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2 Poisson noise as a scaling limit

2a A quite informal introduction

Similarly to la, we imagine a one-dimensional array of random spins (‘ups’ and ‘downs’)

R R S e e R A

In contrast to la, assume that our measuring devices are sensitive not to single spins but to
combinations of one ‘up’ and m — 1 ‘downs’ (in that order, left-to-right); m is a parameter.

b Geemey

And, similarly to 1a, a device has a ‘window’ described by a test function.

A

a window its test function

2b A formalization

Similarly to 1b, we have i.i.d. random variables 7(ke) on the probability space (Q. ar, P: ar)-
Given a ‘test function’ ¢ : R — R, we construct random variables

1+7(ke) 1 =7((k+1)e) 1-7((k+m—1))

XeMyp = ; o(ke) 5 5 e 5 :
you see, the product vanishes unless we have the desired combination
T(ke) =+1, 7((k+1)e)=-1, ..., 7((k+m—1))=~1.

Naturally, &£ runs over all integers satisfying [ke, (k+m —1)e] C [-M, M]. Note that, unlike
1b, no small coefficient (like /) is stipulated before the sum. Instead, we take limits for

e—=>0, m—oo 2Me—1,
or just
m— 0o, €= om
Consider events
Ay ={reQUuy:7lke) =+1,7((k+1)e) = —1,...,7((k + m — 1)e) = —1}.
Clearly, P (Ak) =2""™. Also,

2™ i k=1,
P(AgNA) =422 if k-1 >m,
0 otherwise

(think, why).
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2b1 Exercise. LImE X, 5/, = f_]\;\[J ¢(z) dx for every ¢ : R — R, Riemann integrable on
(—M, M). Here “Lim” means the limit for m — oo, £ =27
Prove it.

2b2 Exercise. LimE (X, y, X, 1) = [, o(@)0(@) de+ ([, o(z) dz) ([, ¥(x) dz) for
every ¢, 1 Riemann integrable on (—M, M).
Prove it.

If you are acquainted with Poisson processes, you probably guess that our scaling limit
should be described by a random number £ of random points z1, ...,z € (—M, M), namely,
each k has its probability

M,
k!
according to the Poisson distribution and, given k, the random points z1, ...,z are indepe-
dent, uniformly distributed on (—M, M). Let us try it.

2b3 Exercise.

= [ st an ( / Z o(a) dx) ( _ZW) i)

for all bounded measurable functions ¢, ¢ on (—M, M).
Prove it.

In general, we get the sum over all partitions of R () Say,

{1
Lim E (X, a7,0, Xe M0 Xe M 05 Xe Mo Xettps)  contains ([ 1) ([ (pg)( e3) ( j @4) ([ ¥5),
and [ 0102030405, and ([ ©10203) ([ @asps), and ([ ©102) ([ w34) ([ s ), etc. And the
same holds for the Poisson process! That is,

_ - 2 (2M)k - dx dx
LimE HXE,m,% :Z%e QM//H(¢Z($1)++%($’“))ﬁﬁ
i=1

=1 k=0

for all n and all ¢y,..., ¢, Riemann integrable on (—M, M).

In particular, if ¢p; =--- =, =1 on (=M, M), we get
= (2M)*
LmEX? )y, =) ( k') M fn = Rk, ,
k=0 )

where 15, is a random variable distributed Poisson(2M). Does it imply that

(2b4) LimIEf(XE,M,l) = Ef(VQM)

for every bounded continuous f : R — R? Yes, it does, though it is not evident. Here are
the relevant general results.
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2b5 Proposition. (Carleman) Let X be a random variable having all moments (that is,
E|X|" < oo for all n). If

1
B —— e m
then every random variable Y such that EY"™ = E X" for all n, has the same distribution as

X.

You see, such a distribution is uniquely determined by its moments.! For the Poisson
distribution, X ~ Poisson(\), we have

o0 1) k
no k=0

for all ¢, therefore EX" = O(n!) = O(n"), thus ¥EX?2" = O(n), and Carleman’s condition
is satisfied.

2b6 Proposition. Let X be a random variable having all moments, such that the dis-
tribution of X is uniquely determined by its moments. Let X; be random variables such
that

EX; — EX" forn=1,2,...

k—00
Then
E f(Xk) = E f(X)

for all bounded continuous functions f : R — R.

Now (2b4) is checked; X, ps1 converge in distribution to vop,. We may construct the
limiting model as follows:

Q= @[_Ma M]ka

k=0
= (2M)kE dr,  dzy
P(A):ZTe M 1A($1,...,xk)m...m
k=0

for A C Q (measurable). We define

/_ () dTI(z) = & o (p(w) + - + ()

M

that is, [ ¢(x) dII(z) is a random variable  — R, whose restriction to [—M, M*is (21, ..., zx) —
@(x1) + -+ + ¢(zx). For now, II(-) is defined only in [ ¢(z) dII(z). However, we define

S 1p0q(y) dil(y)  for z >0,
0 for x =0,

— [ 1p0(y) dlI(y) for z <0,

(z) =

In general, two different distributions can have tha same (finite) moments.
2Sufficiency of the stronger condition {/E|X|* = O(n) is easier to prove; see Feller, vol. 2, chap. 15,
sect. 4.
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and so, each II(z) is a random variable.

E exp (/_]: o(z) dH(m)) = exp (/_A;(e“’@) —1)dz.
Prove it.

Hint: just calculate the sum (over £ =0,1,...) of integrals (in z1,. .., z).

2b7 Exercise.

2b8 Exercise. The distribution of II(y) — II(z) is Poissonian; namely,

(y_l‘)k —(y—2x
P (II(y) — I(z) = k) = e (y—2)
for —M <z <y<Mand 0<Ek< oo.
Prove it.

Hint: use 2b7 for ¢ = alj, 4. Or just calculate. ..

2b9 Exercise. (“Independent increments”) For every z,y,z € [—M, M] such that z < y <
z, random variables
I(y) —II(z) and II(z) - II(y)

are independent.
Prove it. What about three or more increments?
Hint. Use 2b7 for ¢ = alp,,) + bl 1. (Or just calculate.)

Till now, M was fixed. Now we are in position to compare such constructions for M = M;
and M = M, My < M,. If ¢(-) vanishes outside of [—M;, M;] then [ ¢(z) dII(z) is defined
twice, using M; and using My; but it is the same (in distribution). In fact, we have a measure
preserving map s, — Q-

Thus, we may forget any M and consider the Poisson process II(-) on the whole R.?
The random variable [ ¢(z)dII(z) is well-defined for every Riemann integrable (therefore,
compactly supported) function ¢ : R — R.

Similarly to 1b6 and 1b12 we have

LME f(Xentons s Xoontion :]Ef</<,01(x) dH(x),...,/god(x) dH(m))

for every d € {1,2,...}, every bounded continuous function f : R? — R, and every Riemann
integrable ¢1,..., ¢4 : [-M, M] — R. It follows from (2b4) (which is d = 1), and such a
generalization of 1b3(b,c).

2b10 Proposition. For any d-dimensional random variables X, X;, X5,... the following
conditions are equivalent.

3Maybe, the simplest way to II(-) is, to take independent Poisson processes on (k,k+ 1) for all k € Z and
combine them appropriately. (Did you understand, how?)
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(a) For every bounded continuous function f : R? — R,

Ef(Xn) — Ef(X).

n—o0

(b) For every A € R?,

E exp(i(), X)) — K exp(i(X, X)) .

What about test functions with no compact support? Well, every bounded, integrable,
and locally Riemann integrable function may be used under limp; o lim, (... ).



