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The n-dimensional space Rn may be treated as a Euclidean space, or just a
vector space, etc. Its topology is uniquely determined by algebraic structure.

1a Prerequisites

linear algebra

You should know the notion of: Forgot? Then see:

Vector space (=linear space) [Sh:p.26 “Vector space axioms”]

Isomorphism of vector spaces: a linear bijection.
Basis of a vector space [Sh:Def.2.1.2 on p.28]

Dimension of a finite-dimensional vector space: the number of vectors in
every basis.
Two finite-dimensional vector spaces are isomorphic if and only if their di-
mensions are equal.
Subspace of a vector space.
Linear operator (=mapping=function) between vector spaces [Sh:3.1]

Inner product on a vector space: 〈x, y〉 [Sh:p.31 “Inner product properties”]

A basis of a subspace, being a linearly independent system, can be extended
to a basis of the whole finite-dimensional vector space.

topology

You should know the notion of: Forgot? Then see:

A sequence of points of Rn [Sh:p.36]1

Its convergence, limit [Sh:p.42–43]

1Quote: The only obstacle . . . is notation . . . n already denotes the dimension of the
Euclidean space where we are working; and furthermore, the vectors can’t be denoted with
subscripts since a subscript denotes a component of an individual vector. . . . As our work
with vectors becomes more intrinsic, vector entries will demand less of our attention, and
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Mapping Rn → Rm; continuity (at a point; on a set) [Sh:p.41–48]

Subsequence; Bolzano-Weierstrass theorem [Sh:p.52–53]

Subset of Rn, its limit points; closed set; bounded set [Sh:p.51]

Compact set [Sh:p.54]

Open set [Sh:p.191]1

Closure, boundary, interior [Sh:p.311,314]

Open cover; Heine-Borel theorem [Sh:p.312]

Open ball, closed ball, sphere [Sh:p.50,191–192]

Open box, closed box [Sh:p.246]

[Sh:Exer. 2.3.8–2.3.11, 2.4.1–2.4.8]

1a1 Exercise. For a function f : (0,∞)× (0,∞)→ R defined by
f(x, y) = y sin(1/x) prove that the limits

lim
(x,y)→(0,0),x>0,y>0

f(x, y) and lim
x→0+

lim
y→0+

f(x, y)

exist and equal 0, but the second iterated limit

lim
y→0+

lim
x→0+

f(x, y)

does not exist.

1a2 Exercise.
Consider functions f : R2 \ {(0, 0)} → R constant on all
rays from the origin; that is, f(r cosϕ, r sinϕ) = h(ϕ)
for some h : R→ R, h(ϕ + 2π) = h(ϕ). Assume that h
is continuous.

(a) Prove that the iterated limits

lim
x→0+

lim
y→0+

f(x, y) and lim
y→0+

lim
x→0+

f(x, y)

exist and are equal to h(0) and h(π/2) respectively.

we will be able to denote vectors by subscripts.
More quote (p. 64–65): The author does not know any graceful way to avoid this no-

tation collision, the systematic use of boldface or arrows to adorn vector names being
heavyhanded, and the systematic use of the Greek letter ξ rather than its Roman coun-
terpart x to denote scalars being alien. Since mathematics involves finitely many symbols
and infinitely many ideas, the reader will in any case eventually need the skill of discerning
meaning from context, a skill that may as well start receiving practice now.

1Quote: A set, however, is not a door: it can be neither open or closed, and it can be
both open and closed. (Examples?)
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(b) prove that the “full” limit

lim
(x,y)→(0,0),x>0,y>0

f(x, y)

exists if and only if h is constant on [0, π/2].
(c) It can happen that the two iterated limits exist and are equal, but the

“full” limit does not exist. Give an example.
(d) The same as (c) and in addition, f is a rational function (that is, the

ratio of two polynomials).1

(e) Generalize all that to arbitrary (not just positive) x, y.

1a3 Exercise.
Consider functions g : R2 \ {(0, 0)} → R of the form
g(x, y) = f(x2, y) where f is as in 1a2.

(a) Prove that the limit

lim
t→0+

g(ta, tb)

exists for every (a, b) 6= (0, 0); calculate the limit in terms of the function h
of 1a2.

(b) It can happen that the “full” limit

lim
(x,y)→(0,0)

g(x, y)

does not exist. Give an example.

1a4 Exercise. “Componentwise nature of continuity” Prove or disprove: a
mapping f : R → Rn is continuous if and only if each coordinate function
fk : R→ R is continuous; here f(x) =

(
f1(x), . . . , fn(x)

)
. [Sh:Th.2.3.9]

1a5 Exercise. Prove or disprove: a mapping f : R2 → R is continuous if and
only if it is continuous in each coordinate separately; that is, f(x, ·) : R→ R
is continuous for every x, and f(·, y) : R→ R is continuous for every y.

1a6 Exercise. Prove the Bolzano-Weierstrass theorem and the Heine-Borel
theorem.

1a7 Exercise. (a) Prove that finite union of closed sets is closed, but union
of countably many closed sets need not be closed; moreover, every open set
in Rn is such union. However, intersection of closed sets is always closed.

(b) Formulate and prove the dual statement (take the complement).

1Hint: try x2 + y2 in the denominator.
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1a8 Exercise. Prove that a set K ⊂ Rn is compact if and only if every
continuous function f : K → R is bounded.

1a9 Exercise. Prove that a continuous image of a compact set is compact,
but a continuous image of a bounded set need not be bounded, and a con-
tinuous image of a closed set need not be closed; moreover, every open set in
Rn is a continuous image of a closed set.1

1a10 Exercise. Prove that every decreasing sequence of nonempty compact
sets has a nonempty intersection. Does it hold for closed sets? for open sets?

1a11 Exercise. Let K ⊂ Rn be compact, and f : K → Rm continuous.
Prove that f is uniformly continuous, that is,
∀ε > 0 ∃δ > 0 ∀x, y ∈ K

(
|x− y| < δ =⇒ |f(x)− f(y)| < ε

)
.

1a12 Exercise. Let X ⊂ Rn be a closed set, f : X → Rm a continuous
mapping. Prove that its graph Γf = {(x, f(x)) : x ∈ X} is a closed subset
of Rn+m. Is the converse true?

1a13 Exercise. Prove existence of a bijection f from the open unit ball
{x : |x| < 1} ⊂ Rn onto the whole Rn such that f and f−1 are continuous.
(Such mappings are called homeomorphisms). What about the closed ball?

1a14 Exercise. Let f : R → R be a continuous bijection. Prove that
f−1 : R→ R is continuous.

1a15 Exercise. Give an example of a continuous bijection f : [0, 1)→ S1 =
{(x, y) : x2 + y2 = 1} ⊂ R2 such that f−1 : S1 → [0, 1) fails to be continuous.
The same for f : [0,∞)→ S1.

1a16 Exercise. Give an example of a continuous bijec-
tion f : R → A = {(x, y) : (|x| − 1)2 + y2 = 1} ⊂ R2

such that f−1 : A→ R fails to be continuous.

1a17 Exercise. Give an example of a continuous bijection
f : R2 → B = {(x, y, z) : (

√
x2 + y2 − 1)2 + z2 = 1} ⊂ R3

such that f−1 : B → R2 fails to be continuous.2

1Hint: the closed set need not be connected.
2What about a continuous bijection f : Rn → Rn ? In fact, f−1 is continuous, which can

be proved using powerful means of topology (the Brouwer invariance of domain theorem);
we’ll return to this point later.
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1b Structures on Rn and their isomorphisms

To a mathematician, the word space doesn’t connote volume but in-
stead refers to a set endowed with some structure. [Sh:p.24]1 2

Almost everything in contemporary mathematics is an example of a
structured set. . . 3

what is the problem

The phrase “without loss of generality” (WLOG) makes proofs simpler.
Here is a spectacular example.

A well-known result from Euclidean geometry: the three medians of a
triangle intersect [Sh:p.27]. A short proof (sketch): WLOG, the triangle is
equilateral. Now the medians evidently intersect in its center.

A faulty analogy: also, the three altitudes of a triangle intersect [Sh:p.37–
38]. In this case the “WLOG” does not work. Why? In order to understand
we need the notion of isomorphism between structures.

What is meant by “Euclidean space”? Here are three typical answers:

∗ A space in which Euclid’s axioms apply.

∗ A 3-dimensional vector space endowed with a Euclidean metric.

∗ R3.

Is it all the same, or not? This is a matter of structures and isomorphism.

a space in which euclid’s axioms apply

For more than two thousand years, the adjective “Euclidean” was
unnecessary because no other sort of geometry had been conceived.4

According to Euclid, geometry deals with straight lines, circles, and
planes. The right angle is the unit for measuring angles. Distances are mea-
sured in relation to a line segment chosen arbitrarily as the unit of length.
A rigorous version of Euclidean geometry was proposed in 1899 by Hilbert.
It stipulates

1If you wonder why, see “Space (mathematics)” in Wikipedia.
2Additional sources:

“Affine and Euclidean geometry”, chapter II of a course in Madrid Politech. Univ.;
“Basics of Euclidean geometry”, chapter 6 of the book: J. Gallier, “Geometric Methods
and Applications” (pdf or djvu);
“Vector spaces, affine spaces, and metric spaces”, chapter 2 of the book: Bærentzen,
J. Gravesen, F. Anton, H. Aanæs, “Guide to Computational Geometry Processing”;
chapters 1, 2 of the book: M. Audin, “Geometry”.

3nLab:Structured set#examples.
4Wikipedia:Euclidean geometry.

http://en.wikipedia.org/wiki/Space_(mathematics)
http://ocw.upm.es/algebra/affine-and-projective-geometry-1/class-material
http://dx.doi.org/10.1007/978-1-4419-9961-0_6
http://www.cis.upenn.edu/~cis610/geombchap6.pdf
http://carlossicoli.free.fr/G/Gallier_J.-Geometric_methods_and_applications_for_computer_science_and_engineering%28Springer,1998%29%28600dpi%29%28KA%29%28T%29%28589s%29_MD_.djvu
http://dx.doi.org/10.1007/978-1-4471-4075-7_2
http://ncatlab.org/nlab/show/structured+set#examples
https://en.wikipedia.org/wiki/Euclidean_geometry
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∗ 3 kinds of objects: points, (straight) lines, planes;

∗ 6 relations:

– betweenness (for three points);

– containment (3 relations: for a point and a line; a point and a
plane; a line and a plane);

– congruence (2 relations: for two line segments; for two angles);
of course, segments and angles are defined in terms of points and
lines;

∗ and 20 axioms: “incidence” (8 axioms), “order” (4), “congruence” (6),
“parallels” (1), “continuity” (2).

In the ancient time of Euclid a line could not be treated as a set of points,1

but now it can. Thus we may reformulate Hilbert’s version in terms of a single
kind of objects (called “points”). Denoting the set of all points by X, we
consider the set P(X) of all subsets of X, and two sets of sets L, P ⊂ P(X)
(that is, L, P ∈ P(P(X))); elements of L are called “lines”, of P — “planes”.
The betweenness relation B is a subset of the (Cartesian) product X×X×X
(that is, B ∈ P(X ×X ×X)); in other words, a set of triples of points. The
containment relations need not be stipulated as special sets of pairs, since
these relations are provided by the underlying set theory: x ∈ l, x ∈ p, and
l ⊂ p for x ∈ X, l ∈ L, p ∈ P . The congruence relations C1, C2 must be
stipulated, but I omit the details.

Nowadays this approach (synthetic geometry) is rather out of fashion
beyond the school. However, we all have some idea of it from the secondary
school geometry. What should we do with it? Can we use notions and results
of school geometry (say, the volume of a cylinder) in R3? 2 How does this
notion of space relate to others? We’ll return to this question soon.

Let us call such structured sets (X,L, P,B,C1, C2) “classical Euclidean
spaces”.

cartesian space

The invention of Cartesian coordinates in the 17-th century by René
Descartes (Latinized name: Cartesius) revolutionized mathematics by
providing the first systematic link between Euclidean geometry and al-
gebra.3

1Before the second half of the 19th century infinity was only potential, never actual;
uncountable set was unthinkable. See Wikipedia:Actual infinity.

2See also MathStackExchange:The status of high school geometry.
3Wikipedia:Cartesian coordinate system.

https://en.wikipedia.org/wiki/Actual_infinity
http://math.stackexchange.com/questions/93909/the-status-of-high-school-geometry
https://en.wikipedia.org/wiki/Cartesian_coordinate_system
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A Euclidean plane with a chosen Cartesian system is called a Carte-
sian plane.1

That is, a Cartesian space is a structured set (X, f1, f2, f3) where X is a
set (whose elements are called “points”), and f1, f2, f3 : X → R are functions
(called “coordinates”) satisfying a single axiom:

(1b1) the mapping X 3 x 7→
(
f1(x), f2(x), f3(x)

)
∈ R3 is bijective.

Geometric notions are defined via coordinates (analytic geometry). For in-
stance, a plane is {x ∈ X : a1f1(x) + a2f2(x) + a3f3(x) = b} for given
(a1, a2, a3) ∈ R3 \ {0}, b ∈ R. More formally, we may consider a combined
structure (f1, f2, f3, P ) on X, where f1, f2, f3 : X → R and P ∈ P(P(X)),
with two axioms: (1b1) and

(1b2) ∀p ∈ P(X)
(
p ∈ P ⇐⇒ ∃(a1, a2, a3) ∈ R3 \ {0} ∃b ∈ R

p = {x ∈ X : a1f1(x) + a2f2(x) + a3f3(x) = b}
)
.

Continuing this way (I omit the details) we get a combined structure
(f1, f2, f3, L, P,B,C1, C2) on X whose axioms are (1b1), (1b2), and several
more complicated excerpts from analytic geometry. Significantly, these ax-
ioms ensure that (L, P,B,C1, C2) is a classical Euclidean structure on X;
that is, the 20 axioms can be deduced from the analytic geometry! (I omit
the proof, of course; otherwise this month would be devoted to geometry
rather than analysis.) This is our first example of the so-called “deduction
procedure” for mathematical structures. Quite a few more examples will
appear soon. Thus, we need some general ideas, notation and terminology.

Given a set X, we denote by T1(X) the set of all Cartesian structures on
X, and by T2(X) the set of all classical Euclidean structures on X. That is,
T1(X) is the set of all (f1, f2, f3) satisfying (1b1); just the set of all bijections
X → R3. (Of course, it is empty unless X is of cardinality continuum.) Sim-
ilarly, T2(X) is the set of all (L, P,B,C1, C2) satisfying the 20 axioms of clas-
sical Euclidean space. Further, we define T (X) ⊂ T1(X)× T2(X) as the set
of all pairs (σ1, σ2) where σ1 = (f1, f2, f3) ∈ T1(X), σ2 = (L, P,B,C1, C2) ∈
T2(X) satisfying the list of axioms starting with (1b2). Clearly, T (X) is a
binary relation between structures σ1 and σ2. Significantly, this relation is a
mapping T1(X)→ T2(X). That is,

∀σ1 ∈ T1(X) ∃ !σ2 ∈ T2(X) (σ1, σ2) ∈ T (X) .

1Wikipedia:Cartesian coordinate system#Higher dimensions.

https://en.wikipedia.org/wiki/Cartesian_coordinate_system#Higher_dimensions
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In other words,1

∀X T (X) : T1(X)→ T2(X) .

Moreover, the mapping is onto (=surjective). That is,

∀σ2 ∈ T2(X) ∃σ1 ∈ T1(X) (σ1, σ2) ∈ T (X) ,

since every classical Euclidean space admits (at least one) Cartesian coordi-
nate system. On the other hand, this mapping is not one-to-one (=not in-
jective);2 different Cartesian coordinates exist on a classical Euclidean space.

On a classical Euclidean space, coordinate system is an additional struc-
ture, but its existence is not an additional property.

A classical Euclidean space can be upgraded to a Cartesian space by
choosing Cartesian coordinates.

A Cartesian space can be downgraded to a classical Euclidean space by
forgetting the coordinates while retaining the corresponding Euclidean
geometry.

An n-dimensional Cartesian space is defined similarly. (Of course, Euclid
did not treat dimensions other than 2 and 3.)

1b3 Remark. We’ll use various kinds of structured sets (X, σ), where σ is a
structure on a set X. We’ll use various changes of structure, from (X, σ1) to
(X, σ2), mostly upgrades and downgrades (but not only). I emphasize that
(X, σ1) and (X, σ2) contain the same X. Elements of the set X never lose
their identity.3 If a point x1 ∈ X was considered in context of (X, σ1), we may
still consider this point in context of (X, σ2). It may happen that x1 was, say,
a vector of length 1 before the change, and becomes a vector of length 7, or
0, or maybe of no length at all (or even not a vector at all) after the change.
But in every case, it is still x1 ∈ X. Likewise, if a function f : X → R was
considered before the change, it may still be considered after. Maybe it was
continuous before and becomes discontinuous after. But if it was bounded,
it remains bounded. Why? Since boundedness of f (unlike continuity) is
well-defined on a set X with no structure. (This is “null structure”, like the
number 0, the empty set etc.)

1It holds for all X, but is vacuous unless X is of cardinality continuum.
2For X of cardinality continuum, of course; otherwise T1(X), T2(X), T (X) are empty.
3There are attempts to build new foundations of mathematics, based on category theory

rather than set theory. There, elements have no identity unless a structure gives them
identity. That may be exciting; but for now, following the mainstream, we work within
the set theory.



Tel Aviv University, 2014/15 Analysis-III,IV 9

digression: terminological conventions (“abuse of language”)

As far as possible we have drawn attention in the text to abuse of lan-
guage, without which any mathematical text runs the risk of pedantry
not to say unreadability. (Bourbaki)
The student of mathematics has to develop a tolerance for ambiguity.
Pedantry can be the enemy of insight. (Gila Hanna)1

“A set in a classical Euclidean space is called a cylinder, if. . . ” — but
wait; what happens? A classical Euclidean space is a tuple (X,L, P,B,C1, C2).
A set in the tuple? What’s it? No, do not take it literally; a subset of X is
meant. Dealing with a structured set (X, . . . ) it is convenient and habitual
to think of it as, first of all, a set. Yes, endowed with something, and still a
set.

More formally, X is the so-called principal base set of the structured set
(X, . . . ). Nevertheless we say routinely “the space X”, denoting by the same
letter (X) both the tuple and its first element.

“A vector space over R is either uncountable, or a single point.” It is
meant, of course, that its principal base set is. By the way, R is here the
so-called auxiliary base set. But only the principal base set is meant by
default.

In some cases, two (and more) principal base sets are used. “Let A be
a set in a graph.” Oops, this is problematic. Still, this phrase occurs in
texts based on the “edges without own identity” approach, and means that
A is a subset of the set of all vertices of the graph. In texts based on the
other approach, “edges with own identity”, one uses instead such phrases as
“subset of a graph’s vertices”, “subset of a graph’s edges”, “vertex subset of
a graph”, “edge set in a graph”.

Here is a completely different abuse of language. Given three sets X, Y, Z,
(Cartesian) products X × (Y ×Z) and (X × Y )×Z are routinely treated as
equal. In fact, they are not, since the pairs (x, (y, z)) and ((x, y), z) differ;
and both differ from the triple (x, y, z). A trouble!2 We routinely ignore
such troubles. It means, canonical bijections, such as X × (Y × Z) ←→
X×Y ×Z ←→ (X×Y )×Z are inserted as needed by default without being
mentioned.

1Both quotes borrowed from: MathStackExchange:Why is ‘abuse of notation’ toler-
ated?

2You could say: let us treat a pair as a sequence of length 2, and concatenate se-
quences. . . This is problematic, since a sequence of length 2 is, by definition, a function
on {1, 2}, and a function is, by definition, a set of pairs!

http://math.stackexchange.com/questions/264610/why-is-abuse-of-notation-tolerated
http://math.stackexchange.com/questions/264610/why-is-abuse-of-notation-tolerated
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vector space with euclidean metric

By a Euclidean metric on a vector space we mean either an inner product
x, y 7→ 〈x, y〉 on this space, or the corresponding norm x 7→ |x| =

√
〈x, x〉

(called “Euclidean norm”), or the corresponding metric x, y 7→ |x−y|. These
correspond to each other bijectively. The inner product may be reconstructed
from the norm:

(1b4) 〈x, y〉 =
1

4

(
|x+ y|2 − |x− y|2

)
;

other transitions are evident.
An n-dimensional Euclidean vector space is, by definition, an n-dimen-

sional vector space (over R) endowed with a Euclidean metric. More formally,
this is a structured set1 (X, “+” , “·” , “| · |” ) where X is a set (whose el-
ements are called “vectors” or “points”), “+” : X × X → X a binary
operation (called “addition of vectors”), “·” : R × X → X another opera-
tion (called “multiplication by scalars”), and “| · |” : X → [0,∞) a function
(called “norm”). A number of axioms must be satisfied:2

∗ the axioms of vector space;

∗ the vector space is n-dimensional;

∗ existence3 of an inner product corresponding to the norm;

∗ axioms of inner product.

Given an n-dimensional Cartesian space, we define on it linear operations
and inner product:

(1b5)

fk(x+ y) = fk(x) + fk(y) , fk(λx) = λfk(x) ,

〈x, y〉 =
n∑

k=1

fk(x)fk(y)

where f1, . . . , fn are the coordinate functions. This is a procedure of deduc-
tion of a Euclidean vector space structure from a Cartesian structure. More
formally, we denote (again) by T1(X) the set of all Cartesian structures on
X, and by T2(X) the set of all n-dimensional Euclidean vector space struc-
tures on X. Further, we define T (X) ⊂ T1(X)×T2(X) as the set of all pairs
(σ1, σ2) where σ1 ∈ T1(X), σ2 ∈ T2(X) satisfy (1b5). Again,

∀σ1 ∈ T1(X) ∃ !σ2 ∈ T2(X) (σ1, σ2) ∈ T (X) .

1One out of several equivalent formulations. One may add a constant 0 ∈ X (“the
origin”), or/and replace the norm with the inner product, etc.

2Again, one out of several equivalent formulations. The “parallelogram equality” |a−
b|2 + |a+ b|2 = 2|a|2 + 2|b|2 may be used instead of the inner product.

3Add “and uniqueness” if you like. Or do not; it holds anyway by (1b4).
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and the mapping is onto. Indeed, every n-dimensional Euclidean vector
space has orthonormal bases; every such basis (e1, . . . , en) leads to coordinate
functions fk : x 7→ 〈x, ek〉, x =

∑
k fk(x)ek. Cartesian structures on a given

n-dimensional Euclidean vector space correspond bijectively to orthonormal
bases.

On an n-dimensional Euclidean vector space, orthonormal basis is an
additional structure, but its existence is not an additional property.

An n-dimensional Euclidean vector space can be upgraded to a Cartesian
space by choosing an orthonormal basis.

A Cartesian space can be downgraded to an n-dimensional Euclidean
vector space by forgetting the basis.

Now we turn to a seemingly unrelated matter: two well-known inequalities

|x1y1 + · · ·+ xnyn| ≤
√
x21 + · · ·+ x2n

√
y21 + · · ·+ y2n ,(1b6)

√
(x1 + y1)2 + · · ·+ (xn + yn)2 ≤

√
x21 + · · ·+ x2n +

√
y21 + · · ·+ y2n(1b7)

for all x1, . . . , xn, y1, . . . , yn ∈ R. They can be treated algebraically, but
geometry can help a lot. We rewrite them as

−|x||y| ≤ 〈x, y〉 ≤ |x||y| ,(1b8)

|x+ y| ≤ |x|+ |y|(1b9)

for x, y ∈ Rn. Two vectors x, y span an (at most) two-dimensional subspace
of R2. Thus, we have two vectors in a two-dimensional Euclidean vector
space. On the other hand, on a classical Euclidean plane both inequalities
are evident; (1b9) is the triangle inequality, and (1b8) holds, since 〈x, y〉 =
|x||y| cos θ where θ is the angle between x and y. In both cases the inequality
is strict unless the vectors are collinear.

Can we turn a 2-dimensional Euclidean vector space into a classical Eu-
clidean plane? Yes, easily. We first upgrade the given space to a Cartesian
space, and then downgrade the latter to a classical Euclidean space.

Euclidean planimetry or stereometry applies in every 2-dimensional or
3-dimensional subspace of an n-dimensional Euclidean vector space.

1b10 Exercise. Instead of using Euclidean planimetry, give a simple alge-
braic proof after choosing a 2-dimensional coordinate system adjusted to the
given vectors.1

1Hint. To (1b8): x2 = 0; that is, x = (x1, 0) and y = (y1, y2). To (1b9): x2 + y2 = 0.
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When we turn a 2-dimensional (or 3-dimensional) Euclidean vector space
into a classical Euclidean space, is it upgrade, downgrade, or neither? We
did it via a basis (a Cartesian space); and for now we do not know, whether
the result depends on the basis, or not. But we can get rid of the basis.
We can define a line as {λa + b : λ ∈ R} for a ∈ E \ {0}, b ∈ E; a plane
as {λ1a1 + λ2a2 + b : λ1, λ2 ∈ R} for linearly independent a1, a2 ∈ E and
arbitrary b ∈ E; B = {(a, (1 − λ)a + λb, b) : 0 < λ < 1, a, b ∈ E, a 6= b};
and C1, C2 are easily constructed from the metric.1 Thus, once again, our
relation T (X) ⊂ T1(X)× T2(X) is a mapping,

T (X) : T1(X)→ T2(X) ;

this time T1(X) consists of Euclidean vector spaces (structures), and T2(X)
of classical Euclidean spaces. Again, the mapping is onto (think, why). But
is it a bijection (equivalence) or not (downgrade)? In other words, can we
restore the Euclidean vector space from the classical Euclidean space?

In geometry, vectors are usually defined either as equivalence classes of
pairs of points (or “directed line segments”), or as shifts (of the whole space).
They are a vector space. In order to make it a Euclidean vector space, a unit
of length must be chosen. And still, vectors are not points!2 The set E
of points is a classical Euclidean space; the set ~E of vectors is a Euclidean
vector space. A special element 0 of ~E is singled out by its unique property
0 + 0 = 0. In contrast, elements of E (points) are mutually congruent and
cannot be distinguished by their properties.

Choosing a point O ∈ E (“the origin”) we get a bijection between E and
~E:

A←→
−→
OA .

A classical Euclidean space can be upgraded to a Euclidean vector space
by choosing the origin and the unit of length.

affine space

An affine space is nothing more than a vector space whose origin we
try to forget about.3 4

1[a, b] and [c, d] are congruent when |a− b| = |c− d|; for angles, use 〈a, b〉 = |a||b| cos θ.
2“Points can’t be added; vectors can” (Hubbard, p. 37); see also MathStackEx-

change:What is the difference between a point and a vector.
3Marcel Berger, “Geometry I”, p. 32.
4Quite a few equivalent definitions of an affine space are used. See Wikipedia:Affine

space, nLab:Affine space.

http://math.stackexchange.com/questions/645672/what-is-the-difference-between-a-point-and-a-vector
http://math.stackexchange.com/questions/645672/what-is-the-difference-between-a-point-and-a-vector
https://en.wikipedia.org/wiki/Affine_space
https://en.wikipedia.org/wiki/Affine_space
http://ncatlab.org/nlab/show/affine+space
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We like the algebraic approach of Descartes (more than the synthetic
approach of Euclid), but we do not like the fixed origin. Indeed, if Rn is the
space of vectors, then, where are the corresponding points? How to get rid
of this undesirable byproduct of vector algebra? Can we modify the vector
space structure as to make it invariant under translations?

The vector space structure is not invariant under translations, since the
relation x + y = z is not equivalent to (x + a) + (y + a) = z + a (unless
a = 0), and λx = y is not equivalent to λ(x + a) = y + a. More generally,
λ1x1+ · · ·+λkxk = y is not equivalent to λ1(x1+a)+ · · ·+λk(xk+a) = y+a,
unless a = 0 or λ1 + · · ·+ λk = 1. Aha! The latter is the clue!

An affine combination is, by definition, a linear combination λ1x1 + · · ·+
λkxk such that λ1 + · · ·+ λk = 1.

The idea is, to restrict ourselves to affine combinations. Thus, x+ y and
λx are bad; but

x
⊔
λ y = x+ λ(y − x)

is good. Let us denote it as shown above,1 and look closely.

x
⊔
−1
2 y x = x

⊔
0 y x

⊔
1
2 y y = x

⊔
1 y x

⊔
3
2 y

We note that

(1b11)

0
⊔
λ x = λx ,

x
⊔
1
2
y = 1

2
(x+ y) ,

(
0
⊔
2 x
)⊔

1
2

(
0
⊔
2 y
)

= x+ y . 0

x

y

x+ y

0
⊔
2 x

0
⊔
2 y

1b12 Definition. An affine space is a structured set (X,
⊔

) where X is a
set and “

⊔
” is a mapping X × R × X → X, denoted (x, λ, y) 7→ x

⊔
λ y,

satisfying the following axiom:
there exists a vector space structure ( “+” , “·” ) on X such that

∀x, y ∈ X ∀λ ∈ R x
⊔
λ y = x+ λ(y − x) .

By (1b11), the vector space structure ( “+” , “·” ) is uniquely determined
by its origin 0. Thus, the axiom in 1b12 is equivalent to this one:

the operations x, y 7→
(
0
⊔
2 x
)⊔

1
2

(
0
⊔
2 y
)

and λ, x 7→ 0
⊔
λ x are a vector

space structure on X.

1Not a standard notation.
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1b13 Exercise. For arbitrary O ∈ X, operations x, y 7→
(
O
⊔
2 x
)⊔

1
2

(
O
⊔
2 y
)

and λ, x 7→ O
⊔
λ x are a vector space structure on X.

Prove it.1

An affine space can be upgraded to a vector space by choosing the origin.

1b14 Exercise. In an affine space, an affine combination does not depend
on the choice of the origin.

Prove it.2

Affine combinations are well-defined in every affine space.

Accordingly, a relation λ1x1 + · · · + λkxk = 0 between x1, . . . , xk makes
sense in an affine space whenever λ1 + · · ·+ λk = 0.3

However, what about vectors as equivalence classes of pairs of points (or
“directed line segments”) over an affine space S “as is”, not upgraded, with
no origin chosen? Now we are in position to do it. For x, y ∈ S, the pair
(x, y) may be thought of as a bound vector −→xy, and we define equivalence
relation: −−→x1y1 ∼ −−→x2y2 when y1−x1 = y2−x2, that is, y1−x1−y2+x2 = 0; this
relation is well-defined, since the sum of coefficients is 0. Equivalence classes
of bound vectors are called free vectors. Similarly, we define the relation
−−→x1y1 +−−→x2y2 ∼ −−→x3y3 as (y1 − x1) + (y2 − x2) = y3 − x3, and λ · −−→x1y1 ∼ −−→x2y2 as
λ(y1 − x1) = y2 − x2. But for now these are relations, not operations, and
we do not know, whether free vectors are a vector space, or not.

In order to prove that they are, we do choose the origin 0 ∈ S, upgrade S
to a vector space S0, and treat−→xy as the vector y−x ∈ S0. We have a bijection
between free vectors and elements of S0 (think, why) and note that the
relation −−→x1y1+−−→x2y2 ∼ −−→x3y3 is equivalent to the relation (y1−x1)+(y2−x2) =
y3−x3 between the corresponding elements of S0; the same holds for the other
relation, λ · −−→x1y1 ∼ −−→x2y2. Knowing that axioms of vector space hold in S0 we
conclude that they hold in the set of free vectors as well.

The vector space of free vectors over an affine space S is denoted ~S and
called the difference space. We have

x ∈ S , a ∈ ~S =⇒ x+ a ∈ S;
x, y ∈ S =⇒ x− y ∈ ~S;

1Hint:
(
O
⊔
2 x
)⊔

1
2

(
O
⊔
2 y
)

= z ⇐⇒ (x−O) + (y −O) = z −O, and

O
⊔
λ x = y ⇐⇒ λ(x−O) = y −O.
2Hint: use the hint to 1b13; calculating a linear combination relative to O we get

O + λ1(x1 −O) + · · ·+ λk(xk −O).
3Rewrite it as x1 = (λ1 + 1)x1 + λ2x2 + · · ·+ λkxk.
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and usual algebraic rules apply; in particular, (x + a) + b = x + (a + b) for

x ∈ S and a, b ∈ ~S.
A mapping S → S of the form x 7→ x+ a (where a ∈ ~S) is called a trans-

lation. The difference space may be thought of as the space of translations.

1b15 Example. Given a continuous function g : R → R, consider the set
S1 = {f : f ′ = g} of all its antiderivatives (that is, indefinite integrals).
This S1 is an affine space with the difference space P0 = {f : f ′ = 0} of all
constant functions.

More generally, Sn = {f : f (n) = g} is an affine space with the difference
space Pn−1 = {f : f (n) = 0} of all polynomials of degree (at most) n− 1.

1b16 Exercise. Fill in the details in 1b15. What about a more general
linear differential equation?

An affine space is called n-dimensional if its difference space is n-dimen-
sional.

1b17 Exercise. Recall Sn of 1b15. Is it finite-dimensional? What is its
dimension? Check that it is a hyperplane1 in the vector space {f : ∃c ∈
R f (n) = cg} (unless g = 0).

isomorphism

In elementary geometry, two triangles (or other figures) may be congruent
(or not), but they are situated in the same Euclidean space, “the space”.
In contrast, we deal with “a space”. What about congruence between two
spaces? This is a matter of isomorphism.

Isomorphism of vector spaces is, by definition, a linear bijection. That is,
a bijection ϕ : V1 → V2 that preserves linear operations:2

(1b18)
x+ y = z ⇐⇒ ϕ(x) + ϕ(y) = ϕ(z) ;

λx = y ⇐⇒ λϕ(x) = ϕ(y) .

Isomorphism of Euclidean vector spaces is, by definition, an isometric linear
bijection: (1b18) and in addition,

(1b19) |x| = |ϕ(x)| .
1That is, a set of the form {x : `(x) = c} where ` is a (real-valued) linear function (not

identically zero) on the vector space, and c ∈ R.
2Algebraists prefer an equivalent formulation: ϕ(x+ y) = ϕ(x) +ϕ(y), ϕ(λx) = λϕ(x),

since in algebra, a bijective homomorphism is always an isomorphism. But this may fail
for non-algebraic structures.
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Isomorphism of n-dimensional Cartesian spaces (X1, f1) and (X2, f2) (where
f1 : X1 → Rn and f2 : X2 → Rn) is, by definition, a bijection ϕ : X1 → X2

that preserves the coordinates:

(1b20) ϕ(x1) = x2 =⇒ f1(x1) = f2(x2) .

Generally, isomorphism between two structured sets is a bijection that
preserves the given structure.

Thus, isomorphism between two classical Euclidean spaces (X1, L1, P1, B1, C1,1, C1,2)
and (X2, L2, P2, B2, C2,1, C2,2) is a bijection ϕ : X1 → X2 such that

∗ ϕ preserves lines; that is, a subset of X1 belongs to L1 if and only if
the corresponding subset of X2 (the image) belongs to L2;

∗ ϕ preserves planes (similarly);

∗ ϕ preserves betweenness; that is, (x, y, z) ∈ B1 ⇐⇒
(
ϕ(x), ϕ(y), ϕ(z)

)
∈

B2;

∗ ϕ preserves congruence (I omit the details).

A well-known theorem of elementary geometry (abbreviated CPCTC)
states that corresponding parts of congruent triangles are congruent. This is
a tiny special case of a very general “isomorphism argument”:

Isomorphism preserves the given structure, therefore it preserves every-
thing that is derived from this structure.

For example, isomorphism between vector spaces preserves dimension.
Why “isomorphism argument” rather than “isomorphism theorem”? Well,

it is a theorem of the general theory of mathematical structures. If you are
interested, see Appendix A. However, it is easier to prove each special case
separately, when needed. If you did it few times, you can do it always.

1b21 Exercise. An isomorphism between vector spaces preserves: linear
independence; basis; dimension; subspace; inner product.

Formulate it accurately,1 and prove.

Likewise, an isomorphism between classical Euclidean spaces preserves:
triangle; right-angled triangle; acute-angled triangle; obtuse-angled triangle;
isosceles triangle; equilateral triangle; circle; ellipse; sphere; cube; cylinder;
cone; etc.

1It does not mean that the isomorphism sends a given basis of one space to a given
basis of the other space, or a given inner product on one space to a given inner product
on the other space. (Indeed, isomorphism of vector spaces need not be isomorphism of
Cartesian spaces, nor Euclidean vector spaces.) Rather, it means that every basis of one
space is sent to some basis of the other space, and every inner product on one space is
sent to some inner product on the other space.
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You know that all n-dimensional vector spaces are mutually isomorphic.
How do you prove it? Via bases? Here is another way. (Or is it another form
of the same way?)

First, all n-dimensional Cartesian spaces are mutually isomorphic (for a
trivial reason; do you see it?).

Second, every n-dimensional vector space can be upgraded to an n-di-
mensional Cartesian space (think, why).

Third, every isomorphism between Cartesian spaces is also an isomor-
phism between the corresponding vector spaces. Why? Since the vector
space structure can be deduced from the Cartesian space structure (recall
(1b5), the first line).

This is a useful general argument: having two isomorphic structures and
downgrading both we get again two isomorphic structures.

This way we get, with no additional effort, more facts.

∗ All classical Euclidean spaces are mutually isomorphic. (I mean 3-di-
mensional, but the same holds for 2-dimensional.)

∗ All n-dimensional Euclidean vector spaces are mutually isomorphic.

∗ All n-dimensional affine spaces are mutually isomorphic.

Isomorphisms to itself are called automorphisms.1

For an n-dimensional Euclidean vector space, automorphisms include
(and are generated by) rotations and reflections (but not translations, nor
homotheties); in a given basis they are described by orthogonal matrices.2

For a classical Euclidean space, automorphisms include (and are gen-
erated by) translations, rotations, reflections and homotheties (called also
similarities).

For a Cartesian space, the group of automorphisms of a Cartesian space
is trivial (only id).

1b22 Exercise. (a) Consider an isomorphism between affine spaces. Is it
uniquely determined by the corresponding isomorphism between their differ-
ence spaces?

(b) Define an affine subspace of an affine space. Is it uniquely determined
by the corresponding subspace of the difference space? What about an affine
subspace of a vector space?

1b23 Exercise. (a) Let V1, V2 be vector planes (that is, 2-dimensional vector
spaces), u1, v1 ∈ V1 linearly independent, and u2, v2 ∈ V2 linearly indepen-

1They are a subgroup of the group of all bijections X → X.
2For the Euclidean vector space Rn, the group of automorphisms is the (n−1)n

2 -dimen-
sional Lie group known as the orthogonal group O(n) = O(n,R).
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dent. Then one and only one isomorphism V1 → V2 sends u1 to u2 and v1 to
v2.

(b) Let S1, S2 be affine planes (that is, 2-dimensional affine spaces),
a1, b1, c1 ∈ S1 not on a line,1 and a2, b2, c2 ∈ S2 not on a line. Then one
and only one isomorphism S1 → S2 sends a1 to a2, b1 to b2 and c1 to c2.

Prove it.2

Thus, up to isomorphism there is only one affine plane (“the affine plane”)
and only one triangle on it!3

1b24 Exercise. Let S be an affine space.
(a) Given two different points in S, define the corresponding line segment

(a subset of S) and its midpoint (a point).
(b) Given three points in S not on a line, define the corresponding triangle

(a subset of S) and its medians (line segments). Prove that the three medians
intersect.

1b25 Exercise. Let S be an affine space, and a, b, c ∈ S three points not on
a line. Consider the automorphism ϕ : S → S such that ϕ(a) = b, ϕ(b) = c,
ϕ(c) = a. Prove existence and uniqueness of x ∈ S such that ϕ(x) = x.

Thus, “the affine triangle” has only one center. In contrast, in Euclidean
geometry, more than 5 000 centers of a triangle are introduced.4

affine space with euclidean metric

By a Euclidean metric on an affine space we mean a metric of the form

a, b 7→ |a− b|

where | · | is a Euclidean norm on the difference space (here a, b are points
and a− b is a vector).

An n-dimensional Euclidean affine space is, by definition, an n-dimen-
sional affine space endowed with a Euclidean metric.

Automorphisms of an n-dimensional Euclidean affine space include (and
are generated by) translations, rotations and reflections (but not homoth-
eties).5

1A line is a 1-dimensional affine subspace.
2Hint to (b): apply (a) to the difference spaces.
3In contrast, in Euclidean geometry some triangles are right-angled, acute-angled,

obtuse-angled, isosceles, equilateral etc. Nothing like this can happen on the affine plane.
4Wikipedia:Encyclopedia of Triangle Centers.
5For the Euclidean affine space Rn, the group of automorphisms is the n(n+1)

2 -dimen-
sional Lie group known as the Euclidean group E(n) = E(n,R) as well as the inhomoge-
neous orthogonal group IO(n).

https://en.wikipedia.org/wiki/Encyclopedia_of_Triangle_Centers
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Choosing an origin we upgrade a Euclidean affine space to a Euclidean
vector space; forgetting the origin we downgrade a Euclidean vector space to
a Euclidean affine space.

All n-dimensional Euclidean affine spaces are mutually isomorphic. The
argument is as before: we upgrade both to Euclidean vector spaces; these
are isomorphic.

Every n-dimensional affine space may be upgraded to a Euclidean affine
space (since “the” n-dimensional vector space may be upgraded to a Carte-
sian space, the more so to a Euclidean vector space). Try to do it for the
affine space Sn of 1b15. Have you any idea of a canonical metric for this
space?

A 3-dimensional Euclidean affine space may be downgraded to a classical
Euclidean space. This procedure forgets the unit of length. Choosing a unit
of length in a classical Euclidean space we upgrade it to a Euclidean affine
space.

Thus, we may apply notions and results of Euclidean planimetry/stereometry
in every 2-dimensional/3-dimensional subspace of an n-dimensional Euclidean
affine space.

Cartesian space

basis

Euclidean vector space

origin

metric

##

Euclidean affine space

unit

·

classical Euclidean space

metric
**

vector space

origin

affine space
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1c Metric and topology

A metric on a set X is, by definition, a function ρ : X × X → [0,∞) such
that

∀x, y ∈ X ρ(x, y) = ρ(y, x) , symmetry

∀x, y, z ∈ X ρ(x, z) ≤ ρ(x, y) + ρ(y, z) , triangle inequality

∀x, y ∈ X
(
ρ(x, y) = 0 ⇐⇒ x = y

)
.

A set endowed with a metric is called a metric space.1 2 Isomorphism be-
tween metric spaces, so-called isometry, is a bijection that preserves distances:
ρ1(x, y) = ρ2(ϕ(x), ϕ(y)).

Every subset of a metric space is itself a metric space:3 A ⊂ X, ρA(x, y) =
ρ(x, y) for x, y ∈ A.

An n-dimensional Euclidean affine space is a metric space (being endowed
with the Euclidean metric). All its subsets are metric spaces as well.

Let (X, ρ) be a metric space, A ⊂ X and x ∈ A. If

∃ε > 0 ∀y ∈ X
(
ρ(x, y) < ε =⇒ y ∈ A

)
,

then x is called an interior point of A, and A is called a neighborhood of x.
The intersection of two (or finitely many) neighborhoods of x is a neigh-

borhood of x; for infinitely many neighborhoods this is not the case.
An open set in a metric space is, by definition, a set that is a neighborhood

of every point of this set. In other words: every point of this set is its interior
point.

A topology on a set X is, by definition, a set τ ⊂ P(X) of subsets of X
(called open sets) such that

∅ ∈ τ , X ∈ τ ;

∀U, V ∈ τ U ∩ V ∈ τ ;

∀A ⊂ τ

( ⋃

U∈A

U

)
∈ τ .

(That is, a finite intersection of open sets must be open, and an arbitrary
union of open sets must be open.) A set endowed with a topology is called
a topological space.

1Note one principal base set X and one auxiliary base set [0,∞).
2Many authors require X to be nonempty.
3In striking contrast to algebraic structures; an arbitrary subset of a vector space is

not at all a vector space.
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An isomorphism between topological spaces (X1, τ1) and (X2, τ2), so-
called homeomorphism, is a bijection ϕ : X1 → X2 such that a subset of
X1 belongs to τ1 if and only if the corresponding subset of X2 (the image)
belongs to τ2.

1c1 Exercise. The set of all open sets in a metric space is a topology.
Prove it.

A metric space can be downgraded to a topological space by forgetting
the metric while retaining the corresponding topology.

Two metrics (on the same set) are called equivalent if they correspond to
the same topology. For example, the metric 2ρ : x, y 7→ 2ρ(x, y) is equivalent
to ρ. More examples:

√
ρ; min

(
1, ρ).

1c2 Exercise. (a) Metrics ρ1, ρ2 on X are equivalent if and only if

ρ1(xn, x)→ 0 ⇐⇒ ρ2(xn, x)→ 0

for arbitrary x, x1, x2, · · · ∈ X. Prove it.
(b) Equivalence of metrics does not mean that

ρ1(xn, yn)→ 0 ⇐⇒ ρ2(xn, yn)→ 0

for arbitrary x1, x2, · · · ∈ X and y1, y2, · · · ∈ X. Find a counterexample.

On a topological space, metric is an additional structure, and its existence
is an additional property.

A topology (as well as a topological space) is called metrizable, if it cor-
responds to some metric. For example, on a two-point set there exist four
topologies, one metrizable and three non-metrizable (think, why). We re-
strict ourselves to metrizable topological spaces. Every subset of a metrizable
space is itself a metrizable space. An n-dimensional Euclidean affine space
is a metrizable topological space (and its subsets are).

Treating a set X ⊂ Rn as a metrizable space we have open sets in X,
and they need not be open in Rn (unless X is open in Rn); in order to avoid
confusion, they are called relatively open (inX). The same holds for relatively
closed sets. Note that X always is both relatively open and relatively closed
in X.

1c3 Exercise. For arbitrary X ⊂ Rn prove that
(a) for every open G ⊂ Rn the set G ∩X is relatively open in X;
(b) all relatively open subsets of X are such G ∩X.

Formulate and prove a similar fact for closed sets.
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1c4 Exercise. Define all topological notions mentioned in Sect. 1a (conver-
gence and limit of a sequence; continuity; limit point of a set; closed set;
closure, boundary, interior of a set) in an arbitrary metrizable space.

Thus, all these notions are invariant under homeomorphisms (by the iso-
morphism argument). For example, if ϕ : Rn → Rn is a homeomorphism
then

∗ for arbitrary A ⊂ Rn, A is closed if and only if ϕ(A) is closed;

∗ for arbitrary A ⊂ Rn and x ∈ Rn, x is a limit point of A if and only if
ϕ(x) is a limit point of ϕ(A);

∗ for arbitrary x1, x2, · · · ∈ Rn, the sequence (xk)k converges if and only
if the sequence

(
ϕ(xk)

)
k converges.

The same applies to a homeomorphism ϕ : X → Y between sets X ⊂ Rn,
Y ⊂ Rm. For example, for every A ⊂ X, A is relatively closed in X if and
only if ϕ(A) is relatively closed in Y .

Warning. It does not mean that X is closed (in Rn) if and only if Y is
closed (in Rm). Find a counterexample (and compare it with 1a9). “Closed”
is a property of a set in a space, not a property of a space. The same holds
for “bounded”.

In contrast, the combined property “closed and bounded” (in Rn) is equiv-
alent to a property of the space (rather than set); recall Bolzano-Weierstrass
theorem or Heine-Borel theorem. For an arbitrary metrizable space com-
pactness may be defined according to Bolzano-Weierstrass, or Heine-Borel.1

1c5 Exercise. (a) Is Z homeomorphic to A = {arctann : n ∈ Z}? Describe
all relatively open sets in A.

(b) Is A homeomorphic to B = A ∩ [0,∞)?
(c) Is the closure A homeomorphic to B? Describe all relatively open sets

in A.

As was seen in 1a15–1a17, a continuous bijection need not be a homeo-
morphism.2

Two functions on a metrizable space X are said to be equal near a given
point x ∈ X, if they are equal on some neighborhood of x. Equality near x is
an equivalence relation. Its equivalence classes are called germs (of functions)
at x. The germ of f at x is denoted by [f ]x. The same applies to mappings
from X to any Y , as well as from a neighborhood of x to Y .

1In fact, these two definitions of compactness are equivalent for all metrizable spaces,
but not all topological spaces. By the way, in a normed space of infinite dimension, the
closed unit ball is not compact.

2In striking contrast to algebraic structures; there, every bijective homomorphism is an
isomorphism.
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Many properties of functions apply readily to germs, according to the
pattern
[f ]x is called when f is near x;
here may be “linear”, “bounded”, “continuous”, “one-to-one” etc.

1c6 Exercise. “Continuous at x” is not the same as “continuous near x”.
Find a counterexample.

If [f1]x = [f2]x then limy→x f1(y) = limy→x f2(y) in the following sense:
either both limits exist and coincide, or neither limit exists. This way the
notion of limit applies to germs; it is a local notion.

When locality is evident, I do not hesitate writing “let f : Rn → Rm”
rather than “let f : U → Rm where U ⊂ Rn is a neighborhood of x”.

A bit about connectedness.

Let X1, X2 be disjoint sets, and (X1, ρ1), (X2, ρ2) metric spaces. Assume
for convenience that the distances never exceed 1. Here is a useful metric on
X = X1 ∪X2 (assuming that ρ1(·, ·) ≤ 1 and ρ2(·, ·) ≤ 1):

ρ(x, y) =





ρ1(x, y) if x, y ∈ X1,

ρ2(x, y) if x, y ∈ X2,

1 otherwise.

In the metric space (X, ρ) the sets X1, X2 are clopen, that is, both closed
and open.

1c7 Exercise. Let X be a metric space, and X = X1 ∪ X2, X1 ∩ X2 = ∅.
Then the following two conditions are equivalent:

(a) the metric

ρ̃(x, y) =

{
ρ(x, y) if x, y ∈ X1 or x, y ∈ X2,

1 otherwise

is equivalent to ρ;
(b) the sets X1, X2 are clopen.

Prove it.

1c8 Definition. A topological space is connected if the only clopen sets are
the empty set and the whole space.

1c9 Exercise. A subset of R is connected if and only if it is an interval.1

Prove it.

1Be it open or not, closed or not, bounded or not, empty or not.
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1c10 Exercise. Which of these subsets of R2 are connected? Prove.

A = {(x, y) : x2y2 = 1} ;

B = {(x, sin 1
x
) : x 6= 0} ;

C = B ∪ {(0, 0)} .

1c11 Exercise. Let G ⊂ Rn be an open set, and x ∈ G. Then the set of all
points y ∈ G that can be connected with x by a polygonal line inside G is a
relatively clopen subset of G.

Prove it.

We see that every connected open set G is polygonally connected, and
therefore we may introduce a metric dG on G (sometimes called shortest path
metric or geodesic metric) by

dG(x, y) = inf {length(P ) : P is polygonal line from x to y} .

Clearly, dG is a metric on G, and dG ≥ ρG where ρG is the Euclidean metric,
ρG(x, y) = |x− y|.

1c12 Exercise. (a) Prove that dG ∼ ρG, that is, dG(xk, x) → 0 ⇐⇒
|xk − x| → 0 whenever x, x1, x2, · · · ∈ G.

(b) The relation |xk − yk| → 0 does not imply dG(xk, yk) → 0; find a
counterexample.1

A metric space (X, ρ) is called bounded, if supx,y∈X ρ(x, y) < ∞. A set
A in (X, ρ) is called bounded, if supx,y∈A ρ(x, y) <∞.

1c13 Exercise. (a) Boundedness of (G, ρG) does not imply boundedness of
(G, dG). Find a counterexample.2

(b) If K ⊂ G is compact (in Rn) then K is a bounded set in (G, dG).
Prove it.3

(c) If K ⊂ G is compact (in Rn) then sup
x,y∈K,x6=y

dG(x, y)

|x− y|
<∞.

Prove it.4

1Hint: try a slit domain.
2Hint: recall the set B of 1c10.
3Hint: otherwise dG(xk, yk)→∞, |xk − x| → 0, |yk − y| → 0.
4Hint: otherwise dG(xk,yk)

|xk−yk| →∞, |xk − x| → 0, |yk − y| → 0.
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1d Linearity and continuity

The general form of a linear function f : Rn → R [Sh:p.65]:

f(x) = 〈a, x〉 for some a ∈ Rn .

Such f is continuous [Sh:p.65] (being a linear combination of coordinate
functions).

The general form of a linear operator T : Rn → Rm [Sh:p.68]:

T (x) = Ax for some m× n matrix A .

Such T is continuous [Sh:Th.3.1.5] (since each coordinate of Tx is a linear
function of x).

Affine function f : Rn → R:

f(x) = 〈a, x〉+ t for some a ∈ Rn, t ∈ R .

Affine operator T : Rn → Rm:

T (x) = Ax+ b for some m× n matrix A and some b ∈ Rm .

Such f and T are continuous.
Thus, every linear (as well as affine) bijection T : Rn → Rn is a homeo-

morphism.
Given an n-dimensional Cartesian space X, we introduce a topology on

X by transporting to X the topology of Rn via the given bijection between
X and Rn. This bijection becomes a homeomorphism.

Given an n-dimensional affine space S, we introduce a topology on S by
upgrading S to a Cartesian space and using the topology introduced above.
The result does not depend on the choice of coordinates. Every isomorphism
between n-dimensional affine spaces becomes also a homeomorphism.1

Topological notions are well-defined on every finite-dimensional vector or
affine space.

1d1 Exercise. Recall the n-dimensional vector space Pn−1 of polynomials
discussed in 1b15. Prove that the following conditions on f, f1, f2, · · · ∈ Pn−1
are equivalent:

(a) fk → f in Pn−1;

(b) fk(0)→ f(0), f ′k(0)→ f ′(0), . . . , f
(n−1)
k (0)→ f (n−1)(0);

1In infinite dimension the situation is utterly different.
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(c) fk(0)→ f(0), fk(1)→ f(1), . . . , fk(n− 1)→ f(n− 1);1

(d) fk(·)→ f(·) pointwise; that is, fk(x)→ f(x) for every x ∈ R;
(e) fk(·) → f(·) locally uniformly; that is, max|x|≤M |fk(x) − f(x)| → 0

for every M .

1d2 Exercise. The same as 1d1 for the n-dimensional affine space Sn = {f :
f (n) = g} discussed in 1b15.2

1d3 Exercise. Let V be an n-dimensional vector space, and V1 ⊂ V its
subspace.

(a) Upgrade V to Rn (by choosing a basis) getting V1 = {(x1, . . . , xn) :
xm+1 = · · · = xn = 0}; here m = dimV1.

(b) Conclude that every subspace of an n-dimensional vector or affine
space is closed (topologically).3

1e Norms of vectors and operators

1e1 Definition. The norm ‖T‖ of a linear operator T : E1 → E2 between
finite-dimensional Euclidean vector spaces E1, E2 is

‖T‖ = sup
x∈E1,x 6=0

|T (x)|
|x|

.

Also,
‖T‖ = max

|x|≤1
|T (x)|

(think, why); this is the maximum of a continuous function on a compact set
[Sh:p.73].

The operator norm ‖A‖ of an m×n matrix A is, by definition, the norm
of the corresponding operator Rn → Rm.

1e2 Exercise. If a matrix A = (ai,j)i,j is diagonal then

‖A‖ = max
i=1,...,min(m,n)

|ai,i|.

Prove it.

The set Mm,n(R) of all m×n matrices (with real elements) evidently is an
mn-dimensional vector space. Does the operator norm turn it to a Euclidean
space? No, it does not. Even if we restrict ourselves to M2,2(R), and even

1Hint: (c) consider the linear operator Pn−1 3 g 7→
(
g(0), g(1), . . . , g(n− 1)

)
∈ Rn.

2Hint: use 1d1.
3In infinite dimension the situation is strikingly different.
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to its 2-dimensional subspace of diagonal matrices, we get (by 1e2, up to
isomorphism) R2 with the norm

‖(s, t)‖ = max(|s|, |t|) ,

its unit ball {x : ‖x‖ ≤ 1} being the square [−1, 1]× [−1, 1]. This is not the
Euclidean plane! For two non-collinear vectors a = (1, 1) and b = (1,−1) we
have ‖a‖ = 1, ‖b‖ = 1 and ‖a+b‖ = 2, which never happens on the Euclidean
plane. Also, the “parallelogram equality” |a − b|2 + |a + b|2 = 2|a|2 + 2|b|2
holds for arbitrary vectors a, b of a Euclidean space, but fails for the operator
norm.

1e3 Definition. (a) A norm on a vector space V is a function V 3 x 7→
‖x‖ ∈ [0,∞) such that

‖tx‖ = |t| · ‖x‖ for all x ∈ V, t ∈ R ;

‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V ;

‖x‖ > 0 whenever x 6= 0 .

(b) A normed space is a vector space endowed with a norm.

Every normed space is also a metric space (with the metric x, y 7→ ‖x−
y‖), therefore, also a topological space.

Euclidean vector spaces are a special case of normed spaces.1 Distances
are well-defined in normed spaces, but angles — only in Euclidean spaces.

1e4 Exercise. Prove that

−‖x− y‖ ≤ ‖x‖ − ‖y‖ ≤ ‖x− y‖

for all x, y ∈ V .

1e5 Exercise. Prove that the operator norm is indeed a norm on Mm,n(R).

1e6 Lemma. Every norm on Rn is continuous.

Proof. For arbitrary t1, . . . , tn ∈ R,

‖(t1, . . . , tn)‖ = ‖t1e1 + · · ·+ tnen‖ ≤ |t1| · ‖e1‖+ · · ·+ |tn| · ‖en‖ ≤

≤ (‖e1‖+ · · ·+ ‖en‖) ·max(|t1|, . . . , |tn|) ≤ C
√
t21 + · · ·+ t2n

where2 C = ‖e1‖+ · · ·+ ‖en‖ (and e1, . . . , en are the standard basis). Thus,
‖x‖ ≤ C|x| for all x ∈ Rn. Now, if |xn − x| → 0 then ‖xn − x‖ → 0, and by
1e4, ‖xn‖ → ‖x‖.

1In fact, a normed space is Euclidean iff the norm satisfies the parallelogram equality.
2Even better, C =

√
‖e1‖2 + · · ·+ ‖en‖2 fits.
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The sphere Sn−1 = {x ∈ Rn : |x| = 1} being compact, a norm ‖·‖ reaches
its minimum c and maximum C on Sn−1:

c = min
|x|=1
‖x‖ , C = max

|x|=1
‖x‖ ;

0 < c ≤ C <∞ (think, why c > 0). Thus,

∀x c|x| ≤ ‖x‖ ≤ C|x| ;
‖xn‖ → 0 if and only if |xn| → 0 ;

one says that ‖ · ‖ and | · | are equivalent norms. Clearly, equivalent norms
lead to equivalent metrics. Taking into account that every n-dimensional
vector space is isomorphic to Rn, we conclude.

1e7 Proposition. For every finite-dimensional vector space V ,1

(a) for every norm ‖ · ‖ on V ,

(xn → x) ⇐⇒ (‖xn − x‖ → 0) for all x, x1, x2, · · · ∈ V ;

(b) for every pair of norms ‖ · ‖1, ‖ · ‖2 on V ,

∃c, C ∈ (0,∞) ∀x ∈ V c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1 .

All norms are equivalent on an arbitrary finite-dimensional vector space.

Thus, in finite dimension all norms lead to the same topology; this is the
topology introduced in Sect. 1d (think, why).

1e8 Exercise. Generalize 1e1 and 1e5 to the space L(X, Y ) of all linear
operators [Sh:p.71] between normed (not just Euclidean) finite-dimensional
spaces X, Y .2

1e9 Exercise. If S ∈ L(X, Y ) and T ∈ L(Y, Z) then TS ∈ L(X,Z) and
‖TS‖ ≤ ‖T‖ · ‖S‖. Prove it.

1e10 Exercise. (a) Prove equivalence of two definitions of the Hilbert-
Schmidt norm ‖A‖HS of an m× n matrix A = (ai,j)i,j:
‖A‖HS =

(∑
j,k a

2
j,k

)
1/2;

‖A‖HS =
√

trace(A∗A).
(b) Is (Mm,n(R), ‖ · ‖HS) a normed space? a Euclidean space?
(c) Prove that ‖A‖ ≤ ‖A‖HS ≤

√
n‖A‖.3

1In infinite dimension the situation is utterly different.
2Linear operators between spaces of operators are also well-defined, and sometimes

called superoperators (mostly by physicists); see also “Superoperator” in Wikipedia.
3Hint to ‖A‖ ≤ ‖A‖HS: using the Cauchy-Schwarz inequality, estimate first y2k and

then
∑m
k=1 y

2
k; here yk =

∑
j ak,jxj .

Hint to ‖A‖HS ≤
√
n‖A‖: |Aej | ≤ ‖A‖ for each j = 1, . . . , n.

http://en.wikipedia.org/wiki/Superoperator
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A bit about convexity.

1e11 Definition. (a) A set C in a vector or affine space is convex if for all
x, y ∈ C the segment [x, y] = {(1− λ)x+ λy : 0 ≤ λ ≤ 1} is contained in C.

(b) A real-valued function f on a vector or affine space, or on a convex
set therein, is called convex if

f
(
(1− λ)x+ λy

)
≤ (1− λ)f(x) + λf(y)

for all λ ∈ [0, 1] and all x, y in the domain of f .

1e12 Exercise. Prove that a function f : R2 → R is convex if and only if
the set {(x, y, z) : z ≥ f(x, y)} ⊂ R3 is convex.

1e13 Exercise. Prove that convexity of the sets {x : f(x) ≤ t} for all t ∈ R
is necessary but not sufficient for convexity of a function f .1

1e14 Exercise. Prove that the second condition of 1e3 (‖x+y‖ ≤ ‖x‖+‖y‖)
is equivalent (given the other two conditions) to (a) convexity of the norm,
and also to (b) convexity of the ball {x ∈ V : ‖x‖ ≤ 1}.2

1e15 Exercise. Let p ∈ [1,∞). Prove that the function

Rn 3 (t1, . . . , tn) 7→
(
|t1|p + · · ·+ |tn|p

)
1/p ∈ [0,∞)

is a norm on Rn.3

This norm is often denoted ‖ · ‖p.
In the limit p→∞ we get

‖(t1, . . . , tn)‖∞ = max(|t1|, . . . , |tn|) .

1Hint: for “but not sufficient” try dimension one.
2Hint: (b) x+y

‖x‖+‖y‖ = θ x
‖x‖ + (1− θ) y

‖y‖ .
3Hint: the function (t1, . . . , tn) 7→ |t1|p + · · ·+ |tn|p is convex (being the sum of convex

functions), therefore the set {(t1, . . . , tn) : |t1|p + · · ·+ |tn|p ≤ 1} is convex.
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