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foreword

Up to isomorphism, we have for each n only one n-dimensional Gaussian
measure (like a Euclidean space). What about only one infinite-dimensional
Gaussian measure (like a Hilbert space)?

Probability in infinite-dimensional spaces is usually overloaded with topo-
logical technicalities; spaces are required to be Hilbert or Banach or locally
convex (or not), separable (or not), complete (or not) etc. A fuss! We need
measurability, not continuity; a σ-field, not a topology. This is the way to a
single infinite-dimensional Gaussian measure (up to isomorphism).

Naturally, the infinite-dimensional case is more technical than finite-
dimensional. The crucial technique is compactness. Back to topology? Not
quite so. The art is, to borrow compactness without paying dearly to topol-
ogy. Look, how to do it. . .

2a Random elements of measurable spaces:

formulations

Before turning to Gaussian measures on infinite-dimensional spaces we need
some more general theory. First, recall that

∗ a measurable space (in other words, Borel space) is a set S endowed
with a σ-field B;

∗ B ⊂ 2S is a σ-field (in other words, σ-algebra, or tribe) if it is closed
under finite and countable operations (union, intersection and comple-
ment);

∗ a collection closed under finite operations is called a (Boolean) algebra

(of sets);



Tel Aviv University, 2006 Gaussian random vectors 11

∗ the σ-field σ(C) generated by a given set C ⊂ 2S is the least σ-field
that contains C; the algebra α(C) generated by C is defined similarly;

∗ a measurable map from (S1,B1) to (S2,B2) is f : S1 → S2 such that
f−1(B) ∈ B1 for all B ∈ B2.

Each element of α(C) is a finite Boolean combination of elements of C;
alas, the structure of σ(C) is much more complicated. If C is finite then
σ(C) = α(C) is also finite; if C is countable then α(C) is also countable,
while σ(C) can be of cardinality continuum (but not higher1). See also [2],
Sect. 1.1.

2a1 Exercise. Let S, T be sets, f : S → T a map, B1, B2, · · · ⊂ T and
Ak = f−1(Bk). Then

α(A1, A2, . . . ) = {f−1(B) : B ∈ α(B1, B2, . . . )} ,

σ(A1, A2, . . . ) = {f−1(B) : B ∈ σ(B1, B2, . . . )} .

Prove it.

A set C ⊂ 2S leads to an equivalence relation,

(s1 ≡ s2) ⇐⇒ ∀A ∈ C ( s1 ∈ A ⇐⇒ s2 ∈ A ) .

2a2 Exercise. The sets C, α(C) and σ(C) lead to the same equivalence
relation.

Prove it.

If every two different points are non-equivalent, one says that C separates

points of S.
A measurable space (S,B) is

∗ countably separated, if some finite or countable subset (or subalgebra)
of B separates points of S;

∗ countably generated, if some finite or countable subset (or subalgebra)
of B generates B (as a σ-field).

The interval (0, 1) with the Lebesgue (rather than Borel) σ-field is countably
separated, but not countably generated.2 See also [2], Sect. 8.6 (p. 288).

Let (S,B) be a measurable space.

∗ A probability measure on (S,B) is a countably additive function µ :
B → [0, 1] such that µ(S) = 1;

1See [2], Exercise 8 to Sect. 8.2, or [3], Problem 8 to Sect. 4.2.
2Since its cardinality is higher than continuum, see [3], Prop. 3.4.1.
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∗ the µ-completion of B is the σ-field Bµ = {A : ∃B−, B+ ∈ B
(

B− ⊂
A ⊂ B+, µ(B−) = µ(B+)

)

}; sets of Bµ will be called µ-measurable;

∗ the extension of µ to Bµ (it evidently exists and is unique) is called the
completion of µ (and will be denoted by µ again);

∗ a probability space (S,B, µ) is called complete if Bµ = B;

∗ if f is a measurable map from (S1,B1) to (S2,B2) and µ is a probability
measure on (S1,B1), then f(µ) (or µ ◦ f−1) denotes the completion of
the probability measure B 7→ µ(f−1(B)) on (S2,B2).

All measures will be completed, unless otherwise stated. In particular,
Lebesgue σ-field on (0, 1) is the completion of Borel σ-field w.r.t. Lebesgue
measure. See also [2], Sect. 1.5 or [3], Sect. 3.3.

Unfortunately, a probability space is usually defined as just a measurable
space endowed with a probability measure. Such ‘probability spaces’ can
be quite bizarre.1 The appropriate notion is known as ‘standard probability
space’ (to be defined soon).2

In fact, a single probability space can serve all cases, namely, (0, 1) with
Lebesgue measure. Accordingly, we define:

∗ an event is a measurable subset of (0, 1), or its equivalence class;

∗ the probability of an event is its Lebesgue measure;

∗ a random element of a countably separated measurable space (S,B) is
a measurable function X : (0, 1) → S, or its equivalence class;

∗ the distribution of X is the (complete!) measure X(mes);

∗ two random elements of (S,B) are identically distributed, if their dis-
tributions are equal.

The interval (0, 1) is endowed with Lebesgue σ-field and Lebesgue measure,
unless otherwise stated.

Let (S,B, µ) and (S ′,B′, µ′) be probability spaces.

∗ A measure preserving map from (S,B, µ) to (S ′,B′, µ′) is a measurable
map f from (S,Bµ) to (S ′,B′

µ′) such that f(µ) = µ′, or the equivalence
class of such map;

∗ a measure preserving map is one-to-one mod 0, if its restriction to some
set of full measure3 is one-to-one;

∗ a mod 0 isomorphism between (S,B, µ) and (S ′,B′, µ′) is an invertible
map f : S1 → S ′

1 for some sets S1 ⊂ S, S ′
1 ⊂ S ′ of full measure, such

1See [3], Sections 3.5, 10.2 (Problem 6), 12.1 (Problems 1,2). Think also about R/Q,
and RT .

2Most of my papers stipulate standardness of all probability spaces.
3A set of full measure in (S,B, µ) is a set A ∈ Bµ such that µ(A) = 1.
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that both f and f−1 : S ′
1 → S1 are measurable, measure preserving

maps; in other words, for all A ⊂ S1,

A ∈ Bµ ⇐⇒ f(A) ∈ Bµ′ ,

A ∈ Bµ =⇒ µ(A) = µ′(f(A)) ;

∗ a nonatomic standard probability space is a probability space isomorphic
mod 0 to the probability space (0, 1);

∗ a standard probability space is a probability space isomorphic mod 0 to
an interval with Lebesgue measure, a finite or countable set of atoms,
or a combination of both.

Most of our definitions and arguments related to probability spaces will be
invariant under mod 0 isomorphisms.

2a3 Theorem. For every nonatomic1 random element X of a countably
separated measurable space (S,B) there exists a random element Y of (S,B)
such that X, Y are identically distributed and the map Y : (0, 1) → S is
one-to-one mod 0.

2a4 Theorem. Let Y be a random element of a countably separated mea-
surable space (S,B) such that the map Y : (0, 1) → S is one-to-one mod 0.
Then Y is a mod 0 isomorphism.

No matter how bizarre is a countably separated measurable space, a dis-
tribution (of a random element) turns it into a standard probability space.2

Countable separation is essential.
These theorems (and the very idea of standard probability spaces) are

due to Rokhlin (1949).3

2a5 Exercise. Let (Ω,F , P ) be a standard probability space, (S,B) a count-
ably separated measurable space, X : Ω → S measurable, and µ the distribu-
tion of X. If X is one-to-one mod 0, then it is a mod 0 isomorphism between
(Ω,F , P ) and (S,Bµ, µ).

Deduce it from Theorem 2a4.
Hint: first, get rid of atoms (if any).

2a6 Exercise. Let (S,B) be a countably separated measurable space, µ the
distribution of some random element of (S,B), and f : S → R∞ a measurable

1We say that X is nonatomic if mesX−1({s}) = 0 for all s ∈ S.
2If (S,B) is bizarre enough then some probability measures on it cannot be distributions

of random elements.
3See [7], especially Sect. 2.5. For a modernized presentation, see [8] (especially, Theo-

rems 3-2 and 3-5) or [4] (especially, Prop. 9).
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map. If f is one-to-one mod 0 then f is a mod 0 isomorphism between (S, µ)
and (R∞, f(µ)).

Deduce it from 2a5. But first define the Borel σ-field on R∞. How do
you interprete the measurability of f ?

2b Random elements of measurable spaces:

proofs, and more facts

Littlewood’s principles1

∗ Every (measurable) set is nearly a finite sum of intervals;

∗ every function (of class Lλ) is nearly continuous;

∗ every convergent sequence of functions is nearly uniformly convergent.

Consider measurable sets A ⊂ (0, 1) such that

(2b1) ∀ε ∃U (mes U < ε and 1A|∁U is continuous) ;

here U runs over open sets, 1A is the indicator of A (1 on A and 0 on ∁A),
and 1A|∁U is the restriction of 1A to the complement of U .

2b2 Exercise. Let A1, A2, . . . satisfy (2b1): ∀n ∀ε ∃U (. . . ). Then they sat-
isfy it uniformly: ∀ε ∃U ∀n (. . . ).

Prove it.
Hint: ε

2
+ ε

4
+ . . .

2b3 Exercise. The sets satisfying (2b1) are a σ-field.
Prove it.

2b4 Exercise. All measurable sets satisfy (2b1).
Prove it.

It follows easily that every measurable set coincides with a finite union
of intervals outside some open set of arbitrarily small measure.

A sequence of sets B1, B2, · · · ⊂ S may be treated as a map f : S →
{0, 1}∞,

f(s) = (1B1
(s), 1B2

(s), . . . ) .

The map is one-to-one if and only if the sequence of sets separates points of S.
Note that Bk = f−1(Ck) where Ck = {(x1, x2, . . . ) : xk = 1}. Elements of the
algebra α(C1, C2, . . . ) are called cylindrical sets in {0, 1}∞; elements of the

1Sect. 4.1 of: J.E. Littlewood, “Lectures on the theory of functions”, Oxford 1944.
Quoted also by R. Durrett, “Probability: theory and examples” (second edition), 1996
(Appendix A4).
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σ-field σ(C1, C2, . . . ) are called Borel sets in {0, 1}∞. By 2a1, α(B1, B2, . . . )
consists of inverse images of cylindrical sets, and σ(B1, B2, . . . ) consists of
inverse images of Borel sets.1

Let (S,B) be a measurable space. Clearly, f : S → {0, 1}∞ is measurable
if and only if all Bk = f−1(Ck) belong to B.

The set {0, 1}∞ is also a compact metrizable topological space.2 Cylindri-
cal sets are the clopen sets (closed and open simultaneously); open sets are
countable unions of cylindrical sets; closed sets are countable intersections of
cylindrical sets.

2b5 Lemma. Let f : (0, 1) → {0, 1}∞ be measurable, and Z ⊂ {0, 1}∞

be a set3 such that f−1(Z) is measurable. Then there exists a Borel set
B ⊂ {0, 1}∞ such that B ⊂ Z ∩ f

(

(0, 1)
)

and mes f−1(Z \ B) = 0.

Proof (sketch). For any ε, 2b2 and 2b4 give us a compact set Kε ⊂ f−1(Z)
such that mes

(

f−1(Z)\Kε

)

< ε and f |Kε
is continuous. It follows that f(Kε)

is compact, therefore, Borel measurable. We take B = Kε1
∪ Kε2

∪ . . . for
some εn → 0.

Proof of Theorem 2a3 (sketch). We choose B1, B2, · · · ∈ B that separate
points of S and embed S into {0, 1}∞ by the one-to-one map f(·) =
(

1B1
(·), 1B2

(·), . . .
)

. We consider the Borel measure µ = f(X(mes)) on
{0, 1}∞.

Claim: the set f(S) is of full measure. Proof: Lemma 2b5, applied
to the function f(X(·)) and the whole {0, 1}∞, gives us a Borel set B ⊂
f(X((0, 1))) ⊂ f(S) such that mes X−1(f−1(∁B)) = 0, that is, µ(∁B) = 0.

Thus, the inverse function f−1 : f(S) → S is defined µ-almost everywhere
on {0, 1}∞.

Claim: f−1 is µ-measurable. Proof: let A ∈ B; we have to prove that f(A)
is µ-measurable. Lemma 2b5 (again), applied to the function f(X(·)) and the
set f(A) (note that X−1(A) is measurable) gives us a Borel set B ⊂ f(A) such
that mes X−1(f−1(f(A) \ B)) = 0, that is, µ(B) = mes X−1(A). The same
holds for ∁A; namely, µ(B′) = mes X−1(∁A) for some Borel set B′ ⊂ f(∁A).
Thus, B ⊂ f(A) ⊂ ∁B′ and µ(B) = µ(∁B′).

So, f−1 is a one-to-one mod 0, measure preserving map from ({0, 1}∞, µ)
to (S, X(mes)). It remains to construct a one-to-one mod 0, measure pre-
serving map from

(

(0, 1), mes
)

to ({0, 1}∞, µ). Here we use nonatomicity (of

1Thus, elements of σ(B1, B2, . . . ) are described, as far as Borel subsets of {0, 1}∞ are
evident. . .

2Homeomorphic to the Cantor set, see [2], Exercise 1 to Sect. 8.1 or [3], the example
after Theorem 13.1.7.

3maybe, bizarre
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X, therefore, of µ). We divide (0, 1) in two intervals according to the distri-
bution of the first coordinate (that is, µ(C1)), then subdivide each interval in
two according to the distribution of the first two coordinates, and so on.

Proof of Theorem 2a4 (sketch). Similarly to the proof of Theorem 2a3 we
construct f : S → {0, 1}∞ and µ = f(Y (mes)). Given a measurable
A ⊂ (0, 1), we have to prove that Y (A) is measurable w.r.t. Y (mes). We
apply Lemma 2b5 to the function f(Y (·)) and the set Z = f(Y (A)) (note
that Y −1(f−1(Z)) = A since Y is one-to-one). We get Borel B ⊂ f(Y (A))
such that mes Y −1(f−1(Z \ B)) = 0, that is, mes A = mes Y −1(f−1(B)). We
take B− = f−1(B) ∈ B getting B− ⊂ Y (A) and mes Y −1(B−) = mes A. The
same argument holds for ∁A, which provides B′ ∈ B such that B′ ⊂ Y (∁A)
and mes Y −1(B′) = mes ∁A. Taking B+ = ∁B′ we get B− ⊂ Y (A) ⊂ B+ and
mes Y −1(B−) = mes Y −1(B+).

Only the first Littlewood’s principle was used. The other two are also
worthy of our attention.

2b6 Theorem. (Lusin) For every measurable f : (0, 1) → R and every
ε > 0 there exists an open set U ⊂ (0, 1) such that mes U < ε and f |∁U is
continuous.

See also [3, 7.5.2] or [2, 7.4.3].

2b7 Exercise. Prove Lusin’s theorem.
Hint: apply 2b2 (and 2b4) to Ak = f−1

(

(−∞, rk)
)

where (r1, r2, . . . ) is a
sequence dense in R.

2b8 Theorem. (Egoroff)
For every sequence of measurable functions f1, f2, · · · : (0, 1) → R such

that fn → 0 almost everywhere, and every ε > 0, there exists an open set
U ⊂ (0, 1) such that mes U < ε and fn|∁U → 0 uniformly.

See also [3, 7.5.1] or [2, 3.1.3].

Proof (sketch). For every δ it is easy to get supx∈∁U |fn(x)| < δ for all n large
enough. Similarly to 1d4 (by ε

2
+ ε

4
+ . . . ) we get it uniform in δ.

2b9 Remark. Unlike Lusin’s theorem, Egoroff’s theorem does not use the
topology of (0, 1) and holds on every probability space (be it standard or
not).
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2b10 Exercise. (a) For every Borel probability measure on a separable
metric space, and every ε > 0, there exists a precompact set of probability
> 1 − ε.

(b) For every Borel probability measure on a complete separable metric
space, and every ε > 0, there exists a compact set of probability > 1 − ε.

Prove it.
Hint: apply Egoroff’s theorem (via 2b9) to fn(x) = dist

(

x, {x1, . . . , xn}
)

= mink=1,...,n dist(x, xk), where (x1, x2, . . . ) is a dense sequence.
See also [3], 7.1.4 (Ulam’s theorem).

2b11 Exercise. In 2b1–2b5, replace
(

(0, 1), mes
)

with an arbitrary complete
separable metric space and an arbitrary Borel probability measure.

2b12 Exercise. A complete separable metric space, endowed with a com-
pleted Borel probability measure, is a standard probability space.

Prove it.
Hint. First, get rid of atoms. Then think, what happens to the proof of

Theorems 2a3, 2a4 if X is the identical map of the given space to itself, but
Y is still defined on (0, 1).

This is known as the isomorphism theorem for measures (or measure
spaces, or probability spaces). See also [7], Sect. 2.4 and 2.7; [4], Example
1 and Prop. 6; [8], Theorems 2-3 and 4-3; [9], Theorem 3.4.23. The corre-
sponding result for measurable spaces is deeper;1 indeed, the right to neglect
some small sets makes our life much easier.2

2c Random vectors

A vector is an element of a linear space (called also vector space). How-
ever, we have no generally accepted definition of a random vector in infinite
dimension. In finite dimension the situation is simple, since every finite-
dimensional linear space E carries its Borel σ-field (generated by all linear
functionals). Dealing with an infinite-dimensional linear space E we always
have a definite σ-field B on E, not derived from its linear structure.3 It is
not clear, what should be assumed about B in general.

For example, a separable (infinite-dimensional) Hilbert space (say, l2)
carries several well-known topologies, especially, the norm topology and the

1The Borel isomorphism theorem, see [9], Th. 3.3.13.
2However, in [9] the isomorphism theorem for measures is deduced from the Borel

isomorphism theorem.
3And not invariant under the group of all linear automorphisms.
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weak topology. They generate the same σ-field. This is quite typical; usually
we have only one ‘reasonable’ σ-field, — the natural σ-field.

In most cases the natural σ-field is generated by (some) linear functionals.
This is the case for all separable Banach spaces, for example, Lp(0, 1) for
p ∈ [1,∞). However, for p ∈ (0, 1) the space Lp(0, 1) has no Borel measurable
linear functionals (except for 0). (See also [3], Problem 2(a) to Sect. 6.4 and
[5], Th. (9.10).) Of course, it is not a Banach space.1 Rather, it is a separable
F -space. (See also [3, Sect. 6.5].) It means, a linear topological space whose
topology is Polish. And a Polish topology is, by definition, a topology that
corresponds to some (at least one) complete separable metric (see also [9,
Sect. 2.2], [2, Sect. 8.1], [3, Sect. 10.2]).

Let us try such a definition.

2c1 Definition. Let E be a linear space endowed with a countably separated
σ-field B. An E-valued random vector is a random element X of the mea-
surable space (E,B) whose distribution µ = X(mes) satisfies the following
condition.

(2c2)
There exist a linear subspace E1 ⊂ E of full measure
and µ-measurable linear functionals f1, f2, · · · : E1 → R

that separate points of E1.

Note that E1 and fn need not be B-measurable.
Some (E,B) are such that (2c2) is satisfied always (that is, for every

random element of (E,B)).

2c3 Exercise. If B is generated by a sequence of linear functionals E → R

then (2c2) is always satisfied.
Prove it.

Especially, this is the case for Rn, R∞, every separable Banach space, in
particular Lp for p ∈ [1,∞). The nonseparable Banach space L∞ also fits,
provided that the σ-field is chosen appropriately. What about the F -space
Lp(0, 1) for p ∈ (0, 1) ? Here 2c3 is not applicable, but still, (2c2) is always
satisfied.2

2c4 Question. Is (2c2) always satisfied in every separable F -space? I do
not know.3

1Nor a locally convex space.
2Hint: almost every point is a Lebesgue point for almost all functions of Lp. . .
3For standard Borel linear spaces the answer is negative, despite an old claim of A. Ver-

shik (1968, “The axiomatics of measure theory in linear spaces”, Soviet Math. Dokl. 9:1,
68–72).
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The distribution µ = X(mes) of a random vector X turns E into a
standard probability space (E,Bµ, µ).1 The one-to-one linear operator f :
E1 → R∞,

f(x) =
(

f1(x), f2(x), . . .
)

,

is a mod 0 isomorphism between (E, µ) and (R∞, f(µ)) (recall 2a6). In this
sense, R∞ is a universal model for all random vectors.

A probability measure µ on Rn is uniquely determined by its Fourier
transform (called also its characteristic function) ϕµ : Rn → C,

ϕµ(x) =

∫

ei〈x,y〉 µ(dy) ,

see [3, 9.5.1].

2c5 Exercise. A probability measure µ on R∞ is uniquely determined by
the function ϕµ : R∞ → C defined by

ϕµ(x) =

∫

ei〈x,y〉 µ(dy) ;

here R∞ ⊂ R∞ is the subspace of all sequences having only finitely many
nonzero coordinates each.

Prove it.
Hint: two probability measures equal on an algebra2 A are equal on the

σ-field σ(A), see [2, 1.6.2] or [3, 3.2.7].

Strangely enough, measurable linear functionals on (R∞, µ) are not always
of the form (x1, x2, . . . ) 7→ c1x1 + c2x2 + . . . and moreover, it may happen
that a measurable linear functional f cannot be represented as the limit of
a sequence of functionals of the form c1x1 + · · ·+ cnxn. Like any measurable
function, f can be represented as3

f(x1, x2, . . . ) = lim
n→∞

gn(x1, . . . , xn) µ-almost everywhere,

however, gn are nonlinear functions, and cannot be chosen among linear
functions, even though f is linear. This paradox is due to M. Kanter.4

1Irrespective of (2c2).
2Or just a π-system, that is, a collection closed under finite intersections.
3See Theorem (5.7) in Chapter 4 of Durrett’s textbook (cited on page 14).
4See Example 2.3 in: M. Kanter, “Linear sample spaces and stable processes”, J. Funct.

Anal. 9:4, 441–459 (1972). See also: W. Smolenski, “An abstract form of a counterexample
of Marek Kanter”, Lecture Notes in Math. 1080, 288-291 (1984).
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Think, how to translate it into the language of the space (E,Bµ, µ) and
linear functionals fn.

The space L0(0, 1) consists of equivalence classes of all measurable func-
tions (0, 1) → R, and is endowed with a metrizable topology that corresponds
to the convergence in measure (in probability), see [3, Sect. 9.2]. (It is an-
other F -space.) Similarly, L0(µ) is defined for every probability measure µ

(on any space).

2c6 Exercise. Let E,B, X, µ be as in 2c1. Then equivalence classes of all
µ-measurable linear functionals on E are a closed linear subspace Llin

0 (µ) ⊂
L0(µ).

Prove it.
Hint: first, a sequence convergent in probability contains a subsequence

convergent a.s. [3, 9.2.1]; second, every lineal functional on a lineal subspace
can be extended to the whole space.

(Nothing changes if we consider functionals on linear subspaces of full
measure.)

Accordingly, the set {f(X(·)) : f ∈ Llin
0 (µ)} ⊂ L0(0, 1) is a closed lin-

ear subspace. Kanter’s paradox shows that only some special subspaces of
L0(0, 1) may appear in this way.1

2d Gaussian random vectors

2d1 Definition. The standard infinite-dimensional Gaussian measure γ∞

is the product of countably many copies of γ1.

Equivalently, γ∞ is the measure on the space R∞ (of all sequences of
reals) such that

γ∞{(x1, x2, . . . ) : (x1, . . . , xn) ∈ A} = γn(A)

for all n = 1, 2, . . . and all measurable A ⊂ Rn. The measure γ∞ is defined
initially on the Borel σ-field of R∞ (generated by the coordinate functions
(x1, x2, . . . ) 7→ xn) and extended to the completed σ-field (of all γ∞-measur-
able sets).

2d2 Definition. Let E be a linear space endowed with a countably separated
σ-field B, and γ a (completed) probability measure on (E,B).

1They must be closed in a special topology, see Def. 6 (p. 954) in: B.S. Tsirelson, “A
natural modification of a random process and its application to stochastic functional series
and Gaussian measures,” Journal of Soviet Math. 16:2, 940–956 (1981).
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(a) γ is a finite-dimensional centered Gaussian measure, if for some n ∈
{0, 1, 2, . . .} there exists a one-to-one linear operator V : Rn → E such that
V (γn) = γ.

(b) γ is an infinite-dimensional centered Gaussian measure, if there exists
a linear subspace S1 ⊂ R∞ of full measure γ∞, and a one-to-one linear
operator V : S1 → E such that V (γ∞) = γ, that is, for every B ∈ B the set
V −1(B) is γ∞-measurable and γ∞(V −1(B)) = γ(B).

The customary definition is different, see 2b4(b), but equivalent.
As before, we often omit the word ‘centered’.
Clearly, every Gaussian measure γ has a dimension dim γ ∈ {0, 1, 2, . . .}∪

{∞}. However, the support is well-defined only when dim γ < ∞ (as long
as E is not topologized).

By a Gaussian random vector we mean a random vector whose distribu-
tion is a Gaussian measure.

2d3 Exercise. (a) For every n ∈ {0, 1, 2, . . .} there exists a random vector
X : (0, 1) → Rn distributed γn.

(b) There exists a random vector X : (0, 1) → R∞ distributed γ∞.
Prove it.
Hint: either construct X via binary digits,1 or appeal to the isomorphism

theorem for measures.

2d4 Exercise. Every Gaussian measure is the distribution of some Gaussian
random vector, and turns the space into a standard probability space (either
nonatomic, or a single atom).

Prove it.
Hint: the operator V of 2d2 is a mod 0 isomorphism by 2a5; (2c2) follows.

2d5 Theorem. Let E,B, X, µ be as in 2c1, then the following two conditions
are equivalent:

(a) µ is a centered Gaussian measure;
(b) each µ-measurable linear functional f : E → R is distributed N(0, σ2)

for some σ (depending on f).2

The proof is given below, see 2d6–2d13.
The finite-dimensional counterpart of Theorem 2d5 is classical.3 In the

infinite dimension, the implication (a)=⇒(b) is due to Rozanov (1968), see
[6], Sect. 9, Prop. 2 (p. 96) and the reference [Roz2] there. See also Th. 2.3 in

1See also [3], Sect. 8.2 (p. 200).
2That is, f(µ) = N(0, σ2).
3See [1, p. 4], [6, p. 11].
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Kanter’s paper (cited on p. 19), and [1, Sect. 2.10]. The implication (b)=⇒(a)
is basically the same as [1, Th. 3.4.4].1

Let us prove (b)=⇒(a). Assuming (b) we have Llin
0 (µ) = Llin

2 (µ) ⊂ L2(µ)
and f(µ) = N(0, ‖f‖2) for f ∈ Llin

2 (µ).
First, the finite-dimensional case: dim Llin

2 (µ) = n < ∞. We choose an
orthonormal basis (f1, . . . , fn) of Llin

2 (µ).

2d6 Exercise. Prove that f1, . . . , fn separate points of a linear subspace E1

of full measure.
Hint: by (2c2), some sequence of elements of Llin

2 (µ) separates points of
some E1; note however that E1 of (2c2) need not fit here. . .

We consider the map f : E1 → Rn, f(x) =
(

f1(x), . . . , fn(x)
)

; it is linear,
one-to-one.

2d7 Exercise. Prove that f(µ) = γn.
Hint: use 2c5, or rather its finite-dimensional counterpart.

Therefore f(E1) = Rn, and the inverse map V = f−1 : Rn → E1 sends
γn to µ, which means that µ is Gaussian.

We turn to the infinite-dimensional case: dim Llin
2 (µ) = ∞. We choose

an orthonormal basis (f1, f2, . . . ) of Llin
2 (µ).

2d8 Exercise. Prove that f1, f2, . . . separate points of a linear subspace E1

of full measure.
Hint: similar to 2d6, but there is a difficulty: a series

∑

ckfk (with
∑

c2
k < ∞) converges in L2; what about convergence almost everywhere? In

fact, it holds,2 however, you do not need it; instead, choose a subsequence
(of the sequence of finite sums) that converges almost everywhere.

We consider the map f : E1 → R∞, f(x) =
(

f1(x), f2(x), . . .
)

; it is linear,
one-to-one. But do not think that f(E1) = R∞.

2d9 Exercise. Prove that f(µ) = γ∞.
Hint: similar to 2d7.

2d10 Exercise. Prove that µ is Gaussian.
Hint: by 2a6, f is a mod 0 isomorphism between (E, µ) and (R∞, γ∞).

Consider V = f−1 : f(E1) → E1 and prove that it is measurable.

1But the proof given there is much harder.
2See [3, 9.7.1].
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The implication (b)=⇒(a) of Theorem 2d5 is thus proved.
Before proving (b) for an arbitrary Gaussian measure we will prove it

for γ∞. The natural map R∞ → Llin
2 (γ∞) extends by continuity to a linear

isometric map l2 → Llin
2 (γ∞). The image of l2 is a (closed linear) subspace

G ⊂ Llin
2 (γ∞). We want to prove that G = Llin

2 (γ∞) = Llin
0 (γ∞).

2d11 Exercise. For every measurable linear functional f on (R∞, γ∞) and
every n,

∣

∣

∣

∣

∫

exp
(

if(x1, . . . , xn, 0, 0, . . . )
)

γn(dx1 . . . dxn)

∣

∣

∣

∣

≥

∣

∣

∣

∣

∫

eif dγ∞

∣

∣

∣

∣

.

Prove it.
Hint: the latter integral decomposes into the product of two integrals.

2d12 Exercise. For every measurable linear functional f on (R∞, γ∞), its
‘coordinates’ ck = f(0, . . . , 0, 1, 0, 0, . . . ) satisfy

∑

c2
k < ∞.

Prove it.
Hint: first, |

∫

exp(iλf(x1, . . . , xn, 0, 0, . . . ) γn(dx1 . . . dxn)| = exp
(

−1

2
λ2(c2

1+
· · · + c2

n)
)

; second,
∫

eiλf dγ∞ is continuous in λ (especially, at λ = 0).

2d13 Exercise. If a measurable linear functional f on (R∞, γ∞) vanishes
on R∞ then it vanishes almost everywhere.

Prove it.
Hint: use Kolmogorov’s 0–1 law1 and the symmetry of γ∞ w.r.t. x 7→

(−x).

It follows that G = Llin
0 (γ∞), which gives us the implication (a)=⇒(b) of

Theorem 2d5.
The theorem is proved.

2d14 Exercise. Let E,B, X, µ be as in 2c1, and there exist µ-measurable
linear functionals f1, f2, · · · : E → R that separate points and are such that
every linear combination c1f1+ · · ·+cnfn (for every n) is distributed N(0, σ2)
for some σ. Then µ is Gaussian.

Prove it.
Hint: similar to the proof of Th. 2d5 (b)=⇒(a), but simpler: 2d8 is not

needed.

2d15 Exercise. Let (E,B) and (E1,B1) be linear spaces endowed with
countably separated σ-fields, and V a measurable linear operator (E,B) →
(E1,B1). Let γ be a Gaussian measure on E. Assume that the measure
γ1 = V (γ) satisfies Condition (2c2). Then γ1 is Gaussian.

Prove it. Is it enough if V measurable on (E,Bγ) rather than (E,B) ?

1See [3, 8.4.4].
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2d16 Question. Can it happen that γ1 (of 2d15) does not satisfy Condition
(2c2), and therefore is not a Gaussian measure? I do not know.

2e Gaussian conditioning

Till now (in 2c, 2d) the linear structure on E and the σ-field B on E were not
related in any way. It does not harm when only a single Gaussian measure
on E is considered. However, dealing simultaneously with several Gaussian
measures on the same E we will need more.

2e1 Definition. A measurable linear space is a linear space E endowed with
a σ-field B such that the maps (x, y) 7→ x+y and (c, x) 7→ cx are measurable.

That is, for every B ∈ B the set {(x, y) ∈ E × E : x + y ∈ B} belongs
to the σ-field on E × E generated by all A × A′ for A, A′ ∈ B; and the set
{(c, x) ∈ R × E : cx ∈ B} belongs to the σ-field on R × E generated by all
A × A′ for Borel A ⊂ R and A′ ∈ B. See also [1, 2.12.1].

2e2 Exercise. Let E be a measurable linear space. Then for every n the
map (c1, . . . , cn; x1, . . . , xn) 7→ c1x1 + · · ·+ cnxn is measurable.

Prove it.
Hint: first, try just cx + y.

2e3 Exercise. (a) Is R, endowed with the Borel σ-field, a measurable linear
space?

(b) Is R, endowed with the Lebesgue σ-field, a measurable linear space?
(c) What about Rn, R∞, Hilbert spaces, Banach spaces, F -spaces (with

the Borel σ-field)?

2e4 Theorem. Let (E,B), (E1,B1) be countably separated measurable lin-
ear spaces, γ a Gaussian measure on E, γ1 a Gaussian measure on E1, and V

a measure preserving linear map (E, γ) → (E1, γ1). Then there exist a Gaus-
sian measure γ2 on E and a measurable linear map Ṽ : (E1, (B1)γ1

) → (E,B)
such that

∫

f dγ =

∫

E1

(
∫

E

f(Ṽ (x) + y) γ2(dy)

)

γ1(dx)

for every bounded γ-measurable function f : E → R.

Proof (sketch). The map V induces a linear isometric embedding Llin
2 (γ1) ⊂

Llin
2 (γ); we have Llin

2 (γ) = Llin
2 (γ1) ⊕ (Llin

2 (γ) ⊖ Llin
2 (γ1)). Assume that both

summands are infinite-dimensional (other cases are similar but simpler). We
choose an orthonormal basis (f1, f2, . . . ) of Llin

2 (γ) such that f2n−1 ∈ Llin
2 (γ1),

f2n ⊥ Llin
2 (γ1). Using mod 0 isomorphisms we reduce the general case to the
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following special case: γ = γ∞, E ⊂ R∞ is a subspace of full measure, and
V (x1, x2, . . . ) = (x1, x3, x5, . . . ).

We want to construct γ2 as the distribution of (0, x2, 0, x4, . . . ), and Ṽ as
Ṽ (x1, x3, . . . ) = (x1, 0, x3, 0, . . . ). It remains to prove that (0, x2, 0, x4, . . . )
and (x1, 0, x3, 0, . . . ) belong to E for γ∞-almost all (x1, x2, . . . ), and check
measurability of Ṽ .

The measure γ∞ is invariant under the map (x1, x2, . . . ) 7→
(x1,−x2, x3,−x4, . . . ). Thus, γ∞-almost all (x1, x2, . . . ) satisfy both
(x1, x2, . . . ) ∈ E and (x1,−x2, x3,−x4, . . . ) ∈ E; therefore (x1, 0, x3, 0, . . . ) ∈
E, as well as (0, x2, 0, x4, . . . ) ∈ E.

Both maps (R∞, γ∞) → E considered above are measurable, when R∞ is
endowed with the σ-field of all γ∞-measurable sets, and E — with Bγ . The
more so, when E is endowed with B. Measurability of Ṽ follows.

2e5 Exercise. (a) Is Ṽ measurable from (E1, (B1)γ1
) to (E,Bγ) ?

(b) Is (E,Bγ) a measurable linear space?
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