
The Brownian web is a two-dimensional black

noise

Tom Ellis∗ Ohad N. Feldheim†

March 2012

Abstract

The Brownian web is a random variable consisting of a Brownian
motion starting from each space-time point on the plane. These are
independent until they hit each other, at which point they coalesce.
Tsirelson mentions this model in [10], along with planar percolation,
in suggesting the existence of a two-dimensional black noise. A two-
dimensional noise is, roughly speaking, a random object on the plane
whose distribution is translation invariant and whose behavior on dis-
joint subsets is independent. Black means sensitive to the resampling
of sets of arbitrarily small total area.

Tsirelson implicitly asks: “Is the Brownian web a two-dimensional
black noise?”. We give a positive answer to this question, providing
the second known example of such after the scaling limit of critical
planar percolation.

1 Introduction

In this paper we study a stochastic object called the Brownian web. We
research this object in the context of the theory of classical and non-classical
noises, developed by Boris Tsirelson (see [11] for a survey). Our main result is
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that, in the terminology of this theory, the Brownian web is a two-dimensional
black noise. Roughly speaking, the Brownian web is a random variable which
assigns to every space-time point in R×R a standard Brownian motion start-
ing at that point. The motions in each finite subcollection are independent
until the first time that one hits another and from thereon those two co-
alesce, continuing together. This object was originally studied more then
twenty-five years ago by Arratia [1], motivated by a study of the asymptotics
of one-dimensional voter models, and later by Tóth and Werner [7], moti-
vated by the problem of constructing continuum “self-repelling motions”, by
Fontes, Isopi, Newman and Ravishankar [3], motivated by its relevance to
“aging” in statistical physics of one-dimensional coarsening, and by Norris
and Turner [5] regarding a scaling limit of a two-dimensional aggregation
process. A rigorous notion of the Brownian web in our context can be found
in [9] for the case of coalescing Brownian motions on a circle. The above also
provide their own constructions of the Brownian web.

The Brownian web functions as an important example in the theory of
classical and non-classical noises. In this theory a noise is a probability space
equipped with a collection of sub-σ-fields indexed by the open rectangles
(possibly infinite) of Rd. The sub-σ-field associated to a rectangle is intended
to represent the behavior of a stochastic object within that rectangle. The
σ-fields must satisfy the following three properties:

• the σ-fields associated to disjoint rectangles of Rd are independent,

• translations on R
d act in a way that preserves the probability measure,

• the σ-field associated to a rectangle is generated by the two σ-fields
associated to two smaller rectangles which partition it.

Two natural examples of noises are the Gaussian white noise and the Poisson
noise. These noises are called classical, or white, meaning that resampling
of a small portion of Rd doesn’t change the observables of the process very
much.

The foundational result of Tsirelson and Vershik [8] showed that there
exist non-classical noises. Indeed they showed the existence of non-classical
noises that are as far from white as could be, and these are called black.
The defining property of a black noise is that all its observables are sensitive,
i.e. for any particular observable, resampling a small scattered portion of the
noise renders that observable nearly independent of its original value. (For
a thorough discussion of black and white, classical and non-classical noises
see [11]). Tsirelson showed in [10] (Theorem 7c2) that the Brownian web,
when considered as a time-indexed random process, is one-dimensional black
noise. We extend this result by showing:
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Theorem 1.1. The Brownian web is a two-dimensional black noise.

This makes the Brownian web only the second known two-dimensional
black noise after Schramm and Smirnov’s recent result on the scaling limit
of critical planar percolation [6].

Of the three properties required for a process to be a noise, the first two,
i.e. translation invariance and independence on disjoint domains, hold triv-
ially for the Brownian web. Furthermore, once we have shown that the Brow-
nian web is a two-dimensional noise it will follow that it is a two-dimensional
black noise, through a general argument.

The main difficulty in proving Theorem 1.1 is to show that the σ-field
associated to any rectangle is generated by the two σ-fields associated to any
two rectangles that partition it. The major milestone towards this result is
to show the special case when the large rectangle is the whole plane, and the
smaller rectangles that partition it are the upper and lower half-planes.

Theorem 1.2. In the Brownian web, the σ-field associated to the whole
plane is generated by that associated to the upper half-plane and that asso-
ciated to the lower half-plane.

The rest of the paper goes as follows: in Section 2 we define the Brownian
web formally; in Section 3 we restate Theorem 1.2 as Theorem 3.1; we then
reduce this theorem to a convergence result for an auxiliary process which
we prove in Section 4. In Section 5 we extend Theorem 1.2 to hold for the
σ-fields associated to horizontal strips as well; in Section 6 we extend further
to all rectangles. In addition we define noises properly and conclude by
proving Theorem 1.1. Section 7 is devoted to remarks, open problems and
acknowledgements.

2 Definition of the Brownian web

The Brownian web is the continuum scaling limit of a system of independent-
coalescing random walks (see [9]). Constructing the continuum version raises
several technical difficulties addressed in [3],[5],[7]. Nonetheless, all the con-
structions share the following property, which we use as a definition:

Denote S = {(s, t) ∈ R
2 : s ≤ t}. A Brownian web on a proba-

bility space Ω is a (jointly) measurable mapping φ : Ω × S × R → R,
(ω, (s, t), x) 7→ φst(x) (suppressing ω in the notation) such that for every
finite collection of starting points (s1, x1), (s2, x2), ..., (sn, xn), the collection
of processes φs1·(x1), φs2·(x2), ..., φsn·(xn) forms a system of n independent-
coalescing Brownian motions.
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Figure 1: Some trajectories of the Brownian web. A partic-
ular trajectory is marked.

A system of n independent-coalescing Brownian motions is a finite col-
lection of stochastic processes (X1, X2, ..., Xn) such that each X i starts at
some point xi at some time si, and (X1, X2, ..., Xn) are independent until
the first time T at which X i(T ) = Xj(T ) for some i 6= j. From this time
onwards X i(T ) and Xj(T ) coalesce and continue with the rest of the Xk

(for k 6= i, j) as a system of n− 1 independent-coalescing Brownian motions.
Several trajectories of a Brownian web can be seen in Figure 1.

3 Recovering the web from half-planes

We introduce three σ-fields generated by the Brownian web, and use them
to restate Theorem 1.2 as Theorem 3.1.

Write X for the collection of trajectories comprising the whole web, that is
{t 7→ φst(x) : (s, x) ∈ R

2}, and F for the σ-field generated by the whole web,
i.e. generated by X . We further introduce F+ and F−, the σ-fields generated
by the web on the upper and lower half-planes respectively. Formally,

Definition. For any path f we write R+(f) for f stopped at the first time it
is outside the upper half-plane. R+(t 7→ φst(x)) is therefore the trajectory of
the web φ started at the point (s, x) and stopped at the first time it is outside
the upper half-plane (if (s, x) is outside the upper half-plane, f is stopped
immediately). We define F+ to be the σ-field generated by the collection of
paths {R+(X) : X ∈ X}, and define F− analogously.
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Note that F+ and F− are independent by the definition of a system of n
independent-coalescing Brownian motions.

For σ-fields Fa, Fb, Fc we write Fa = Fb ⊗ Fc when Fa is generated by
Fb and Fc (up to sets of measure 0), and Fb and Fc are independent. We
are now ready to restate Theorem 1.2.

Theorem 3.1. F = F− ⊗F+.

The difficulty is to show that F ⊆ F−⊗F+, because the reverse inclusion
follows directly from the definitions. To avoid having to state results as “for
all X ∈ X . . . ”, here and for the rest of the paper we write X for an arbitrary
element of X . This we do purely for the sake of notational simplicity.

F is generated by such processes, so our theorem reduces to the following
lemma.

Lemma 3.2. X is F− ⊗F+-measurable.

To prove this we must show that X can be recovered using trajectories
starting in the upper half-plane which stop when they hit 0, and trajectories
starting on the lower half-plane which stop when they hit 0.

To do so, we might have liked to recover X (starting on, say, the upper
half-plane) by following it until it hits 0, then by following its continuation
within the lower half-plane. However, this is impossible since when trajec-
tories of Brownian motion cross 0 they do so infinitely often within a finite
period of time.

To overcome this problem we introduce in Section 3.1 a process Xǫ, for
each ǫ > 0, which is F− ⊗ F+-measurable. In Section 4 we show that Xǫ is
an approximation of X in the sense that Xǫ converges to X (in probability)
as ǫ→ 0. This will imply that X itself is F− ⊗F+-measurable.

3.1 The perturbed process

From our arbitrary X we now construct Xǫ, a “perturbed” version of X,
which depends also on ψt, some Brownian motion independent of φ (measur-
able with respect to G, say, where G is independent of F).

In the definition of Xǫ we give the word “follows” two distinct meanings.
We say Xǫ follows φ on [s, u] if Xǫ

t = φst(X
ǫ
s) for t ∈ [s, u]. That is if the

trajectory of Xǫ follows the trajectory of the web starting from point Xǫ
s at

time s and up to time u. We say Xǫ follows ψ on [s, u] if Xǫ
t = Xǫ

s +ψt−ψs
for t ∈ [s, u].

Definition 3.3. The perturbed process Xǫ starts at the same time and po-
sition as X and alternates between two states. In state Sφ it follows φ while,
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Figure 2: A sample of a web trajectory and the correspond-
ing perturbed processes. The top left image depicts the per-
turbed process, with state Sψ in bold. The top right image
depicts the original web trajectory. The center image illus-
trates both processes together, showing the segments where
they coalesce.

in state Sψ it follows ψ. The process starts in state Sφ and the transition
from state Sφ to state Sψ occurs when Xǫ hits 0, while the transition from
state Sψ to state Sφ occurs when X

ǫ hits ±ǫ. See Figure 2 for an illustration
of sample paths of X and Xǫ.

The following lemma specifies in what sense the perturbed process is an
approximation of the trajectory of the web. Here and in the rest of the paper
the convergence is uniform on compacts in probability.

Lemma 3.4. Xǫ P
→ X as ǫ→ 0.

Lemma 3.2 reduces to Lemma 3.4.
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Proof of reduction. Xǫ is F− ⊗ F+ ⊗ G-measurable, so we use Lemma 3.4
to conclude that X is also F− ⊗ F+ ⊗ G-measurable. However, since X is
actually independent of G we can use a basic result on tensor products of
Hilbert spaces (for example Equation (2c8) of [12]) to conclude that X is in
fact F− ⊗F+-measurable.

We devote the following section to the proof of Lemma 3.4.

4 Convergence of the perturbed process

In this section we prove that Xǫ P
→ X as ǫ → 0. This statement depends

only on the joint distribution of X and Xǫ. We therefore define Y (ǫ) = Y =
(Xǫ, X) (generally suppressing the ǫ dependence in the notation). Let us
describe the distribution of Y as a two-dimensional random process.

We classify the behavior of the process into three states according to the
behavior of Xǫ with respect to X.

• If Xǫ is in state Sφ and is coalesced with X we say Y is in state S1D
φ .

• If Xǫ is in state Sφ and is not coalesced with X we say Y is in state
S2D
φ .

• If Xǫ is in state Sψ we say Y is in state S2D
ψ .

Y starts in S1D
φ . From S1D

φ , Y can only transition to S2D
ψ . This transition

occurs when Y hits the origin, as the coalesced X and Xǫ will continue
together until they leave their current half-plane. From S2D

ψ , Y can only
transition to S2D

φ . This transition occurs when Xǫ leaves the (−ǫ, ǫ) interval
(i.e. Y hits either of the x = ±ǫ lines). From S2D

φ , Y can either transition
to S1D

φ if X and Xǫ coalesce (i.e. Y hits the line x = y) or transition to S2D
ψ

if Xǫ hits 0 (i.e. Y hits the x = 0 line). States and possible transitions of Y
are summarized in Figure 3.

The form of the labels given to the states is justified by the following.

Observation. In S1D
φ , Y follows the law of a (time scaled) one-dimensional

Brownian motion on the line x = y. In S2D
φ and S2D

ψ , Y follows the law of a
two-dimensional Brownian motion.

Additionally observe that by the scale-invariance of Brownian motion,
the distribution of the sample paths of Y (ǫ)/ǫ is independent of ǫ (modulo
time scaling).

Define Aδ = {(x, y) : |x − y| = δ}. To prove Lemma 3.4 we use the
following property of Y :

7



State Illustration Law Next Trans. Cond.

Xǫ

S1D
φ equal S2D

ψ hits 0+ε

X

-ε

X
ε

S2D
φ indep.

S2D
ψ hits 0

+ε

X

-εX
ε

S1D
φ hits X

S2D
ψ indep. S2D

φ hits ±ǫ+ε

X

-ε

X
ε

Y = (x, y)

S1D
φ equal S2D

ψ x = y = 0

x = Xǫ

-ε +ε

ε
X

X

y = X

S2D
φ indep.

S2D
ψ x = 0+ε

ε
X

X

S1D
φ x = y

S2D
ψ indep. S2D

φ x = ±ǫ

-ε +ε

ε
X

X

Figure 3: Illustrated states and transitions of Y
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Lemma 4.1. For given P > 0, δ > 0 the probability that Y hits Aδ before
it hits (P, P ) is o(1) as ǫ→ 0.

We delay the proof of Lemma 4.1 to Section 4.1.

Proof of Lemma 3.4. Write s for the time at which Y starts. Lemma 3.4 is
equivalent to: for all δ > 0, u > s

P(Yt ∈ {(x, y) : |x− y| < δ} for all t ∈ [s, u]) → 1 as ǫ→ 0.

The above statement can be rephrased as

For all δ > 0, u > s, the probability that before time u, Y has hit Aδ is
o(1) as ǫ→ 0.

We prove this as follows. For any η > 0, choose P so that the probability
that standard Brownian motion travels from 0 to P in time less than u − s
is less than η. Apply Lemma 4.1 to choose ǫ0 such that, for all ǫ < ǫ0,
the probability that Y (ǫ) hits Aδ before (P, P ) is less than η. Then the
probability that Y (ǫ) hits Aδ before (P, P ) or takes less time than u − s to
reach (P, P ) is less than 2η. Thus the probability that Y (ǫ) hits Aδ before
time u is less than 2η.

4.1 Excursions of Y

In this section we prove the following, which is slightly stronger than Lemma
4.1.

Lemma 4.2. For given P > 0, δ > 0 the probability that Y hits Aδ before
it hits (P, P ) is O( 1

log 1/ǫ
).

We begin by introducing the notion of an excursion of Y . Almost surely,
the times at which Y = (0, 0) (which are stopping times) form an infinite
discrete collection T0 < T1 < · · · . We say “the probability that an excursion
hits a set U is p” if P(Yt ∈ U for some t ∈ [T0, T1]) = p. Observe that
by equidistribution this probability is the same when t ranges over [Ti, Ti+1],
and note that the hitting events in question are independent.

Our approach to proving Lemma 4.2 is to demonstrate that

P (an excursion hits (P, P )) ≫ P (an excursion hits Aδ) as ǫ→ 0.

This is realized through the next pair of lemmas whose proofs we delay until
Section 4.2.
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Lemma 4.3. For given δ > 0, P (an excursion hits Aδ) is O(ǫ).

Lemma 4.4. For given P > 0, P (an excursion hits (P, P )) is Ω(ǫ log 1/ǫ).

Proof of Lemma 4.2. Y consists of a sequence of excursions, each of which
satisfies exactly one of the following conditions

• the excursion hits Aδ (with probability O(ǫ)),

• the excursion does not hit Aδ but does hit (P, P ) (with probability
Ω(ǫ log 1/ǫ)−O(ǫ), which is itself Ω(ǫ log 1/ǫ)),

• the excursion does not hit Aδ or (P, P ).

The excursions are independent, so the probability that Y hits Aδ before
(P, P ) is

O(ǫ)

Ω(ǫ log 1/ǫ) +O(ǫ)
= O

(

1

log 1/ǫ

)

.

4.2 Proofs of the excursion lemmas

In this section we give the proof of Lemmas 4.3 and 4.4. For convenience we
rotate (and scale) Y = (Xǫ, X), defining

Z(ǫ) = Z = (Z1, Z2) =
1

2
(Xǫ +X,Xǫ −X).

Observe that when Y is in S1D
φ , Z follows the law of a standard one-

dimensional Brownian motion on the x-axis. The condition that Y hits Aδ is
equivalent to Z2 hitting ±δ/2. Like Y , Z has the following “scale invariance”
property: the distribution of sample paths of Z(ǫ)/ǫ is independent of ǫ
(modulo time scaling).

Proof of Lemma 4.3. Consider the process Y between times T0 and T1. Once
Y arrives at S1D

φ it can never hit Aδ before hitting (0, 0). Thus our goal is to
show that with probability at least 1−O(ǫ), Y arrives in S1D

φ before hitting
Aδ. Next, we observe the following two auxiliary claims:

Claim 1. Whenever Z2 = 0 the probability that subsequently Y arrives at
S1D
φ before Z2 hits ±ǫ/2 is a constant (independent of ǫ).

Claim 2. Whenever Z2 = ±ǫ/2 then there is probability equal to ǫ/δ of Z2

hitting ±δ/2 before it hits 0.
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Claim 1 follows from scale invariance, while Claim 2 is a standard martin-
gale result on Brownian motion (observing that on the relevant time interval
Z2 is a standard Brownian motion).

The reduction of Lemma 4.3 to those two claims is similar to the proof
of Lemma 4.2. Claims 1 and 2 imply that between a time when Z2 = 0 and
the next time that Z2 = 0 after having hit ±ǫ/2,

P(Y hits Aδ)

P(Y arrives at S1D
φ )

≤
(1− C)(ǫ/δ)

C
= O(ǫ)

where C is the constant of Claim 1. As the behavior of Y is independent on
those intervals, we deduce Lemma 4.3.

Proof of Lemma 4.4. We bound below the probability that an excursion hits
(P, P ), i.e. Z hits (P, 0) before returning to (0, 0). We do this by considering
the probability that the excursion takes the following form: Z travels from
(0, 0) to the line segment Q = [0, ǫ] × {ǫ}, then hits the horizontal axis for
the first time in [ǫ, 1]× {0}, then travels to (P, 0), before returning to (0, 0).

After a stopping time at which Y = Z = (0, 0) there is a positive prob-
ability K that Z hits Q before returning to (0, 0). By scale invariance K is
independent of ǫ.

Consider Z after hitting some point in Q. We now bound the hitting
density of this process on the horizontal axis. Regardless of the point in Q,
this density for points on [ǫ, 1]× {0} is at least

1

πǫ

1

1 + (x/ǫ)2
dx.

This follows directly from the classical result that the hitting density on a
line of the two-dimensional Brownian motion is a Cauchy distribution (see
for example Theorem 2.37 of [4]).

On hitting a point (x, 0) for x ∈ [ǫ, 1] the process transitions from state
S2D
φ to state S1D

φ . When in state S1D
φ , Z behaves as a one-dimensional

Brownian motion on the horizontal axis until it hits (0, 0). By the same
martingale argument which justifies Claim 2, the probability of subsequently
hitting (P, 0) before (0, 0) is x/P . Integrating this against the hitting density
we get that the probability that Z started from some point in Q hits the
horizontal axis in [ǫ, 1] × {0} and then travels to (P, 0) before returning to
(0, 0) is at least

1

πP

∫ 1

ǫ

x/ǫ

1 + (x/ǫ)2
dx =

ǫ

2πP
log

(

1 + (1/ǫ)2

2

)

, which is Ω(ǫ log 1/ǫ).
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5 Recovering the web from strips

The next step towards proving Theorem 1.1 is to show that the σ-field asso-
ciated to a horizontal strip is generated by those σ-fields associated to any
two substrips which partition the larger strip. To do so, we follow closely the
structure of Section 3.

In the same way we defined F+ and F−, we introduce a σ-field Fyz for each
y < z ∈ [−∞,∞], generated by the web in the horizontal strip (−∞,∞) ×
(y, z). Formally,

Definition 5.1. For any path f we write Ryz(f) for f stopped at the first
time it is outside (−∞,∞) × (y, z), i.e. Ryz(f)(t) = f(t ∧ Tf ) where Tf =
inf{t : f(t) 6∈ (y, z)} (as in Section 3, if f starts outside (−∞,∞) × (y, z),
it is stopped immediately). We define Fyz to be the σ-field generated by the
collection of paths {Ryz(X) : X ∈ X}. The association of strips (−∞,∞)×
(y, z) to σ-fields Fyz we call the horizontal factorization of the Brownian web.

With these definitions, F of Section 3 is F−∞,∞, F+ is F0,∞ and F− is
F−∞,0. Note that Fwx and Fyz are independent if the intervals (w, x) and
(y, z) are disjoint.

Theorem 5.2. Fxz = Fxy ⊗Fyz for all x < y < z.

The Brownian web is translation invariant. Thus without loss of gener-
ality we can limit ourselves to x = a, y = 0, z = b in the above theorem, for
arbitrary fixed a and b. This reduces the theorem to

Fab = Fa0 ⊗F0b.

In the rest of this section we therefore write R(·) for Rab(·).
Given the definition of Fab and since X is arbitrary, Theorem 5.2 is a

consequence of the following.

Lemma 5.3. R(X) is Fa0 ⊗F0b-measurable.

Similarly to Section 3, R(Xǫ) is constructed from trajectories that are
Fa0, F0b and G-measurable only. Formally,R(Xǫ) is Fa0⊗F0b⊗G-measurable.
Thus as in the reduction of Lemma 3.2 to Lemma 3.4, Lemma 5.3 follows
from

Lemma 5.4. R(Xǫ)
P
→ R(X) as ǫ→ 0.

We could show this convergence result directly by an extension of the
argument we used for the half-planes in Section 3. However, knowing that

Xǫ P
→ X is nearly enough, and all that is required in addition is that this con-

vergence is preserved by R(·). For this we use the following straightforward
result in classical analysis.
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Lemma 5.5. If Tf is not a turning point of the path f , then the map
f 7→ R(f) is continuous at f in the topology of uniform convergence on
compacts.

Proof of Lemma 5.4. We know from Lemma 3.4 that Xǫ P
→ X. In addition

X is a Brownian motion so almost surely satisfies the condition of Lemma 5.5,

i.e. “TX is not a turning point of the path X”. We conclude that R(Xǫ)
P
→

R(X) by the continuous mapping theorem (see for example [2] Theorem
2.7).

6 Conclusions about the noise

We conclude by supplying a formal framework for the statement of Theorem
1.1 followed by its proof. The following definition of noise is a straightfor-
ward extension of that due to Tsirelson (Definition 3d1 of [11]) to multiple
dimensions.

A d-dimensional noise consists of a probability space (Ω,F ,P), sub-σ-
fields FR ⊂ F given for all open d-dimensional rectangles R ⊂ R

d, and
a measurable action (Th)h of the additive group of R

d on Ω, having the
following properties:

(a) FR ⊗ FR′ = FR′′ whenever R and R′ partition R′′, in the sense that
R ∩R′ = ∅ and the closure of R ∪R′ is the closure of R′′,

(b) Th sends FR to FR+h for each h ∈ R
d,

(c) F is generated by the union of all FR.

When d = 1 our definition coincides with that of Tsirelson. In that case,
R ranges over all open intervals and condition (a) translates to F(s,t)⊗F(t,u) =
F(s,u) whenever s < t < u.

As conditions (b) and (c) are immediate for the horizontal factorization
of the Brownian web, Theorem 5.2 immediately implies the following:

Proposition. The horizontal factorization of the Brownian web is a (one-
dimensional) noise.

Recall that the horizontal factorization of the Brownian web is an as-
sociation of a σ-field to any horizontal strip (see Definition 5.1). Observe
that the association arises from considering trajectories of the Brownian web
stopped at the first time they are outside a particular strip. Similarly, we
can associate a σ-field to any vertical strip, or indeed to any rectangle. The
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former association is the vertical factorization of the Brownian web and the
latter the two-dimensional factorization.

We can extend existing results to derive the following:

Proposition. The Brownian web factorized on two-dimensional rectangles
is a two-dimensional noise.

That is, when a rectangle is partitioned horizontally or vertically into
two smaller rectangles, the σ-field of the larger is generated by the σ-fields of
the two smaller. To see this holds for a rectangle partitioned by a horizontal
split observe that this is a consequence of our result restricted to a finite time
interval. The see it holds for a vertical split, observe that this is a straight-
forward modification of the earlier result that the vertical factorization of the
Brownian web is a noise (see, for example, [10]).

Furthermore, by a general result of Tsirelson (see [12] Theorem 1e2), a
two-dimensional noise is black when one of its one-dimensional factorizations
is black. As the vertical factorization of the Brownian web is black (see [11]),
we deduce Theorem 1.1.

7 Remarks and open problems

In this paper we present the second known example of a two-dimensional
black noise, after the scaling limit of critical planar percolation, as proved by
Schramm and Smirnov [6]. They also remark that σ-fields can be associated
to a larger class of domains than just rectangles in a way that still allows the
σ-field of a larger domain to be recovered from the σ-fields of two smaller
domains that partition it. In particular, in Remark 1.8 they claim that this
can be done for the scaling limit of site percolation on the triangular lattice,
as long as border between those domains has Hausdorff dimension less than
5/4, and cannot be done if the border has Hausdorff dimension greater then
than 5/4. This raises the following question:

Open Problem 1. To what class of two-dimensional domains can the Brow-
nian web noise be extended?

We expect the answer to be more sophisticated than for percolation, since
the Brownian web is not rotationally invariant. This suggests that Hausdorff
dimension is not a sufficient measurement to determine from which subdo-
mains the Brownian web can be reconstructed. In some sense it is easier to
reconstruct the Brownian web from vertical strips than it is from horizontal
strips.

We may obtain a better understanding of Open Problem 1 if we can
answer
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Open Problem 2. Give an explicit example of domains to which the noise
cannot be extended.

Analogy with general results in the one-dimensional case suggests that
such domains should exist (see [11] Theorem 11a2 and Section 11b).

Moreover, having seen that the Brownian web is a two-dimensional black
noise, further examples in two dimensions (and indeed in higher dimensions)
are called for. Their discovery would hopefully shed light on the nature of
black noises.

Open Problem 3. Find more examples of two-dimensional black noises.
Show an example of a black noise in three dimensions or higher.

Readers may wish to note that in [12] Tsirelson extends the concept of
a noise to a much more abstract and general setting. This allows results
on noises to be formulated and proved without having an explicit under-
lying geometric base. However, our methods here which are concrete and
geometric in nature are more conveniently described in terms of the earlier
formulation.
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