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Abstract

Consider an undirected graph G = (V,E). A subgraph of G is a subset of its edges, whilst an

orientation of G is an assignment of a direction to each edge. Provided with an integer circulation-

demand d : V → Z, we show an explicit and e�ciently computable bijection between subgraphs of

G on which a d-�ow exists and orientations on which a d-�ow exists. Moreover, given a cost function

w : E → (0,∞) we can �nd such a bijection which preserves the w-min-cost-�ow.

In 2013, Kozma and Moran [5] showed, using dimensional methods, that the number of subgraphs

k-connecting a vertex s to a vertex t is the same as the number of orientations k-connecting s to t.

An application of our result is an e�cient, bijective proof of this fact.
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1 Introduction

Let G = (V,E) be a simple graph with positive cost function w : E → (0,∞). We regard G as a digraph,

treating every undirected edge as a pair of directed edges in reverse direction.

Denote the set of subgraphs of G by S(G) =
{
K ⊂ E : ∀e∈E |{e, eR} ∩K| 6= 1

}
, and the set of

orientations of G by O(G) =
{
L ⊂ E : ∀e∈E |{e, eR} ∩ L| = 1

}
, where (u, v)

R
= (v, u).

A function d : V → Z such that
∑

u∈V d(u) = 0 is called an integer demand. A d-�ow on G is

function f : E → [0, 1] satisfying such that for any u ∈ V we have
∑

v∼u f((u, v)) − f((v, u)) = d(u).

We say that f is a �ow on a directed subgraph D ⊂ E if f(e) = 0 for all e /∈ D. Denote Sf , Of , Df

for the set of subgraphs, orientations and directed subgraphs of G on which a d-�ow exists. Given a

cost function w : E → R+ and a �ow f , write |f |w =
∑

e∈E w(e)|f(e)| for the total w-cost of f . The w
min-cost-�ow satisfying d is the d-�ow for which this cost is minimal.

Our main result is the following.

Theorem 1. For any graph G, integer demand d and cost function w, there exists an explicit bijection

between Sf and Of , computable in polynomial time, which preserves a w min-cost-�ow.

We call a path from s to t in G an (s, t)-path. A directed graph is said to k-connect s and t if there

exist k disjoint (s, t)-directed paths. Denote Sk and Ok the sets of subgraphs and orientations of G

which k-connect s and t, respectively.

A collection of k disjoint (s, t)-directed paths is called minimal in a directed graph D if the total

weight of edges participating in the paths is minimal. Recalling the classical Integrality Theorem, which

guarantees that any min-cost-�ow problem in a graph (i.e. with capacity 1 for each edge) has an integer

optimal solution, Theorem 1 implies the following.

Theorem 2. For any weighted graph G = (V,E,w) There exists an explicit bijection between Sk and

Ok, computable in polynomial time, which preserves the minimal k collection of w-shortest paths.

The result could be easily generalised to vertex disjoint paths by introducing vertex capacities.
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2 Background and motivation

The study of the relationship between subgraphs and orientation is a classical subject in combintorics.

In 1960 Nash-Willims [7], generalizing a 1939 result by Robbins [9], showed that every undirected graph

G has a well-balanced orientation. Chvátal and Thomassen [2] proved that every undirected bridgeless

(i.e. 2-connected) graph of radius r admits an orientation of radius at most r2r + r, and that this

bound is best possible. In [1] Bernardi showed that evaluation of the Tutte polynomial counts both the

spanning subgraphs and the orientations of G.

In 2013, Kozma and Moran [5], introduced Vapnik�Chervonenkis (VC) theory to the subject. They

showed that there are several properties φ of graphs, for which number of subgraphs of a given graph

G which satisfy φ is either the same, or dominates the number of orientations satisfying it. Their proof

relies upon shattering extremal systems, using the sandwich theorem [8]. Recently Buci¢, Janzer and

Sudakov [3] used this method to count H-free orientations of a given graph G.

In particular, it was shown in [5] that |Sk| = |Ok|. Their method, however, is non-constructive,

and its naïve algorithmic application is of exponential complexity in |E|. In Theorem 2 we obtain an

explicit, natural and e�ciently computable bijection between Sk and Ok, which preserves a particular

collection of k-disjoint paths.

2.1 Notation and conventions

Throughout G = (V,E), the base graph, w : E → R+, the weight function, d : V → Z, the demand

function, E′ ∈ O(E) an arbitrary orientation of G and an a priori order e1, . . . , e|E| on the edges of E

are all �xed. We also de�ne

χ(e) =

{
e for e ∈ E′,
eR for eR ∈ E′.

For simplicity, but without loss of generality, we assume that G has no two distinct paths of equal

length.

We denote the solution to the min-cost-�ow problem in the directed subgraph D ⊂ E with respect

to d by A(D), whenever such a solution exists. Using the Integrality Theorem, we treat A(D) both as

a set of directed edges and as a �ow.

To simplify addition and subtraction of edges from a directed subgraph we employ the orientation

operation D ⊕ e := {D ∪ {e}} \ eR, the symmetric inclusion operation, E + e := E ∪ {e, eR} and the

symmetric exclusion operation E − e := E \ {e, eR}.

3 The bijection

Our bijection relies on the following lemma.

Lemma 3. Let D ∈ Df and e ∈ G. Then at least one of the following holds:

� A(D ⊕ e) = A(D),

� A(D ⊕ eR) = A(D).

Proof. If either e ∈ D, eR ∈ D or both, the lemma is straightforward, as A(D) cannot include both e

and eR. We may therefore assume that {e, eR} ∩D = ∅.
The classical Integrality Theorem, guarantees that any min-cost-�ow problem in a graph (i.e. with

capacity 1 for each edge) has an integer optimal solution. Write F0 for the min-cost d-�ow in D, F1 for

the min-cost d-�ow in D ∪ {e}, and F2 for the min-cost d-�ow in D ∪ {eR}.
Assume for the sake of obtaining a contradiction that these three �ows are distinct, so that, by

monotonicity, |F1|w, |F2|w < |F0|w. In particular, this implies, by the Integrality Theorem, that F1

assigns �ow 1 to e and F assigns �ow 1 to eR or vice versa, as otherwise one of these �ows would exist

also as a �ow on D. This implies, however, that F1+F2

2 , which is also a d-�ow, assigns a total of 0 �ow to

e, so that it is a proper �ow on D. Clearly, the total weight of this �ow is less than the maximum among

F1 and F2, a contradiction to the minimality of F0. We deduce that either F0 = F1 or F0 = F2.
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We also require the following observation.

Lemma 4. Let D ∈ Df and e ∈ A(D), then A(D) = A(D + e).

Proof. Assume to the contrary that A(D+e) 6= A(D) = A(D⊕e) and denote by F0 the �ow correspond-

ing to A(D) and F1 for the �ow corresponding to A(D+e), as in the proof of lemma 3. By monotonicity,

we have |F1|w < |F0|w. By minimality this implies that F1(e
R) = 1 whilst by our assumption F0(e) = 1.

Hence F0+F1

2 is a �ow on D satisfying |F0+F1

2 | < |F1|, a contradiction. Therefore A(D) = A(D+ e).

Equipped with Lemma 3, the orientation E′ and our order (e1, . . . , e|E|), we are ready to present

our bijection in the next couple of sections.

3.1 The Sf → Of bijection

The bijection φ : Sf → Of is iteratively obtained by �rstly orienting e1, then e2 and so forth. This is

done by applying a sequence of maps φi : Df → Df for i ∈ {1, . . . , |E|}, such that for all i ≤ |E| we
have φi(D) \ {ei, eRi } = D \ {ei, eRi } and A(D) = A(φi(D)). De�ne φi(D) as follows.

Firstly, we make sure that the orientation of ei will not alter the min-cost d-�ow.

1. if A(D) 6= A
(
D ⊕ ei

)
we set φi(D) := D ⊕ eRi ,

2. if A(D) 6= A
(
D ⊕ eRi

)
we set φi(D) := D ⊕ ei.

In the remaining case, where A(D) = A(D ⊕ {ei}) = A
(
D ⊕ {eRi }

)
we do the following:

3. if ei ∈ D we set φi(D) := D ⊕ χ(ei),

4. if ei /∈ D we set φi(D) := D ⊕ χ(ei)R.

Observe that, by Lemma 3, rules (1.) and (2.) are mutually exclusive so that φi is well de�ned,

A(D) = A(φi(D)) and |φi(D) ∩ {ei, eRi }| = 1.

We then set φ(K) := φ|E| ◦ φ|E−1| ◦ · · · ◦ φ1(K) so that φ maps Sf to Of and A(K) = A(φ(K)).

3.2 The Of → Sf bijection

The reverse bijection ψ : Of → Sf is obtained similarly. This time we iterate by �rst deciding whether

to include both e|E| & eR|E| or neither of them, then e|E|−1 & eR|E|−1 and so forth. This is done by

applying a sequence of maps ψi : Df → Df for i ∈ {1, . . . , |E|}, such that for all i ≤ |E| we have

ψi(D) \ {ei, eRi } = D \ {ei, eRi }.
Firstly, we verify that the decision to include or exclude ei & eRi will not alter the min-cost d-�ow.

1. if A(D) 6= A
(
D + ei

)
we set ψi(D) := D − ei,

2. if A(D) 6= A
(
D − ei

)
we set ψi(D) := D + ei.

In the remaining case, where A(D) = A(D + ei) = A(D − ei), we do the following:

3. if χ(ei) ∈ D we set ψi(D) := D + ei,

4. if χ(ei) /∈ D we set ψi(D) := D − ei.

Observe that, by Lemma 4 rules (1.) and (2.) are mutually exclusive, as the former's condition is

impossible if {ei, eRi }∩A(D) 6= ∅ and the latter's is impossible otherwise. Hence that ψi is well de�ned,

A(D) = A(ψi(D)) and |ψi(D) ∩ {ei, eRi }| 6= 1.

We then set ψ(L) := ψ1 ◦ ψ2 ◦ · · · ◦ ψ|E|(L) so that ψ maps Of to Sf and A(L) = A(ψ(L)).
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4 Proof of bijectivity

In this section we establish the fact that ψ is the inverse function of φ and, as a consequence, Theorem 1.

This is an immediate consequence of the following

Proposition 5. For all D ∈ Df it holds that

� if |ψi(D) ∩ {ei, eRi }| 6= 1 then D = ψi ◦ φi(D)

� if |ψi(D) ∩ {ei, eRi }| = 1 then D = φi ◦ ψi(D)

Proof. Firstly, we show three statements,

either A(D) = A(D ⊕ ei) or A(D) = A(D ⊕ eRi ),
either A(D) = A(D + ei) or A(D) = A(D − ei),

A(D) = A(D + ei) = A(D − ei) if and only if A(D) = A(D ⊕ ei) = A(D ⊕ eRi ).
(1)

The �rst two observations are immediate from Lemma 3 and Lemma 4, respectively. To see the last

equivalence, observe that the same two lemmata imply that the statements A(D+ ei) 6= A(D− ei) and
A(D ⊕ ei) 6= A(D ⊕ eRi ) are both equivalent to the fact that ei ∈ A(D + ei) or e

R
i ∈ A(D + ei).

Using (1) we deduce that ψi(D),φi(D),ψi ◦ φi(D) and φi ◦ ψi(D), are either all produced by rules

(1.) and (2.) of their respective de�nition, or all produce by rules (3.) and (4.).

If they are all produced by rules (1.) and (2.), then we consider three cases.

� {ei, eRi } ⊂ D. In this case A(D − ei) 6= A(D) so that either ei ∈ A(D) or eRi ∈ A(D). Assume

without loss of generality ei ∈ A(D) = A(φ(D)), so that, by rule (1.) of the de�nition of φi we

have φi(D) = φi(D) ⊕ ei and we obtain ψi ◦ φi(D) = (φi(D) ⊕ ei) + ei = D, by rule (2.) of the

de�nition of ψi.

� {ei, eRi } ∩D = ∅. In this case A(D+ ei) 6= A(D) so that either ei ∈ A(D+ ei) or e
R
i ∈ A(D+ ei).

Assume without loss of generality ei ∈ A(D+ ei) 6= A(φ(D)), so that, by rule (1.) of the de�nition

of φi we have φi(D) = φi(D)⊕ eRi and we obtain ψi ◦ φi(D) = (φi(D)⊕ ei) + ei = D, by rule (1.)

of the de�nition of ψi.

� |{ei, eRi } ∩D| = 1. In this case, assume without loss of generality ei ∈ D.

If A(D + ei) 6= A(D) then eRi ∈ A(D + ei) so that A(D + ei) 6= A(D). Thus by rule (1.) of

the de�nition of ψ, we have ψ(D) = D − ei and, by rule (2.) of the de�nition of φi, we obtain

φi ◦ ψi(D) = (φi(D)− ei)⊕ ei = D.

If, on the other hand, A(D − ei) 6= A(D) then ei ∈ A(D) so that A(D − ei) 6= A(D). Thus by

rule (2.) of the de�nition of ψ, we have ψ(D) = D + ei and, by rule (2.) of the de�nition of φi,

we obtain φi ◦ ψi(D) = (φi(D) + ei)⊕ ei = D.

If ψi(D),φi(D),ψi ◦ φi(D) and φi ◦ ψi(D) are all produced by rules (3.) and (4.), then

� If {ei, eRi } ⊂ D then φ(D) = D ⊕ χ(ei) and ψi ◦ φi(D) = (D ⊕ χ(ei)) + ei = D.

� If {ei, eRi } ∩D = ∅ then φ(D) = D ⊕ χ(ei)R and ψi ◦ φi(D) = (D ⊕ χ(ei)R)− ei = D.

� If {ei, eRi } ∩D = {χ(ei)} then ψ(D) = D + ei and φi ◦ ψi(D) = (D + ei)⊕ χ(ei) = D.

� If {ei, eRi } ∩D = {χ(ei)R} then ψ(D) = D − ei and φi ◦ ψi(D) = (D − ei)⊕ χ(ei)R = D.

5 Complexity

As for Theorem 2, �nding the minimal k disjoint (s, t)-directed path could be done e�ciently using the

Suurballe algorithm [10], an extension of the Dijxtra algorithm [4]. The worst case complexity of this

algorithm is O(k|E| + k|V | log |V |). The general case of Theorem 1, has the complexity of solving the

min-cost-�ow problem, i.e., O(|E||V |2 log |V |).
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