a,b). Then for
every z <y, the joint distribution of X, and Y, , is a two-dimensional normal distribution.
Prove it.
Hint: recall 4g.

5d Morphisms

A morphism of a probability space (2, F, P) into another probability space (@', F', P') is a
measure preserving map

a:Q—Q,
vA' e F (Oz_l(Al) e F, P(Oz_l(A')) = P'(A')) .
a~1(A")
ap -
IA%al (QI,?’,P’)

An isomorphism (of probability spaces) is an invertible map « :  — Q' such that both
a and o~! are morphisms. However (as usual in probability theory), sets of probability
0 are neglected. If an isomorphism exists, the two probability spaces are isomorphic. An
isomorphism to itself is called automorphism.

By the way, if u is a nonatomic probability measure on the Borel o-field B of a Polish!!
space S, then (S, B, ) is isomorphic to (0,1) with Lebesgue measure (recall 4b). If atoms
are permitted, then (S, B, u) is isomorphic to (0, m) (with Lebesgue measure) plus a finite
or countable set of atoms (of total mass 1 —m); here m € [0, 1]. Such probability spaces are

"That is, a complete separable metric space. For example, L(0,1).
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known as Lebesgue-Rokhlin spaces. I always restrict myself to Lebesgue-Rokhlin probability
spaces (leaving pathologies to measure theory).

Every random variable X :  — R is a morphism (2, F, P) — (R, Px ), where Px is the
distribution of X, and also an isomorphism (2, F, P)/Fx < (R, Px), where Fy is the o-
field generated by X. If Fx = F then (Q,F, P)/Fx = (2, F, P), and X is an isomorphism
(Q,F,P) < (R, Px).

If X, X' are identically distributed random variables on different probability spaces
(Q,F,P) and (', F', P') respectively, and Fx = F, Fy, = F', then the two probability
spaces are isomorphic,

(Q,F,P) < (R Px) < (Q,F,P);

the isomorphism « : Q0 — €' satisfies X = X' o a.

The same holds for d-dimensional random variables. In other words, if random variables
X1,...,X4:Q — R generate F, random variables Y7,...,Y; : Q' — R generate ', and ran-
dom vectors (X1,...,Xy), (Y1,...,Yy) are identically distributed, then the two probability
spaces are isomorphic, and moreover, there exists an isomorphism « : Q — Q' such that

(5d1) Vk Xy =Y,oa (as.);

such « is unique.
The same holds for infinite sequences X, Xo,... and Y}, Y5, ...
It may also happen that (Q, F, P) = (', F', P'); then « is an automorphism.
If o is a morphism (2, F, P) — (', F', P') and & C F' is a sub-o-field, then

alE)={a(A): A&} F

is also a sub-o-field.

Let (F,y) be a factorization of (Q2, F, P) over R, and (F; ,) a factorization of (', F', P')
over R. We define a morphism of factorizations (from (F,,) to (F,,)) as a morphism (of
probability spaces) « : (Q, F, P) — (', F', P') such that

o \(F,,) = Fay whenever z <y.

(The seemingly weaker condition o '(F,,) C Fy, is in fact equivalent; think, why). An
wsomorphism of factorizations is an isomorphism « of probability spaces such that both «
and ! are morphisms of factorizations. If an isomorphism exists, factorizations are called
isomorphic.

5d2 Exercise. The Brownian and Poisson factorizations are non-isomorphic.

Prove it by an elementary argument. Is there any morphism from the Poisson factoriza-
tion to the Brownian factorization?

Hint. Think about atoms of F ,.

5d3 Exercise. There is no morphism from the Brownian factorization to the Poisson fac-
torization.

Prove it.

Hint: recall 4c and (5¢5).
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5d4 Exercise. There is no morphism from the (usual, one-dimensional) Brownian factor-
ization to the two-dimensional Brownian factorization (that is, the factorization generated
by the two-dimensional Brownian motion).

Prove it. What about a morphism in the opposite direction?

Hint: recall 4e.

5e Shift invariance

In general, a factorization may behave differently on different intervals. Say, Fy; can be
trivial,'* while Fi, nontrivial. Or, we may glue together the Brownian factorization on
(—00,0) and the Poisson factorization on (0,+00). However, such behavior does not appear
for such factorizations as Brownian (or Poisson). Here, F, ,4, and F,,., are isomorphic.

Moreover, we have a natural automorphism «; of the relevant probability space such that

& (Fry) = Fuoty—t, as we'll see soon.

5el Exercise. For every ¢ there exists one and only one automorphism «; of the white noise
probability space (2, F, P) = (R*,~*) such that

( / o(z) dB(x)) oy = / olz+1)dB(z) (as.)

for all p € Ly(R).

Prove it.

Hint. Let (¢g)x be an orthonormal basis of Ly(R) and 9 (x) = @r(z +1), then () also
is an orthonormal basis of Ly(R). Apply (5d1) to Xy = [ ¢pdB, Yy = [y dB.

5e2 Exercise. Automorphisms oy of el satisfy a1+ = a5 0 o for all 5,2 € R.
Prove it.
Hint: they are unique. ..

The discrete counterpart of «; acts on the space Q. = {—1,+1}*Z of two-sided infinite
sequences of +1; namely,

<\/§Z <p(ks)7(ks)> o = \/EZ o(ke + le)T(ke) = \/EZ o(ke)T(ke — lg) ;
7(ke) o e = 7(ke — lg).
S
ﬂ_i_L_T—x_T_T_T_i_T_x_Tf a: (w)
5e3 Exercise. Prove that
(B(y) — B(x)) oaw =By —t) — B(z — 1),

but B(z) o ay # B(x — t). Find a formula for B(x) o «.

12That is, containing sets of probability 0 or 1 only.
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5e4 Exercise. Formulate and prove counterparts of 5el and 5e2 for the Poisson noise.

5e5 Exercise. a; '(F,,) = Fy_1ys for all z,y,t € R, z < y. Prove it for the two factor-
izations, Brownian and Poisson.

5e6 Exercise. Formulate and prove a generalization of 5el to

<n§%/'"/f(xl,...,xn)dB(xl)...dB(xn)) oay.

T X1 <Tp

5f The definition of a noise

By definition, a noise consists of a probability space (2, F, P), its factorization (Fy y)4<, Over
R, and a one-parameter group'® of automorphisms (a;)er such that oy '(F,p) = Fu vy ¢
forall z,y,t e R, z < y.

The two main examples are the Brownian (white) noise and the Poisson noise.

An automorphism of the noise is an automorphism 3 : 2 — Q of probability spaces such
that

BN (Fuy) = Fuy foralz<y,
foay=o400 (as.) forallt.

5f1 Exercise. The general form of an automorphism of the Brownian factorization is

( [ ot dB(x)) 05 = [ sta)ets) dBG),

s:R— {-1,41} (measurable).

Prove it.
Hint: recall (4d3), and consider first a step function ¢.

5f2 Exercise. The Brownian (white) noise has only two automorphisms: the trivial (iden-
tical) automorphism, and the sign change. That is,

(/(p(ac) dB(:c)) o= s/ga(:r) dB(z), se{-1,+1}.

Prove it.
Hint: use 5f1 and compare 5 o a; with oy o 3.

A sequence of i.i.d. random variables (n)rez is (or rather, generates) a discrete coun-
terpart of a noise. Here, factorization automorphisms are of the form 7; = fi(nx) (recall
(4d1), (4d2)), while noise automorphisms are of the form n; = f(n). If n; are random signs
(£1), then only two noise automorphisms exist, similarly to 5f2. In contrast, plenty of noise
automorphisms exist for 7, ~ N(0,1).

3That is, as 0o ap = agyy for all s5,t € R
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Let (Q,F,P), (Fsy), () form a Brownian (white) noise, and (B(z)),er be a (process
distributed like a) Brownian motion, B(z) : Q — R.!* We say that the Brownian motion is
adapted to the noise, if

B(y) — B(z) is F,,-measurable for z <y,
(B(y) — B(z)) oay = B(y —t) — B(z — t) for z < y,t € R.

5f3 Exercise. There exist exactly two Brownian motions adapted to the white noise. If
(B(%))ser is one of them, then the other is (—B(z)) ser-
Prove it.

So, we have two quite different ideas of ‘white noise’. One idea is described in 1b; it is a
map Ly(R) 3 ¢ — [@dB € Ly(Q2). The other is described here, it sipulates only (F,,) and
(). The latter seems to be a much weaker structure than the former, which is an illusion.
They are nearly equivalent! The latter determines the former uniquely up to a (global) sign.

Let (Q,F, P), (Fyzy), (ay) form a noise. Consider probability spaces

(Qwaj:wapw) = (Q,f,P)/F()7w

for z > 0. Informally, a point of €2, is a (local) configuration of the noise on (0, z). A shift oy
transforms it into a configuration of the noise on (¢, 2 +t). Formally, we have a commutative
diagram:

Q,F,P) 2 (Q,F,P)

projection l l projection

shift

(Qv‘F?P)/fO,m — (Qafap)/ft,z—kt

(you may give to the ‘shift’ a more formal name, say, oy ,). However (recall (5b4)),
(Q7f7P)/f0,z 03¢ (Qa:F:P)/:FZ,GH—y A (Q,f,P)/fo,ﬂH_y;

that is, a configuration on (0, + y) may be thought of as a combination of two ‘smaller’
configurations, on (0,z) and (z,z + y). Given w' € Q/F;, and w" € Q/Fy,, we may
transform the latter into an element of Q/F, ,., by a shift, and combine the two, getting
w € Q/Fy z4+y which may be called the concatenation of w’ and w".

[,
\
\
[

]
_ Tty

(Qxafma Pz) X (anj:ya Py) < (QzH—ya f:H—ya P:H—y) 3

the isomorphism denoted by ‘<+’ is canonical, provided that a, is given. The concatenation
is associative but not commutative.

HMTFor now, no relation is assumed between the noise and the Brownian motion.
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5f4 Exercise. For the Brownian noise, describe the concatenation explicitly in terms of the
Brownian motion. Also, do it for the Poisson noise.

—

— — 2

[
ot

§
Hint: recall 5e3.

In general, I do not claim that the disjoint union of all €2, is a semigroup, since the
concatenation is defined only almost everywhere.

For the corresponding Hilbert spaces we have a concatenation-like operation of tensor
multiplication:

Hz = LZ(Q.’I:;fl'a Px) = LZ(QafO,zaP) s
H,® Hy <> Hy 1y

given v € H, and v € Hy, we get u ® v € H,,, (though, here ‘®’ involves the transition
from H, ® H, to H,.,). That operation turns the disjoint union of all H, into a semigroup.
Such an object is known as a product system (of Hilbert spaces).'®

In particular, for the white noise we have

(exp/jgde) ® (exp/oyde> — exp </0w¢(t) dB(t)+/:+y1/1(t—:r) dB(t)).

151 do not define it now.



