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Abstract

Consider an infinite sequence of independent, uniformly chosen points from r0, 1sd. After
looking at each point in the sequence, an overseer is allowed to either keep it or reject it, and this
choice may depend on the locations of all previously kept points. However, the overseer must
keep at least one of every two consecutive points. We call a sequence generated in this fashion
a two-thinning sequence. Here, the purpose of the overseer is to control the discrepancy of the
empirical distribution of points, that is, after selecting n points, to reduce the maximal deviation
of the number of points inside any axis-parallel hyper-rectangle of volume A from nA. Our
main result is an explicit low complexity two-thinning strategy which guarantees discrepancy of
Oplog2d�1 nq for all n with high probability (compare with Θp?n log log nq without thinning).
The case d � 1 of this result answers a question of Benjamini.

We also extend the construction to achieve the same asymptotic bound for (1�β)-thinning,
a set-up in which rejecting is only allowed with probability β independently for each point.
In addition, we suggest an improved and simplified strategy which we conjecture to guarantee
discrepancy of Oplogd�1 nq (compare with θplogd nq, the best known construction of a low dis-
crepancy sequence). Finally, we provide theoretical and empirical evidence for our conjecture,
and provide simulations supporting the viability of our construction for applications.

Keywords. Two-choices, thinning, discrepancy, subsampling, online, Haar.

1 Introduction

Let pΩ,F , µq be a probability space and let R be a class of subsets of Ω. The R-discrepancy of S,
a subset of Ω of size n, with respect to µ is defined as

DisRpSq :� sup
RPR

��� |S XR| � nµpRq
���.

Let X � tXnunPN be a sequence of elements in Ω, and write Xn � tXiuiPrns. The discrepancy of
X is defined as the sequence of discrepancies tDisRpXnqunPN.

Throughout we consider only with R-discrepancy with respect to Lebesgue measure on Ω �
r0, 1sd, where R � tÂd

i�1rai, biq � r0, 1qd : 0 ¤ ai   bi ¤ 1u are the axis aligned hyper-rectangles.
For brevity we call this simply discrepancy, and denote DispXnq � DisRpXnq.
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The best known upper bound for the discrepancy of X is DispXnq � Oplogd nq and several lattice
related constructions are known (see, e.g. [6]). However, in many applications only restricted control
over the locations of the points Xn is available so that an optimal discrepancy sequence cannot be
used. The most extreme case is the Monte-Carlo setting, where the points are independent samples
of the uniform distribution over r0, 1qd. In this case classical results in probability theory imply
that DispXnq � Op?n log log nq and that this estimate is tight. Due to the significant gap between
the optimal discrepancy obtainable by an infinite sequence and the discrepancy of a sequence of
independent samples it has been desirable to look for variations on the Monte-Carlo setting which
obtain lower discrepancy by allowing an overseer mild control over the sequence X. The most
well known result in this line of investigation is the “power of two-choices” paper, by Azar-Broder-
Karlin-Upfal [1], who show that in the setting of Ω � rN s, uniform µ and R � ttnu : n P rN su, by
allowing the overseer to choose Xn among two i.i.d. µ-distributed samples it is possible to obtain
an exponential improvement in the discrepancy.

In this work we investigate a related, weaker sense of control. Consider an infinite sequence
U8
1 :� tUnunPN of i.i.d. uniform random variables on r0, 1qd. These points are shown to an overseer

one by one, who may depend on his past choices in deciding whether to keep each point or reject it.
However his control is restricted by the constraint of keeping at least one of every two consecutive
points. We call a strategy executed by the overseer in producing such a sequence a two-thinning
strategy. We also consider an even weaker setting, in which, in addition to the restriction of a
two-thinning, each point has independent probability β to be rejectable and otherwise it must be
kept. Inspired by the work of Peres-Talwar-Wieder [23] on p1 � βq-choice, we call this setting
p1� βq-thinning. More precise definitions of the above terminology are provided in Section 3.

Our main result is an explicit p1 � βq-thinning strategy on Unifr0, 1qd, which we call Haar
strategy which satisfies the following.

Theorem 1. The Haar p1� βq-thinning strategy yields a sequence Z which almost surely satisfies

lim sup
nÑ8

DispZnq
log2d�1pnq ¤

100pd2 � 1q
β

.

This result is obtained as an immediate consequence of the following more detailed theorem.

Theorem 2. The Haar p1�βq-thinning strategy yields a sequence Z which for all n P N and ∆ ¡ 0
satisfies

P
�

DispZnq ¥ β�1 log2dpnqp∆� 1000� 100d2 log nq
	
¤ β�2e�

∆
50 .

Moreover, in order to apply this strategy the overseer requires Opn logd nq memory and Opn logd nq
computations to produce the first n samples.

In section 6 we suggest a heuristic improvement of our analysis, bringing us to make the following
conjecture.

Conjecture 1. The Haar p1� βq-thinning strategy yields a sequence Z that almost surely satisfies

lim sup
nÑ8

DispZnq
log3d{2�1pnq   8.

In the same section we also suggest a simplified strategy with the same complexity which we call
greedy-Haar strategy, which we conjecture to provide an additional improvement over the result
above. Namely
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Conjecture 2. The greedy-Haar p1 � βq-thinning strategy yields a sequence Z that almost surely
satisfies

lim sup
nÑ8

DispZnq
logd�1pnq   8.

To demonstrate that our constructions are also viable in practice as an alternative for Monte-
Carlo i.i.d. sampling we dedicate Section 7 to simulations, comparing the performance of our
strategies with classical Monte-Carlo discrepancy. Further discussion on the potential applications
of our results in statistics is provided in Section 2.4.

2 Related Work

In this section we briefly survey related work on the power of two-choices and discrepancy theory
and present possible applications of our work to numerical integration and statistics.

2.1 Two-choices and weaker forms of choices

The power of two choices is a phenomenon discovered and popularized by Azar, Broder, Karlin and
Upfal [1], who consider a setting in which the underlying space is the discrete set rM s � t1, . . . ,Mu
and the discrepancy is measured with respect to R � ttmu : m P rM su. Thinking of the
points Z1, . . . ZN as balls and of their values in rM s as bins, the authors considered a process
where at each step a ball is assigned to the least occupied among two bins chosen uniformly and
independently. They show that when N � ΘpMq this yields with high probability a discrepancy
of DisRpZN q � p1� op1qq plog logN{ log 2q (compare with DisRpUN q � p1� op1qq plogN{ log logNq
when Ui are i.i.d. uniform). When N "M their results imply that PpDisRpZN q ¡ ∆logMq decays
exponentially fast in ∆, uniformly in N , so that the discrepancy does not grow with N . In addition,
in this model, the load of a typical bin deviates from N{M by merely a constant (compare with a
typical deviation of Θp

a
N{Mq and DisRpUN q � Θp

a
N logM{Mq for Ui i.i.d. uniform). It was

later discovered that these results are tight up to a constant in the exponent (see e.g. [23]). Note,
however, that significantly better iterated log bounds were obtained by Berenbrink, Czumaj, Steger
and Vöcking [5] for the one-sided gap between the load of the most loaded bin and the average
load. For a simpler proof see Talwar and Wieder [27].

While considering applications of the power of two choices to queuing theory, Mitzenmacher,
in his thesis [20], suggested the following more robust setting of “two-choices with errors”. Peres,
Talwar and Wieder [23] later formulated this process, defining the equivalent p1�βq-choice process
for β P r0, 1s. In this process, with probability β (independent of everything else) the overseer is
offered two uniformly distributed independent bins and with probability p1� βq only one such bin
is offered and no choice is allowed. p1� βq-thinning processes are closely related to p1� βq-choice
processes. In fact, a two-thinning set-up is equivalent to the corresponding two-choices set-up where
the overseer is oblivious to the second available bin. Extending this argument, we see that every
p1�βq-thinning processes is a p1�βq-choice process (i.e., every process that could be realized by a
p1� βq-thinning strategy could also be realized by a p1� βq-choice strategy). On the other hand,
Proposition 3.1 below guarantees that every p1� βq-choice process for β ¤ 1

2 is a p1� 2βq-thinning
process. As Theorems 1 and 2 are obtained for p1� βq-thinning processes with arbitrarily small β,
they are also valid in the p1� βq-choice setting.

In the balls and bins setting, both p1�βq-choice processes and p1�βq-thinning processes achieve
the same asymptotic discrepancy of ΘplogMq when N " M , the same discrepancy that could be
achieved by a two-choices process (this follows from results of [23]). On the other hand, if one
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measures discrepancy by the one-sided maximal load semi-norm given by

max
iPrMs

#tn P rN s : ξpnq � iu �N{M,

then Berenbrink, Czumaj, Steger and Vöcking [5] show that two-choices process can, in fact, achieve
Θplog logMq, while both p1 � βq-choice process and p1 � βq-thinning processes still achieve only
ΘplogMq (again by [23]). A similar gap between two choices, p1 � βq-choice and p1 � βq-thinning
for β   1 exists also in the regime N � M , and in this regime both notions obtain no significant
improvement over a no-choice setting. Curiously, when β � 1, the optimal discrepancy obtainable
by two-thinning strategy is Θp

a
logN{ log logNq which is strictly between the discrepancy in the

no-choice setting, which is ΘplogN{ log logNq and the optimum in the 2-choice setting which is
Θplog logNq. This is shown in a separate recent note by the second and third author [8].

2.2 Interval subdivision processes

The case Ω � r0, 1s of our result relates to a long line of investigation of so called interval subdivision
processes.

An interval subdivision process is a sequence of points pXiq8i�1 where Xi P r0, 1s. The intervals
of the process at the n-th step are the gaps between adjacent points in pXiqni�1, while the empirical
measure at that step is defined as 1

n

°n�1
i�0 δXi , where δj is the Dirac delta measure. When the

points are chosen independently according to the uniform distribution on r0, 1s we call this the
uniform interval subdivision process. By the law of large numbers, the empirical measure of this
process converges to the uniform measure almost surely as n tends to infinity.

In 1975 Kakutani [10] suggested a couple of alternative models for interval subdivision which he
conjectured to be more regular then the uniform process in the sense that their empirical measures
should converge to the uniform distribution more rapidly. In one of these processes, which we
refer to here as the Kakutani process, the n-th point is selected uniformly on the largest interval
(observe that there are no ties almost surely). Kakutani conjectured that the empirical measure of
the Kakutani process converges to the uniform measure. This fact was later proved by van Zwet
in [28] and independently by Lootgiester in [18]. Once convergence was established it remained to
recover in what sense the Kakutani process is more regular than the i.i.d. uniform subdivision.

One natural measure for regularity of the convergence of the empirical measure is the discrep-
ancy of the sequence. A classical result of Kolmogorov and Smirnov (communicated by Donsker
[7]), implies that the difference between t and the empirical measure of interval r0, ts of the uniform
interval subdivision process, normalized by a factor of

?
n converges to the standard Brownian

bridge. Hence, the discrepancy of the uniform interval subdivision process is of order Θp?nq. How-
ever, the the interval variation discrepancy of the Kakutani process was not easy to handle, and
in the 1980s other properties of the process have been studied (see [24]). Analysis of the interval
variation discrepancy was made possible only in 2004 when Pyke and van Zwet [25] were able to
compute the empirical process of the Kakutani process and showed that the difference between
t and the empirical measure of the process on the interval r0, ts, normalized by a factor of

?
n,

converges to a Brownian bridge with half the standard deviation. In particular, this implied that
the Kakutani process achieves an improvement of merely a constant factor in the interval variation
discrepancy over the uniform interval subdivision process.

Circa 2014, Benjamini (see [19] and [9]) suggested investigating how a two-choice variant of the
uniform interval subdivision process behaves. One family of algorithms which Benjamini suggested
are local algorithms, namely ones in which the player considers only the size of the intervals which
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contain the new sampled points. Two natural examples being max-2 and furthest-2 whose respec-
tive descriptions are “pick the point located in the larger interval” and “pick the point furthest
from all previously chosen points”.

Following the work of Maillard and Paquette [19] who studied other properties of the max-
2 process, Junge [9] showed that the empirical measure of the max-2 process indeed converges
to the uniform measure. However, both simulations and comparison with Kakutani processes,
indicate that max-2 is likely to be at most as regular as the Kakutani process, thus demonstrating
discrepancy of Θp?nq. This has been the primary instigator of our present work, where we show
that that even in the weaker setting of p1 � βq-thinning, by adopting a global strategy the player
can obtain a near optimal interval variation discrepancy of Oplog3 nq.

2.3 Discrepancy theory

Discrepancy theory – the study of discrete objects which imitate regularity properties of a contin-
uous counterpart, has, in fact, originated at the study of low discrepancy sequences with respect
to the uniform measure on r0, 1qd, the very object investigated here. Traditionally, this theory is
concerned with deterministic objects, trying to obtain bounds on the lowest discrepancy possible
for prefixes X1, . . . , Xn of a sequence X � tXiuiPN of points in r0, 1qd.

In d ¥ 2 the exact optimal asymptotic behavior of the discrepancy is unknown. There exist
explicit constructions of sequences X whose discrepancy is DispXnq ¤ Cd logd n while for ev-
ery sequence X it is known (by [16]) that there exist infinitely many n-s such that DispXnq ¥
cd logpd�1�γdq{2pnq, where and cd, Cd, γd P p0, 1q are constants depending on dimension.

The upper bound is achieved using lattice rules or digital nets—for example, Hammersley point
sets which are based on the infinite van der Corput sequence (see, e.g., [6]) achieve the upper
bound. The lower bounds were obtained by Bilyk, Lacey and Vagharshakyan [16], building upon
the work of Roth [15]. We remark that arguments involving Haar wavelets, which play a key role
in our construction, are used to prove lower bounds in classical literature (see, e.g., Ch. 3 of the
book [17]). While there seem to be no prior work involving Haar wavelets as a tool for obtaining
computationally-efficient constructive upper bounds, there exist recent works [2], [3], [4] which use
the related Walsh wavelets to control an L2 notion of discrepancy (weaker than the L8 notion we
consider).

Discrepancy theory is the main motivation for Conjecture 2, as this conjecture would establish
that online thinning typically achieves discrepancy which deviates by merely log n factor from the
minimal discrepancy of any infinite sequence.

2.4 Applications

In this section we list a few potential applications of our results. It is important to notice that our
output sequence has the desirable property that it is unbiased. This is expressed in the following
claim.

Claim 2.1. Let Z be the output sequence of either the Haar p1�βq-thinning strategy or the greedy-
Haar p1� βq-thinning strategy. Then for any integrable f we have

E

�
1

n

ņ

i�1

fpZiq
�
�

»
r0,1qd

fpxqdx.

We postpone the proof of this claim to Section 5.4. Next, we divide the description of potential
applications to one-dimensional and multi-dimensional.
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One dimensional applications to statistics. Our results could be used to obtain a new
method for on-line sample thinning in statistics. Typically, thinning is not an effective practice in
statistics. However, there are settings in which it is actually beneficial. To make this concrete lets
us illustrate the application of our method through an example from botany. Consider a setting
in which a researcher wishes to assess the expectation of a parameter Y - the amount of a certain
bacteria on a type of wild plants. It is well known that Y is strongly dependent in an unknown yet
smooth way on the mass of the sampled plant, a well studied parameter which we denote by X.
To obtain Y the researcher must harvest the plant, keep it in cold storage and run an expensive
procedures, hence it is much more costly to assess Y for any particular sample than to measure X.
The researcher now travels in the jungle and measures X for different plants, he can then either
discard them or keep them for measuring Y . By applying our results to the percentile distribution
of X (which is uniform by definition), we can thin an arbitrarily low percentage of our samples
on-line and obtain an empirical percentile distribution of the samples of X which has discrepancy of
Oplog3 nq rather than Op?nq discrepancy without any thinning. As a result the average of sampled
Y will suffer from less variance caused by the variance of the sampled values of X. Hence the
researcher will be able to obtain better precision for a given cost. Notice that by Claim 2.1 this
method will not create any bias in the estimate of EpY q.

Other settings in which a similar application is viable include Experimental agriculture, where
an organism (a plant or an animal) is raised and the parameter X could be assessed at a much earlier
stage of growth in comparison with Y and Monte-carlo simulations in which Y is obtained from
X by heavy computations. To read more on the benefit of thinning for Markov chain Monte-carlo
(MCMC) samplers in a similar setting, see a recent work by Owen [22].

Multi-dimensional applications. While the law of large numbers guarantees that a sequence
of n independent uniform random converge to the uniform distribution, the rate of this convergence
is often slower than desired for practical applications. One setting where this is the case is that
of Monte-Carlo numerical integration. In this setting one approximates an intractable continuous
integral

³
fpxqdx by a discrete average 1

n

°n
i�1 fpUiq for uniform Ui. For any arbitrary point sequence

P, and compact subset F of a Banach space, Holder’s inequality implies that | 1n
°n
i�1 fpPiq �³

fpxqdx| ¤ supfPF
1
n}f}DispPn1 q for appropriate norms }�} that measure variation of functions. This

is called the “Koksma-Hlawka” inequality when discrepancy is measured by axis-aligned rectangles
and the functions have bounded “Hardy-Krause” variation (bounded mixed partial derivatives).
Since DispUnq � Θp?nq, the Monte-Carlo sum converges at a 1{?n rate to the integral.

One can achieve a much better rate of convergence by replacing random i.i.d. sequences by
non-i.i.d. random sequence or even by a deterministic pseudo-random sequence that has lower
asymptotic discrepancy than Un1 . As a result the theory of numerical and Quasi -Monte-Carlo
(QMC) integration have found applications to several results from discrepancy theory. For more
details on bounds related to discrepancy theory and QMC, readers may refer to the books [17, 12, 11]
and the surveys [13, 14] and the references therein.

Our sampling algorithm also provides an unbiased estimate for the integral (by Claim 2.1).
While the discrepancy and complexity of the algorithm are not as good as low discrepancy methods
such as digital nets, it has the benefit of working even in setting where one cannot choose the points
at which the function is evaluated. Moreover the output sequence has less structure than lattices
based constructions.

Finally, considering application where actual thinning is undesirable, we remark that if rather
than allowing to discard every point with probability 1 � β, we instead weight each point with a
weight of either 1 or 1� β, then our result can be shown to persist.
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3 Preliminaries

In this section we formally define p1�βq-thinning strategies, and related notions that are useful for
our proofs. We then give a sufficient condition that describes which distributions can be realized by
a single step of p1�βq-thinning, and provide a few technical lemmata required to prove Theorem 2.
Throughout we follow the convention that the notation log denotes the logarithm with base 2.

3.1 Thinning functions and strategies

A thinning function is a measurable function f : r0, 1qd Ñ r0, 1s. We think of the input of such a
function as a random element in r0, 1qd, and of its output as the probability that we decide to keep
the chosen element. Formally, given X1, X2 P r0, 1qd and an independent U1 � Unifr0, 1q, we let
Z 1 be equal to X1 if U1 ¤ fpX1q and equal to X2 otherwise. We call Z1 the two-thinned sample
produced by f .

A two-thinning strategy is an instrument instructing the overseer how to choose a thinning
function to produce Zn given Z1, . . . , Zn�1. Formally, such a strategy is a countable collection of
measurable functions fn : pr0, 1qdqn�1 � r0, 1qd Ñ r0, 1s, such that for every fixed value of the first
n� 1 entries, the function on the last entry is a thinning function.

A two-thinning strategy is applied to produce a random two-thinning sequence in the following
way. Denote by X a sequence of i.i.d. uniform random variables on r0, 1qd. We now inductively
define Z as a subsequence of X produced by the strategy. To do so, we shall employ U � tUnunPN
a sequence of i.i.d. Unifr0, 1s random variables, independent from everything else, serving as an
external source of randomness. Given Z1, . . . , Zn�1, inductively define

χn � 1tUn ¡ fnppZ1, . . . , Zn�1q, Xn�
°n�1
i�1 χi

qu.

Here, χn represents the decision whether to reject (1) or keep (0) in the n-th step so that
°n
i�1 χi is

the number of rejections made by our algorithm in the process of allocating the first n balls. Using
these we set Zn � Xn�

°n
i�1 χi

. Observe that, conditioned on Z1, . . . , Zn�1, the variable Zn indeed
has the distribution of a two-thinning sample according to fp�q � fnppZ1, . . . , Zn�1q, �q.

3.2 p1� βq-thinning strategy

Given a fixed β ¤ 1, a thinning function f satisfying f ¥ 1 � β almost surely is called a p1 � βq-
thinning function and a two-thinning sample of such a function is called a p1� βq-thinned sample.
A p1� βq-thinning strategy is a two-thinning strategy which, for every given Z1, . . . , Zn�1, satisfies
that fpxq � fnppZ1, . . . , Zn�1q, xq is an p1 � βq-thinning function. Observe that such a strategy
rejects each sample, conditioned on the past, with probability at most β and that the case β � 1
coincides with our previous definitions.

3.3 Distribution realization via p1� βq-thinning

In this section we provide a sufficient condition for a distribution on r0, 1qd to be realizable as a
p1� βq-thinned sample.

Proposition 3.1. Let µ be an absolutely continuous probability measure on r0, 1qd whose density
g satisfies

1� β

2
¤ gpxq ¤ 1� β

2
.
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Then, fpxq � gpxq� β
2 defines a p1�βq-thinning function whose p1�βq-thinned sample is distributed

according to µ.

Proof. Let X1, X2 � Unifpr0, 1qdq and U1 � Unifpr0, 1sq, independent from one another and let Z 1

be equal to X1 if U1 ¤ fpX1q and to X2 otherwise, so that Z 1 is a p1�βq-thinned sample of f . We
compute

PpZ 1 P Aq � P
�
X1 P A,U1 ¤ fpX1q

	
� P

�
X2 P A,U1 ¡ fpX1q

	
�

»
A

�
gpzq � β

2



dz �

»
r0,1qd

�
1� gpzq � β

2



dz � |A|

�
�
µpAq � β

2
|A|



�
�

1� 1� β

2



|A| � µpAq,

where |A| is the Lebesgue measure of A. The proposition follows.

Proposition 3.1 is pivotal in the indirect constructions of this paper. Rather than describing
thinning functions we shall describe a discrete time stochastic process on r0, 1qd whose n-th en-
try represents the location of the n-th ball. We then show that almost surely at every step the
distribution of the next ball is realizable as a p1�βq-thinned sample for some easily computable f .

3.4 Processes defined via a conditional density function

Let pΩ,Fq be the measurable space on pr0, 1qdqN with the sigma field generated by the cylindrical
Borel topology. We call an pΩ,Fq-measurable random variable a discrete time process on r0, 1qd.
Each process Z � tZnunPN of this sort is associated with a counting process ν � tνnunPN defined by
νn �

°n
i�1 δZi where δx is a dirac delta measure at x. We will only concern ourselves with processes

whose counting measure ν is Markovian. That is,

νn | ν1, . . . , νn�1
d� νn | νn�1.

These are processes satisfying that the distribution of Zn depends only on the overall locations of
the previous n� 1 balls, and not on their order.

One way to construct a exchangeable discrete time process on r0, 1qd is via a conditional density
function, which we define as sequence of measurable functions λnpνq, each of which takes as input
a counting measure of n elements in r0, 1qd and produces a density function λn of a probability
measure on r0, 1qd. Given such λn, we write

λAn pνq �
»
A
λnpνqpxqdx,

for every measurable A � r0, 1qd.
Given such a conditional density function λ, we define the process Z associated with it by

P
�
Zn P A

��� tZiui n	 � λAn pνn�1q . (1)

We call Z the process associated with counting measure ν and conditional density λ.
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3.5 Balancing pairs

Let Z be a process on r0, 1qd associated with counting measure ν and conditional density λ.
Given two disjoint sets A,B � r0, 1qd satisfying |A| � |B| � κ, we say that Z is θ-balancing

with respect to the pair tA,Bu from time s P N if almost surely, κ ¤ λAn � λBn ¤ 3κ and

λAn ¥ λBn � θκ if νnpAq   νnpBq,
λBn ¥ λAn � θκ if νnpBq   νnpAq,

(2)

for all n ¥ s.
We now turn to show a key concentration property of balancing pairs. Assume that Z is

θ-balancing with respect to tA,Bu from time s and let n ¥ s. By Equation (1) we have,

P
�
Zn P A

��� tZiui n, Zn P AYB, νnpBq   νnpAq
	
� λAn pνn�1q
λAn pνn�1q � λBn pνn�1q

¤
1
2

�
λAn pνn�1q � λBn pνn�1q � θκ

	
λAn pνn�1q � λBn pνn�1q

� 1

2
� 1

2

θκ

λAn pνn�1q � λBn pνn�1q ¤
1

2
� θ

6
. (3)

3.6 Concentration bounds for balancing processes

The following lemma shows that being θ-balancing with respect to a pair tA,Bu implies exponential
concentration of the difference between the number of balls in A and B.

Lemma 3.2. Let s P N, 0   θ   1 and A,B � r0, 1qd be disjoint. If Z is a process on r0, 1qd which

is θ-balancing with respect to tA,Bu from time s and satisfies E
�

exp
�
θ |νspAq�νspBq|2

�	 ¤ 150
θ2 , then

for all n ¥ s we have

E

�
exp

�
θ
|νnpAq � νnpBq|

2

	�
¤ 150

θ2
.

To show Lemma 3.2 we shall employ the following super-martingale type criterion.

Lemma 3.3. Let pMkqk¥0 be random variables taking values in R� which satisfy

EpMk | Fk�1q ¤ αMk�1 � β

for some 0   α   1, β ¡ 0, where Fn � σ
�pMkq0¤k¤n

�
. Then

EpMkq ¤
�

1� αk
	 β

1� α
� αkEpM0q for all k.

Proof.
EpMkq � EpEpMk | Fk�1qq ¤ αEpMk�1q � β.

Using induction over k the lemma follows.

We are now ready to prove Lemma 3.2.
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Proof of Lemma 3.2. Let A,B � r0, 1qd be disjoint, 0   θ   1 and s P N, and assume that Z is a
process on r0, 1qd which is θ-balancing with respect to tA,Bu from time s, which satisfies

E

�
exp

�
θ
|νspAq � νspBq|

2

	�
¤ 150

θ2
(4)

Writing Fn � σ
�pZkq0¤k¤n�, we observe that for any b ¡ 0,

E

�
exp

�
θ
|νnpAq � νnpBq|

2

	 ��� exp
�
θ
|νn�1pAq � νn�1pBq|

2

	
� e

b�θ
2 ,Fn�1

�

¤ e
b�θ
2

�
1� κ� κ

�
1� θ{3

2
e
θ
2 � 1� θ{3

2
e�

θ
2


�

� e
b�θ
2

�
1� κ� κ

�
cosh

θ

2
� θ

3
sinh

θ

2


�

¤ e
b�θ
2

�
1� κp1� e�

θ2

24 q
�

Where the first inequality follows from (3) and the last inequality uses a Taylor expansion of coshpxq
and sinhpxq.

For b � 0, we have

E

�
exp

�
θ
|νnpAq � νnpBq|

2

	 ��� exp
�
θ
|νn�1pAq � νn�1pBq|

2

	
� 1, Fn�1

�

¤ 1� 3κ� 3κe
θ
2

¤ 1� κp1� e�θ
2{24q � 3κe

θ
2 .

Using the above bounds, we obtain

E

�
exp

�
θ
|νnpAq � νnpBq|

2

	 ��� exp
�
θ
|νn�1pAq � νn�1pBq|

2

	
, Fn�1

�

¤ α

�
exp

�
θ
|νn�1pAq � νn�1pBq|

2

	�
� β

with α � 1 � κp1 � e�θ
2{24q and β � 3κe

θ
2 . Taking Mk � exp

�
θ |νkpAq�νkpBq|2

	
and observing that

for all n we have σ
�pMkq0¤k¤n

� � Fn, we apply Lemma 3.3 together with (4) to get

E

�
exp

�
θ
|νnpAq � νnpBq|

2

	�
  p1� αnq 3κe

θ
2

κp1� e�θ2{24q � αnE
�

exp
�
θ
|νspAq � νspBq|

2

		
  150

θ2
.

We also make the following observation.
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Observation 3.4. Let A1, . . . , Ak be a collection of random variables such that for all i P rks we
have EpexppcAiqq   C for some constants c, C. Then for any non-negative a1, . . . , ak such that°k
i�1 ai ¤ 1, we have

E

�
exp

�
c

ķ

i�1

aiA
i
	�

  C.

Proof. This is an immediate consequence of Jensen’s inequality and the convexity of the exponential
function.

Finally, we require the following estimate.

Observation 3.5. Let Z be an process on r0, 1qd, associated with counting measure ν and condi-
tional density λ with λnpxq   2 for all n, x. Let D � r0, 1qd be a measurable set. Then, for any
s P N, 0   α   1, we have

EpeαpνspDq�ν0pDqqq ¤ e4s|D|α

Proof. If |D| ¡ 1
2 , the inequality is straightforward. Otherwise, Epeαpνs�ν0qDq is bounded from

above by the moment generating function of Binomial distribution with parameters s and 2|D|,
which is p1 � 2|D|peα � 1qqs. Using the fact that 1 � x   ex   1 � 2x for all x P r0, 1s, we bound
this by e2s|D|pe

α�1q ¤ e4s|D|α.

4 Haar Functions

A diadic interval is an interval of the form I � ra2�`, pa� 1q2�`q for `, a P Z. We call ` the order
of I and write OpIq � `.

Given a diadic interval I of order `, we define Ieven and Iodd as its left and right halves – in
particular, they are the unique diadic intervals satisfyingOpIevenq � OpIoddq � `�1, inf Ieven � inf I
and sup Iodd � sup I. Each diadic interval I satisfying Ieven � r0, 1q is associated with a Haar
function HI : r0, 1q Ñ t�1, 0, 1u defined by

HIpxq �

$'&
'%

1 x P Ieven,
�1 x P Iodd,
0 otherwise,

and we define the order of HI by OpHIq � OpIevenq � OpIoddq � OpIq � 1. It is not hard to
verify that Haar functions associated with different diadic intervals are orthogonal with respect to
the inner product xf, gy :� ³

r0,1qd fptqgptqdt, and that they forms an orthogonal basis for L2pr0, 1sq.
This is known as the Haar wavelet basis. Note that the functions here are not normalized so that
xH,Hy � |supppHq| ¤ 1. Also note that the indicator function of any diadic interval I of order `
is orthogonal to all Haar functions of order greater than `.

These notion generalize naturally to d ¡ 1. A diadic rectangle R � Rd is the cartesian product of
diadic intervals I1�� � ��Id. The Haar function HR : r0, 1qd Ñ t�1, 0u associated with this rectangle
isHR �

±d
i�1HIi . The orders of these are given byOpRq :� °d

i�1OpIiq andOpHRq �
°d
i�1OpHIiq.

Write Hh1
h0
�  

HR : h0 ¤ OpRq ¤ h1
(

for the set of diadic Haar functions on r0, 1qd of order

between h0 and h1. As before, Haar functions form the orthogonal Haar wavelet basis of L2pr0, 1sdq.
For a Haar function we also define

H� :� tx P r0, 1qd : Hpxq � 1u and H� :� tx P r0, 1qd : Hpxq � �1u,
so that xνt, Hy � νtpH�q � νtpH�q.
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4.1 Writing arbitrary rectangles in terms of Haar functions

As mentioned in the overview, our strategy maintains balance with respect to all Haar functions
up to a certain granularity in order to control the discrepancy on arbitrary rectangles. To this
end we first express every diadic rectangle as a linear combination of Haar functions. We then use
this construction to use Haar functions to represent every rectangle whose corners are located on a
lattice, and later to approximate any arbitrary rectangle.

Proposition 4.1. For any diadic rectangle R in r0, 1qd of order ` we have

1R �
¸

HPH`0

x1R, Hy
xH,Hy H.

Moreover,
°
HPH`0

��� x1R,Hy
xH,Hy

��� � 1.

Proof. Since H8
0 is an orthogonal basis for L2pr0, 1sdq, it would suffice to show that x1R, H 1y � 0

for all H 1 P H8
`�1.

To this end let H 1 be a Haar function of order greater than ` and denote H � ±d
i�1Hi and

R � bdi�1Ii. Since OpHq ¡ OpRq there must exist j P rds such that OpHjq ¡ OpIjq. As noted

before, this implies that x1Ij , Hjy � 0. Since 1R � ±d
i�1 1Ii and H � ±d

i�1Hi we obtain that

x1R, Hy �
±d
i�1x1Ii , Hiy � 0 as required.

To see the last part, observe that if x1Di , Hy � 0 then either Di � supppH�q or Di � supppH�q.
Hence for any point x P Di we have

x1Di ,Hy

xH,Hy Hpxq ¥ 0 from which the last part follows.

Define a lattice rectangle in r0, 1qd of order ` P N to be a rectangle whose corners are on the lattice
2�`Z. In the next proposition we provide a decomposition of lattice rectangles of order ` into diadic
rectangles.

Proposition 4.2. Every lattice rectangle of order ` ¥ 1 in r0, 1qd can be written as the disjoint
union of at most p2`qd disjoint diadic rectangles of order at most `.

Proof. We begin by showing that any interval of order ` ¥ 1 in d � 1 can be written as the disjoint
union of at most 2` disjoint diadic intervals. We prove using induction on `. For the case ` � 1 the
statement is straightforward. For a diadic interval I � ra2�`, b2�`q with 0 ¤ a   b ¤ 2` we write

I � ra2�`, a12�`q Y ra12�`, b12�`q Y rb12�`, b2�`q
where a1 � a � 1a is odd, b1 � b � 1b is odd and we interpret rc, cq � H. Since the middle interval
is of order at most ` � 1, by our induction assumption, it can be written as a disjoint union of at
most 2`� 2 diadic intervals.

For general d, given R � bdj�1Ij with Ij � raj2�`, bj2�`q this allows us to decompose each Ij
into disjoint diadic intervals Ij1, . . . , Ijkj for kj ¤ 2`. Writing R � �

1¤mj¤kj
bdj�1Ijmj .

Finally, we bound the error when approximating any rectangle by a pair of lattice rectangles, one
of which is slightly larger and one which is slightly smaller.

Proposition 4.3. Let `, d P N. For any rectangle R contained in r0, 1qd there exist lattice rectangles
R�, R� of order at most d` such that R� � R � R� and 0 ¤ |R1zR2| ¤ 2d2�`.

Proof. Let R � bdi�1rxi, yiq � r0, 1qd, and write R� � bdi�1rr2`xis2�`, t2`yiu2�`q and R� �
bdi�1rt2`xiu2�`, r2`yis2�`q. Clearly R� � R � R�. Writing ri � t2`yiu2

�` � r2`xis2
�` we have

|R�| �±d
i�1 ri and |R�| ¤±d

i�1pri � 21�`q. The Propositions follows.
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5 The Haar p1� βq-thinning strategy

In this section we present the Haar p1� βq-thinning strategy which guarantees asymptotically low
discrepancy, and show that it satisfies Theorem 2.

Throughout, let h � hpnq � tlog nu. This will serve as the largest order Haar function being
considered by our strategy at time n. We denote W psq � °s

i�1

�
i�d�1
d�1

�
and let Z be a process on

r0, 1qd associated with counting measure ν and conditional density λ, defined by

λnpνnqpxq :� 1� β

2W phq
¸

HPHh1

sgnxνn,�HyHpxq. (5)

We begin by observing that

Observation 5.1. Z is a p1� βq-thinned sample of a p1� βq-thinning strategy.

Proof. Observe that
³
r0,1q2 Hpxqdx � 0 for all H P Hh1 and therefore,

³
r0,1q2 λnpνnqpxqdx � 1. We

only need to verify that the condition of Proposition 3.1 is satisfied at every n P N, i.e. that for all
x P r0, 1sd and n P N we have

1� β

2
¤ λpxq ¤ 1� β

2
,

which follows immediately from (5), and from the fact that for all x P r0, 1q we have

¸
HPHh1

|Hpxq| � |ts P Nd0, 0  
ḑ

i�1

si ¤ hu| �
ḩ

i�1

�
i� d� 1

d� 1



�W phq. (6)

In light of the claim we call the strategy producing Z the Haar p1� βq-thinning strategy.
Next, in Section 5.1 we discuss the complexity of realizing this strategy. In Section 5.2 we show

exponential concentration properties related to Z. Finally in section 5.3 we use these to prove
Theorem 2.

5.1 Realizing the Haar thinning strategy

In this section we discuss the time and memory complexity required for the overseer to realize the
Haar thinning strategy. In particular we show the following.

Proposition 5.2. In order to apply the p1 � βq�Haar thinning strategy the overseer requires
Opn logd nq memory and Opn logd nq computations to produce the first n samples.

Proof. Recall that in our set-up the overseer is given a uniformly distributed point Xn�
°n�1
i�1 χi

in

r0, 1qd. Then, relying upon a data structure which he maintain, the overseer he must compute a
threshold τn P r0, βs. Then with probability τn the value of χn is set to be 1 and otherwise it is set
to be 0. In light of Proposition 3.1, in order to realize Z we must set τn � λnpνnqpxq � β

2 . The rest
of the section discusses the complexity of computing this function.

We remark that, as the custom goes, complexity estimates are given for integer computations
and ignore the increase in storage, reference and computation costs for large numbers. If these were
taken into account additional poly-log log n factors would multiply both time and memory.

As before, let n P N, recall that h � hpnq � tlog nu and W psq � °s
i�1

�
i�d�1
d�1

�
, and denote by

HI a Haar function corresponding to the diadic rectangle I. For each function HI of order ` with
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Figure 1: Left, top. ν15 the empirical measure of a sequence sampled according to our thinning
strategy at n � 15. Left, middle.

°
HPH3

1
sgnxνn,�HyHpxq, averaged on diadic squares of side

1/4 along with a visual representation of the conditional density of λ15 averaged on diadic squares
of side 1/4. Warmer color indicates higher density. Left, bottom. The conditional density of λ15
along with a visual representation. Right. Haar functions of orders one to three, multiplied by
sgnxνt,�Hy. Gray indicates the value 0, blue – the value �1 and red – the value 1. Notice that
the fully grayed out functions of order three are the ones which are perfectly balanced.
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I � I1 � � � � � Id and OpIiq � `i so that ` � 1 �°
`i, we call `1, . . . , `d the shape of I. At time n

we maintain an array An of gradually increasing size. An consists of data cells corresponding to
each Haar function in Hh1 . Each of these cells associated with HI P Hh1 contains the present value
of xνn, HIy. Observe that the size of such an array is bounded by the total number of shapes which
is W phq � Oplogd nq, multiplied by the maximal number of elements of each shape of order ` ¤ h
which is 2`�d � Opnq, giving total memory complexity of Opn logd nq, as required.

The arrangement of A is as follows. We order the data cells first by their order `, then lexico-
graphically by shape and then lexicographically by the point whose coordinate sum is minimal in
I. With this arrangement we can find the cells of all Haar functions of order less than ` containing
a particular point at the cost of a constant number of arithmetic operations per function.

Given this array, computing the value of τn takes W phq � Oplogd nq operation, one for each
element of the sum. Using this we can determine the value of Zn. We then update An by altering
the value of all entries corresponding to Haar functions associated with rectangles containing Zn.
As noted in (6), this takes W phq � Oplogd nq operations. In addition, for each n such that hpnq ¡
hpn�1q we must allocate additional entries to A for the new

�
h�d�1
d�1

�
shapes of order hpnq. There are

less than 2n Haar functions for each of these shapes so that this operation takes less than 2nW phq
operations. We then go over all points Z1, . . . , Zn and update the entries of An corresponding to
Haar functions associated with the new shapes at the cost of OpnW phqq steps. Hence to produce
the first n entries and the time complexity is

Opn logd nq �
tlognu¸
s�1

�
Op2d�sW psqq �Op2sW psqq

	
� Opn logd nq,

concluding the proof of the proposition.

5.2 Concentration properties of Z

We begin by showing that diadic projections of Z have a balancing nature. Recall that h � tlog nu.

Proposition 5.3. For any Haar function H on r0, 1qd we have

E
�
e
β|xνn,Hy|

2W phq



  600W phq2

β2
. (7)

Proof. Let H be a Haar function on r0, 1qd of order ` P N. We use different arguments for times
before and after 2`. We begin by showing that Z is β

W phq -balancing with respect to tH�, H�u
starting from time s � 2`. We write κ :� |H�| � |H�|, let 2` ¤M ¤ n and observe that

λH�
M � λH�

M � xH,λy �
C
H, 1� β

2W ptlogM uq
¸

GPHtlogMu
1

Gpxq sgnxνM ,�Gy
G

� 2βκ sgnxνM ,�Hy
2W ptlogM uq .

Hence the conditions of (2) are satisfied with θ � β
W phq . Next we show (7). Indeed, for any time

M ¤ 2`, we have

Epe
β

2W phq
|xνM ,Hy|q ¤ Epe

β
2W phq

xνM ,|H|yq
piq
¤ e

2β
W phq

2minpd,hq piiq¤ 100   600W phq2
β2

. (8)
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Here inequality (i) follows from Observation 3.5 using M ¤ 2`, |D| � |supppHq| ¤ minp2d�`, 1q. To
see inequality (ii) we claim that W phq ¥ 2minph,dq�1 . Indeed, if h ¤ d, then

W phq ¥
�
h� d� 1

h



¥ dh

h!
¥ hh

h!
¥ 2h�1,

while if h ¡ d, then

W phq ¥
�
h� d� 1

d� 1



¥ hd�1

pd� 1q! ¥
dd�1

pd� 1q! ¥ 2d�1.

From this we also deduce that (7) holds in the case n ¤ 2`. By applying Lemma 3.2 with tH�, H�u,
s � 2` and θ � β

W phq we get that (7) holds also in the case n ¡ 2`, concluding the proof of the
proposition.

Next, we use this to show concentration of νn on low-order lattice rectangles.

Proposition 5.4. For any n P N and any lattice rectangle R � r0, 1qd with of order at most h we
have

E
�
e
β|νnpRq�n|R||

2d�1hdW phq



¤ 600W phq2

β2
.

Proof. Let R be a lattice rectangle of order at most h. By Proposition 4.2 there exist disjoint diadic
rectangles D1, . . . , Dk of order at most h such that k ¤ p2hqd and R � Yki�1Di. By Proposition 4.1,
each Di satisfies

1Di �
¸

HPHh0

x1Di , Hy
xH,Hy H,

with
°
HPH`0

��� x1Di ,Hy

xH,Hy

��� � 1. We observe that x1Di ,1r0,1qdy � n|Di| where 1r0,1qd is the only Haar

function of order 0. We conclude that there exist coefficients aH forH P Hh1 with
°
HPHh1

|ai| ¤ p2hqd
such that

1R �
¸

HPHh1

aiH � n|R|.

By Proposition 5.3, together with Observation 3.4, this implies that

E
�
e
β|νnpRq�n|R||

2p2hqdW phq



¤ 600W phq2

β2
, (9)

as required.

5.3 Proof of Theorem 2

Let n ¥ 4 and observe for n   2d the theorem is straightforward as DispZnq ¤ n almost surely. As
before denote h � tlog nu. We begin by bounding W phq. We compute

W phq ¤ hph� d� 1qd�1

pd� 1q! ¤ 2d�1hd

pd� 1q! ¤ 25

�
h

2


d
.

Next, let R be a lattice rectangle of order at most h. By Proposition 5.4 we have

E
�
e
β|νnpRq�n|R||

50h2d



¤ E

�
e
β|νnpRq�n|R||

2d�1hdW phq



¤ 600W phq2

β2
,
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so that by Markov’s inequality for all ∆1 ¡ 0 we have

P
����νnpRq � n|R|

��� ¥ ∆1 log2d n
	
¤ 219 log2d n

22dβ2
e�

∆1β
50 .

Observe that there are at most n2d
2

lattice rectangle of order at most d log n. Denoting Ri �
tlattice rectangle R � r0, 1qd : OpRq ¤ iu we have

P
�

sup
RPRi

���νnpRq � n|R|
��� ¥ ∆1 log2d n



¤ 219 log2d n

22dβ2
n2d

2
e�

∆1β
50 .

By proposition 4.3 applied with ` � tlog nu, for each rectangle R in r0, 1qd there exist R�, R� P
Rd logn such that R� � R � R� and |R�| ¤ |R�| � 4d{n. Hence

νnpR�q�n|R�| � 4d ¤ νnpR�q�n|R�| ¤ νnpRq�n|R| ¤ νnpR�q�n|R�| ¤ νnpR�q�n|R�| � 4d.

Hence, for ∆1 ¡ 0 we get

P
�

DispZnq ¥ ∆1 log2d n� 4d
	
¤ β�2 exp

�
2d2 log n

log e
� logplog nq � logp2dq � 19� 2d

log e
� β∆1

50



.

Plugging in ∆1 � β�1p∆� 1000� 100d2 log nq we obtain

P
�

DispZnq ¥ β�1 log2dpNqp∆� 1000� 100d2 log nq
	
¤ β�2e�

∆
50 ,

as required.

5.4 Proof of Claim 2.1

It would suffice to show the Z is unbiased for 1R where R � bdi�1Ii is a diadic rectangle `. To see
this we show that

E

�
1

n

ņ

i�1

1RpZiq
�
� E

�
1

n

ņ

i�1

1R1pZiq
�

(10)

for any R1 � bdi�1I
1
i with OpI 1iq � OpIiq. This is a consequence of the diadic tree symmetry. To

see this, consider the binary representation of R and R1 in each dimension and write Di for the
digits in which they disagree in dimension i. Let g : r0, 1qd Ñ r0, 1qd be the measure preserving
bijection which maps a point x to a point gpxq whose binary representation in each coordinate i is
flipped exactly on Di. Now couple the sequence Xi and with a sequence X 1

i � gpXiq and apply the
same strategy to produce tZjujPN and tZ 1

jujPN using the same sequence U used to determine our
thinning decisions as in Section 3.1. Observe that in this case Z 1

i � gpZiq so that for all n we have

1

n

ņ

i�1

1RpZiq � 1

n

ņ

i�1

1R1pZ 1
iq,

and hence, as Z 1
i
d� Zi, (10) holds.
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6 The greedy-Haar strategy

In this section we describe the empirically more efficient variant of our strategy called the greedy-
Haar strategy. We then provide heuristic justification for Conjectures 1 and 2.

Unlike the case of the Haar strategy, we describe the strategy directly by

fnppZ1, . . . , Zn�1q, xq �

$''''''&
''''''%

1
°

HPHh1

sgnxνn,�HyHpxq   0

1
2

°
HPHh1

sgnxνn,�HyHpxq � 0

0
°

HPHh1

sgnxνn,�HyHpxq ¡ 0

The name greedy-Haar corresponds to the a point of view by which each Haar function H wishes to
reduce xνn, Hy. Hence we compute

°
HPHh1

sgnxνn�1x, Hy�
°
HPHh1

sgnxνn, Hy and if this quantity
is positive we keep x, if it is negative we reject it, and if it is 0, we break the tie by a fair coin-toss.

6.1 Heuristic analysis

We begin by describing the logd{2pnq heuristic improvement to Theorem 1, giving rise to Con-
jecture 1. We then describe an additional heuristic logd{2pnq improvement stemming from the
greedy-Haar strategy which adds up to Conjecture 2.

Improvement of the analysis (Conjecture 1). We conjecture that the usage of Observa-
tion 3.4 to obtain (9) is not tight. In this transition we decompose each rectangle R to the sum Haar
functions whose coefficients add up to at most logd2 n. We then bound the rectangle’s discrepancy
by a triangle inequality using the bound for each individual Haar funciton. However, for a rectangle
R and a Haar function h we have |x1R, hy|{xh, hy ¤ 1, so the coefficient of each particular Haar
function is at most 1. Hence, assuming sufficient independence between the coefficients x1R, hy for

different Haar functions h, we should expect the sum of xν,Hy to produce a discrepancy of log
d{2
2 n,

and not logd2 n.
Better concentration inequalities for the greedy-Haar strategy (Conjecture 2). Let

H P Hh1 be a particular Haar function and assume that xνn,�Hy ¡ 0. Denote by k the number
of elements of Hh1 whose support contains a given point. Also recall the notation G� and G�, the
positive and negative domains of a Haar function G. We examine the probability of that a point falls
in H� compared with the probability that it falls in H�. Observe that every other Haar function
G P Hh1ztHu is orthogonal to H so that psgnxνn,�GyqxH,Gyq � 0. In addition, if we approximate
the signs of xνn,�Gy for G P Hh1ztHu by independent random variables , then their total value

would have a binomial(12 , k) distribution, so that typically on a region of size k�1{2

2 supppHq they are
tied and the sign of xνn,�Hy determines whether to accept or reject. Hence we expect the process
xνn,�Hy to behave roughly like an Θp1{hd{2q balancing process which would yield an improvement

of log
d{2
2 n to the bound.

7 Empirical results

In this section we provide simulation results both for the Haar and the greedy-Haar 2-thinning
strategies. As evident from these simulations, the greedy-Haar strategy is significantly better than
the Haar strategies, and both strategies perform somewhat better than shown by our Theorems.
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Strategy n � 56 n � 27 n � 29 n � 211 n � 213 n � 215 n � 217 n � 219

Monte Carlo 8.6 (2.5) 14.3 (3.3) 25.3 (6.1) 55.8 (3.5) 108.6 (18.4) 247.1 (43.9) 415.8 (38.4) 835.3 (255.2)
Haar 8.1 (2.6) 11.7 (2.2) 28.3 (4.9) 43.5 (10.2) 97.3 (25.4) 128.8 (40.9) 251.4 (59.1) 399.8 (134.7)
greedy-Haar 5.9 (0.7) 7.8 (1.4) 13.0 (8.4) 20.3 (5.5) 28.0 (2.9) 37.0 (2.9) 51.9 (1.9) 67.5 (4.0)

Table 1: Some Values of Discrepancy for different strategies in one-dimension. Given are the mean
(and standard error) across 20 experiments.
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Figure 2: Plots of discrepancy (averaged over 20 experiments) in one dimensions for Monte Carlo
(blue), Haar 2-Thinning (green) and Greedy-Thinning 2-Thinning (red) strategies. The plots are
provided both in linear and log-scale.

We begin by showing discrepancy results, and then discuss the bias of particular rectangles. In
all simulations we compare the three methods, i.i.d. samples which we refer to here as Monte-Carlo,
Haar 2-thinning, and greedy-Haar 2-thinning. Unfortunately the simulations are not sufficient
to determine the power of the log in the decay of the discrepancy with sufficient certainty to
scientifically estimate the exponent of the log in Conjecture 2.

7.1 Main Simulations

We have averaged 20 simulated outputs of 219 samples for each of the three strategies in one
dimension. For this case, we have computed the rectangle R which has maximal |νN pRq � |R||
whenever N � r2ks. Our results are summarized in Table 1 and Figure 2.

7.2 Other Simulations

We were also interested in the performance of the strategies on a diadic rectangles and on a given
rectangle whose decomposition intro Haar-functions has high coefficients. These show the validity
of our estimates for such rectangles, and verify the logic of the proof. For this purpose we chose
the intervals r0, 12 sd and r13 , 56 sd, the first of which is diadic while the other has a very complex
diadic decomposition. Comparison between those rectangles in one and two dimensions are given
in Table 2 and Figure 3. The results clearly indicate the the biases of these rectangles are dominated
by a different power of logpnq.
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d � 1 d � 2

Monte Carlo Haar greedy-Haar Monte Carlo Haar greedy-Haar

R � r0, 1{2qd
n � 10 1.0 (1.0) 1.2 (0.9) 1.1 (0.7) 1.1 (0.6) 1.6 (1.2) 0.8 (0.5)

n � 100 4.9 (3.4) 5.3 (3.0) 1.1 (1.5) 3.2 (2.2) 3.8 (2.7) 1.9 (1.7)

n � 1000 10.1 (7.0) 7.9 (6.2) 2.0 (2.2) 8.2 (6.1) 7.5 (4.3) 4.7 (3.4)

n � 10000 42.5 (36.2) 22.9 (18.3) 2.5 (2.7) 22.4 (17.9) 27.1 (17.9) 5.1 (4.5)

n � 100000 102.6 (57.3) 28.2 (26.7) 3 (2.2) 76.2 (54.8) 73.1 (75.0) 6.7 (4.9)

R � r1{3, 5{6qd
n � 10 1.2 (0.8) 1.4 (0.9) 0.9 (0.6) 1.1 (0.7) 1.1 (.06) 1.2 (0.7)

n � 100 3.4 (2.2) 3.1 (2.6) 2.8 (1.7) 3.1 (2.2) 4.1 (3.0) 3.0 (1.7)

n � 1000 10.5 (8.5) 9.1 (10.1) 5.4 (4.0) 10.2 (6.7) 12.9 (7.4) 5.0 (3.1)

n � 10000 36.5 (25.0) 22.9 (17.8) 6.5 (5.7) 36.1 (22.3) 40.6 (24.8) 13.8 (12.5)

n � 100000 123.9 (118.1) 57.3 (37.7) 10.4 (6.2) 102.3 (87.4) 131.4 (88.7) 30.6 (22.1)

Table 2: Mean (standard error) biases for different rectangles in one and two dimensions.
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Figure 3: Plots of the bias |νpRq � |R|| in logarithmic scale averaged over 20 experiments for
different rectangles R in one and two dimensions.
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7.3 Observations from the simulations

We draw the following observations from the simulations

• Both Haar and greedy-Haar seem to be always at least as good as Monte-Carlo sampling.

• Greedy-Haar strategy seem to be always at least as good the Haar strategy.

• In one dimension greedy-Haar performs significantly better than Monte-Carlo sampling for
as little as 50 samples.
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