2 Poisson noise as a scaling limit

2a A quite informal introduction

Similarly to 1a, we imagine a one-dimensional array of random spins ('ups' and 'downs')

In contrast to 1a, assume that our measuring devices are sensitive not to single spins but to combinations of one 'up' and m-1 'downs' (in that order, left-to-right); m is a parameter.

And, similarly to 1a, a device has a 'window' described by a test function.

2b A formalization

Similarly to 1b, we have i.i.d. random variables $\tau(k\varepsilon)$ on the probability space $(\Omega_{\varepsilon,M}, P_{\varepsilon,M})$. Given a 'test function' $\varphi : \mathbb{R} \to \mathbb{R}$, we construct random variables

$$X_{\varepsilon,M,\varphi} = \sum_{k} \varphi(k\varepsilon) \frac{1 + \tau(k\varepsilon)}{2} \frac{1 - \tau((k+1)\varepsilon)}{2} \dots \frac{1 - \tau((k+m-1)\varepsilon)}{2};$$

you see, the product vanishes unless we have the desired combination

$$\tau(k\varepsilon) = +1, \quad \tau((k+1)\varepsilon) = -1, \quad \dots, \quad \tau((k+m-1)\varepsilon) = -1.$$

Naturally, k runs over all integers satisfying $[k\varepsilon, (k+m-1)\varepsilon] \subset [-M, M]$. Note that, unlike 1b, no small coefficient (like $\sqrt{\varepsilon}$) is stipulated before the sum. Instead, we take limits for

$$\varepsilon \to 0$$
, $m \to \infty$ $2^m \varepsilon \to 1$,

or just

$$m \to \infty$$
, $\varepsilon = \frac{1}{2^m}$.

Consider events

$$A_k = \{ \tau \in \Omega_{\varepsilon,M} : \tau(k\varepsilon) = +1, \tau((k+1)\varepsilon) = -1, \dots, \tau((k+m-1)\varepsilon) = -1 \}.$$
 Clearly, $\mathbb{P}(A_k) = 2^{-m}$. Also,

$$\mathbb{P}(A_k \cap A_l) = \begin{cases} 2^{-m} & \text{if } k = l, \\ 2^{-2m} & \text{if } |k - l| \ge m, \\ 0 & \text{otherwise} \end{cases}$$

(think, why).

2b1 Exercise. Lim $\mathbb{E} X_{\varepsilon,M,\varphi} = \int_{-M}^{M} \varphi(x) \, dx$ for every $\varphi : \mathbb{R} \to \mathbb{R}$, Riemann integrable on (-M,M). Here "Lim" means the limit for $m \to \infty$, $\varepsilon = 2^{-m}$. Prove it.

2b2 Exercise. Lim $\mathbb{E}\left(X_{\varepsilon,M,\varphi}X_{\varepsilon,M,\psi}\right) = \int_{-M}^{M} \varphi(x)\psi(x)\,dx + \left(\int_{-M}^{M} \varphi(x)\,dx\right)\left(\int_{-M}^{M} \psi(x)\,dx\right)$ for every φ,ψ Riemann integrable on (-M,M).

Prove it.

If you are acquainted with Poisson processes, you probably guess that our scaling limit should be described by a random number k of random points $x_1, \ldots, x_k \in (-M, M)$, namely, each k has its probability

$$\frac{(2M)^k}{k!}e^{-2M}$$

according to the Poisson distribution and, given k, the random points x_1, \ldots, x_k are indepedent, uniformly distributed on (-M, M). Let us try it.

2b3 Exercise.

$$\sum_{k=0}^{\infty} \frac{(2M)^k}{k!} e^{-2M} \cdot \int \cdots \int \left(\varphi(x_1) + \cdots + \varphi(x_k) \right) \frac{dx_1}{2M} \cdots \frac{dx_k}{2M} = \int_{-M}^{M} \varphi(x) dx,$$

$$\sum_{k=0}^{\infty} \frac{(2M)^k}{k!} e^{-2M} \cdot \int \cdots \int (\varphi(x_1) + \cdots + \varphi(x_k)) (\psi(x_1) + \cdots + \psi(x_k)) \frac{dx_1}{2M} \cdots \frac{dx_k}{2M} =$$

$$= \int_{-M}^{M} \varphi(x)\psi(x) dx + \left(\int_{-M}^{M} \varphi(x) dx\right) \left(\int_{-M}^{M} \psi(x) dx\right)$$

for all bounded measurable functions φ, ψ on (-M, M).

Prove it.

In general, we get the sum over all partitions of $\{1,\ldots,n\}$. Say, $\lim \mathbb{E}\left(X_{\varepsilon,M,\varphi_1}X_{\varepsilon,M,\varphi_2}X_{\varepsilon,M,\varphi_3}X_{\varepsilon,M,\varphi_4}X_{\varepsilon,M,\varphi_5}\right)$ contains $\left(\int \varphi_1\right)\left(\int \varphi_2\right)\left(\int \varphi_3\right)\left(\int \varphi_4\right)\left(\int \varphi_5\right)$, and $\int \varphi_1\varphi_2\varphi_3\varphi_4\varphi_5$, and $\int \varphi_1\varphi_2\varphi_3\left(\int \varphi_4\varphi_5\right)$, and $\int \varphi_1\varphi_2\left(\int \varphi_3\varphi_4\right)\left(\int \varphi_5\right)$, etc. And the same holds for the Poisson process! That is,

$$\lim \mathbb{E} \prod_{i=1}^{n} X_{\varepsilon,m,\varphi_i} = \sum_{k=0}^{\infty} \frac{(2M)^k}{k!} e^{-2M} \cdot \int \cdots \int \prod_{i=1}^{n} \left(\varphi_i(x_1) + \cdots + \varphi_i(x_k) \right) \frac{dx_1}{2M} \cdots \frac{dx_k}{2M}$$

for all n and all $\varphi_1, \ldots, \varphi_n$ Riemann integrable on (-M, M).

In particular, if $\varphi_1 = \cdots = \varphi_n = 1$ on (-M, M), we get

$$\operatorname{Lim} \mathbb{E} X_{\varepsilon,M,1}^n = \sum_{k=0}^{\infty} \frac{(2M)^k}{k!} e^{-2M} \cdot k^n = \mathbb{E} \nu_{2M}^n ,$$

where ν_{2M} is a random variable distributed Poisson(2M). Does it imply that

(2b4)
$$\operatorname{Lim} \mathbb{E} f(X_{\varepsilon,M,1}) = \mathbb{E} f(\nu_{2M})$$

for every bounded continuous $f: \mathbb{R} \to \mathbb{R}$? Yes, it does, though it is not evident. Here are the relevant general results.

2b5 Proposition. (Carleman) Let X be a random variable having all moments (that is, $\mathbb{E}|X|^n < \infty$ for all n). If

$$\sum_{n} \frac{1}{\sqrt[2n]{\mathbb{E}X^{2n}}} = \infty$$

then every random variable Y such that $\mathbb{E}Y^n = \mathbb{E}X^n$ for all n, has the same distribution as X.

You see, such a distribution is uniquely determined by its moments.¹ For the Poisson distribution, $X \sim \text{Poisson}(\lambda)$, we have

$$\sum_{n=0}^{\infty} \frac{\mathbb{E}X^n}{n!} t^n = \mathbb{E}e^{tX} = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} \cdot e^{tk} = e^{\lambda(e^t - 1)}$$

for all t, therefore $\mathbb{E}X^n = O(n!) = O(n^n)$, thus $\sqrt[2n]{\mathbb{E}X^{2n}} = O(n)$, and Carleman's condition is satisfied.

2b6 Proposition. Let X be a random variable having all moments, such that the distribution of X is uniquely determined by its moments. Let X_k be random variables such that

$$\mathbb{E}X_k^n \xrightarrow[k\to\infty]{} \mathbb{E}X^n$$
 for $n=1,2,\ldots$

Then

$$\mathbb{E} f(X_k) \xrightarrow[k \to \infty]{} \mathbb{E} f(X)$$

for all bounded continuous functions $f: \mathbb{R} \to \mathbb{R}$.

Now (2b4) is checked; $X_{\varepsilon,M,1}$ converge in distribution to ν_{2M} . We may construct the limiting model as follows:

$$\Omega = \biguplus_{k=0}^{\infty} [-M, M]^k,$$

$$\mathbb{P}(A) = \sum_{k=0}^{\infty} \frac{(2M)^k}{k!} e^{-2M} \cdot \int \cdots \int \mathbf{1}_A(x_1, \dots, x_k) \frac{dx_1}{2M} \cdots \frac{dx_k}{2M}$$

for $A \subset \Omega$ (measurable). We define

$$\int_{-M}^{M} \varphi(x) d\Pi(x) = \bigoplus_{k=0}^{\infty} (\varphi(x_1) + \dots + \varphi(x_k));$$

that is, $\int \varphi(x) d\Pi(x)$ is a random variable $\Omega \to \mathbb{R}$, whose restriction to $[-M, M]^k$ is $(x_1, \ldots, x_k) \mapsto \varphi(x_1) + \cdots + \varphi(x_k)$. For now, $\Pi(\cdot)$ is defined only in $\int \varphi(x) d\Pi(x)$. However, we define

$$\Pi(x) = \begin{cases} \int \mathbf{1}_{[0,x]}(y) \, d\Pi(y) & \text{for } x > 0, \\ 0 & \text{for } x = 0, \\ -\int \mathbf{1}_{[x,0]}(y) \, d\Pi(y) & \text{for } x < 0, \end{cases}$$

 $^{^{1}\}mathrm{In}$ general, two different distributions can have tha same (finite) moments.

²Sufficiency of the stronger condition $\sqrt[n]{\mathbb{E}|X|^n} = O(n)$ is easier to prove; see Feller, vol. 2, chap. 15, sect. 4.

and so, each $\Pi(x)$ is a random variable.

2b7 Exercise.

$$\mathbb{E} \exp \left(\int_{-M}^{M} \varphi(x) \, d\Pi(x) \right) = \exp \left(\int_{-M}^{M} \left(e^{\varphi(x)} - 1 \right) dx \, .$$

Prove it.

Hint: just calculate the sum (over k = 0, 1, ...) of integrals (in $x_1, ..., x_k$).

2b8 Exercise. The distribution of $\Pi(y) - \Pi(x)$ is Poissonian; namely,

$$\mathbb{P}\left(\Pi(y) - \Pi(x) = k\right) = \frac{(y-x)^k}{k!}e^{-(y-x)}$$

for $-M \le x \le y \le M$ and $0 \le k < \infty$.

Prove it.

Hint: use 2b7 for $\varphi = a\mathbf{1}_{[x,y]}$. Or just calculate...

2b9 Exercise. ("Independent increments") For every $x, y, z \in [-M, M]$ such that $x \leq y \leq z$, random variables

$$\Pi(y) - \Pi(x)$$
 and $\Pi(z) - \Pi(y)$

are independent.

Prove it. What about three or more increments?

Hint. Use 2b7 for $\varphi = a\mathbf{1}_{[x,y]} + b\mathbf{1}_{[y,z]}$. (Or just calculate.)

Till now, M was fixed. Now we are in position to compare such constructions for $M=M_1$ and $M=M_2,\ M_1< M_2$. If $\varphi(\cdot)$ vanishes outside of $[-M_1,M_1]$ then $\int \varphi(x) \, d\Pi(x)$ is defined twice, using M_1 and using M_2 ; but it is the same (in distribution). In fact, we have a measure preserving map $\Omega_{M_2} \to \Omega_{M_1}$.

Thus, we may forget any M and consider the Poisson process $\Pi(\cdot)$ on the whole \mathbb{R}^3 . The random variable $\int \varphi(x) d\Pi(x)$ is well-defined for every Riemann integrable (therefore, compactly supported) function $\varphi : \mathbb{R} \to \mathbb{R}$.

Similarly to 1b6 and 1b12 we have

$$\operatorname{Lim} \mathbb{E} f(X_{\varepsilon,M,\varphi_1},\ldots,X_{\varepsilon,M,\varphi_d}) = \mathbb{E} f\left(\int \varphi_1(x) \, d\Pi(x),\ldots,\int \varphi_d(x) \, d\Pi(x)\right)$$

for every $d \in \{1, 2, ...\}$, every bounded continuous function $f : \mathbb{R}^d \to \mathbb{R}$, and every Riemann integrable $\varphi_1, ..., \varphi_d : [-M, M] \to \mathbb{R}$. It follows from (2b4) (which is d = 1), and such a generalization of 1b3(b,c).

2b10 Proposition. For any d-dimensional random variables X, X_1, X_2, \ldots the following conditions are equivalent.

³May be, the simplest way to $\Pi(\cdot)$ is, to take *independent* Poisson processes on (k, k+1) for all $k \in \mathbb{Z}$ and combine them appropriately. (Did you understand, how?)

(a) For every bounded continuous function $f: \mathbb{R}^d \to \mathbb{R}$,

$$\mathbb{E} f(X_n) \xrightarrow[n \to \infty]{} \mathbb{E} f(X) .$$

(b) For every $\lambda \in \mathbb{R}^d$,

$$\mathbb{E} \exp(i\langle \lambda, X_n \rangle) \xrightarrow[n \to \infty]{} \mathbb{E} \exp(i\langle \lambda, X \rangle).$$

What about test functions with no compact support? Well, every bounded, integrable, and locally Riemann integrable function may be used under $\lim_{M\to\infty}\lim_{\varepsilon\to 0}(\dots)$.