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Abstract

We study the long-term behavior of the two-thinning variant of the classical balls-
and-bins model. In this model, an overseer is provided with uniform random allocation
of m balls into n bins in an on-line fashion. For each ball, the overseer could reject
its allocation and place the ball into a new bin drawn independently at random. The
purpose of the overseer is to reduce the maximum load of the bins, which is defined as
the difference between the maximum number of balls in a single bin and m/n, i.e., the
average number of balls among all bins.

We provide tight estimates for three quantities: the lowest maximum load that could
be achieved at time m, the lowest maximum load that could be achieved uniformly over
the entire time interval [m] := {1,2,--- ,m}, and the lowest typical maximum load that
could be achieved over the interval [m], where the typicality means that the maximum
load holds for 1 — o(1) portion of the times in [m].

We show that when m and n are sufficiently large, a typical maximum load of
(log n)l/ 2+o(1) can be achieved with high probability, asymptotically the same as the
optimal maximum load that could be achieved at time m. However, for any strategy, the
maximal load among all times in the interval [m] is Q(log’ﬁ) Zn) with high probability. A
strategy achieving this bound is provided.

An explanation for this gap is provided by our optimal strategies as follows. To
control the typical load, we restrain the maximum load for some time, during which we
accumulate more and more bins with relatively high load. After a while, we have to
employ for a short time a different strategy to reduce the number of relatively heavily
loaded bins, at the expanse of temporarily inducing high load in a few bins.

Keywords: balls-and-bins, load balancing, two-choice, two-thinning.

1 Introduction

In the classical balls-and-bins model, m balls are independently and uniformly at random
placed into n bins one after another. In this paper, we are interested in the following variant,
which is called the two-thinning model. For each ball, after a uniformly random bin, which
is called the primary allocation, has been suggested, an overseer has the choice of either
accepting this bin, or placing the ball into a new bin selected independently and uniformly
at random, which is called the secondary allocation. In this model, the overseer is oblivious
to the secondary allocation before deciding whether to accept the primary allocation. In
contrast, in the well-known two-choice model, which was introduced in the seminal work
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[2], the overseer is aware of the secondary allocation and places the ball into the bin which
contains fewer balls (break ties arbitrarily).

1.1 Main results

We define the load of a bin as the difference between the number of balls in this bin and the
average number of balls among all bins. Given a two-thinning strategy f (see Section 2.1
for a formal definition), we denote by MaxLoad/ (m) the single-time mazimum load, which
is defined as the maximum load among all bins after allocating m balls using the strategy
f, and denote by MaxLoad/([m]) the all-time mazimum load, which is the maximum of
MaxLoad” (k) for all k € [m] := {1,2,...,m}. In general, we can replace [m] by a subset
S C [m], and define MaxLoad/ (S) in a similar manner.

Theorem 1. For all m,n € N, there exists an explicit two-thinning strategy f := fmn such
that, with high probability,

logn
© (\/bg logn—% 10g(m/n)) Q(n) <m< O(n\/ log TL),

MaxLoad/ (m) = O(y/Iogn) m = O(ny/logn),
(log n)/2+e() m = w(n+/logn).

Moreover, in the first two cases the mazximum loads are optimal up to some multiplicative
constants, while in the third case we have a lower bound of Q(v/logn) for all two-thinning
strategies.

Theorem 2. There exists an explicit two-thinning strategy f such that, with high probability,

logn
© (\/loglognfglog(m/n)) Q(n) =m < O(n\/ lOg 77,),

MaxLoad! ([m]) = ¢ o ((=5n) ") Q(ny/Iogn) < m < o(nlog®n),
Sl =re, Q(nlog?n) < m < nOW.

Moreover, the all-time mazimum load achieved by f is optimal up to a multiplicative constant.

For € > 0, we denote by MaxLoad! ([m]) the e-typical mazimum load, which is defined as
the largest ¢ > 0 such that MaxLoad/ (k) > ¢ holds for at least em many k € [m]. Clearly,
we have MaxLoad/ (m) < MaxLoad/ ([m]) < MaxLoad/ ([m]).

Theorems 1 and 2 show that for m = O(ny/logn), the difference between the optimal
single-time and all-time maximum loads is at most a multiplicative constant and hence the
optimal typical maximum load also has the same asymptotic behaviour. For m = w(n+/logn),
however, there is a gap between the optimal single-time and all-time maximum loads. The
next theorem shows that in this regime, the typical maximum load behaves like the single
time maximum load, so is the gap between the optimal typical and all-time maximum loads.

Theorem 3. Let m,n € N, and write ¢ = e~3VIogloglogn  There exists an explicit two-
thinning strategy f = fmn such that for n large enough and for all m,

MaxLoad! ([m]) < (log n)%“(l),
holds with high probability.

It is worth pointing out that for m < n®® our strategy actually governs the loads in
some predetermined, large (i.e., 1 — ¢ portion) set of times in [m], with high probability
(see Proposition 8.1).



1.2 Discussion

The classical balls-and-bins model and its two-choice variant have been extensively studied in
probability theory, random graph theory, and computer science. Many applications have been
found in various areas, such as hashing, load balancing and resource allocation in parallel
and distributed systems (see e.g., [2], [3], [14], [22], [23]). In the balls-and-bins model, it

is known that for m = ©(n), the maximum load is (1 + 0(1))log’§)gn with high probability,

and for m > n, the maximum load is @( %) with high probability (see e.g. [21]). In

the seminal paper [2], Azar, Broder, Karlin and Upfal showed that in the two-choice model,
for m = ©(n), the maximum load is bi}% + O(1) with high probability — an exponential
improvement over the balls-and-bins model. In fact, this phenomenon was first noticed by
Karp, Luby and Meyer auf der Heide [14] in the context of PRAM simulations when switching
from one hash function to two. In [2], the d-choice setting, where the overseer is given d > 2
choices, was also considered. In this setting, an optimal maximum load of lolgolgfl” + O(1) can
be achieved with high probability; that is, compared with the case d = 2, the performance
improves by merely a multiplicative factor for larger values of d. We refer the reader to the
survey [18] for more details about the two-choice model.

The long-term behavior of the two-choice model, in which case the number of balls m can
be super linear in n, proved to be more challenging. In the seminal paper [5], Berenbrink,
Czumaj, Steger and Vocking showed that for arbitrarily large m, one can achieve the maxi-
mum load of 10%};%” +O(1) with high probability. A simpler proof of this result with a weaker
lower order term was given by Talwar and Wieder [25]. Since this result is achieved via a
single greedy strategy at all times, a simple union bound argument implies that this strategy
also maintains this bound as the all-time and the typical maximum loads for m polynomially
large in n.

Different variants of the two-choice model have been studied under weaker constraints
from practical considerations. These include load balancing with limited memory [1, 6, 17],
relaxation on the possible pairs the overseer may select from (known as two choices on graphs)
[15, 20] and a hypergraph variant of it [13]. Other relaxations include bins with different
selection probabilities [4] and balls with different weights [24]. An important purpose of this
course of study is to understand the robustness of the load reduction achieved by the power
of two choices, understanding the impact of constraints on memory, information and choice
patterns. Particularly, Peres, Talwar and Wieder [20] studied the setting of two choices with
errors, which is known as the (1+ 3)-choice model. In this setting, with probability 5 the ball
is allocated using the two-choice model, and with probability 1 — 5 the ball is assigned to a
random bin as in the balls-and-bins model. The authors showed that, irrespective of m, the
gap between the maximum load and the average is O(logn). Since this result is irrespective
of m, a simple union bound argument implies that this bound is also valid for the all-time
and the typical maximum loads for m polynomially large in n.

The two-thinning variant is a different relaxation of the two-choice model which arises
naturally in a statistical scenario, where one collects samples one-by-one and is allowed to
decide whether to keep each sample or not, under the constraint of never discarding two
consecutive samples. In [7], Dwivedi, Ramdas and the first two authors showed that two-
thinning could reduce the discrepancy of a sequence of random points selected independently
and uniformly at random from the interval [0,1] to be near optimal. The first two authors
studied the two-thinning variant of the balls-and-bins model in [11]. They showed that

2logn
loglogn

for m = ©(n), the optimal maximum load is (2 + o(1)) with high probability, a



polynomial improvement over the balls-and-bins model. Hence, this model is in some sense
more powerful than the (1+ §)-choice model. The authors also conjectured the upper bound
logn

o(\/s
oglogn
showing a lower bound of Q(y/logn) for m = ©(ny/logn), a bound which we show here
holds for all m = Q(n+y/logn). They also showed that a load of Q(logn/loglogn) holds
for at least Q(nlogn/loglogn) times in [1,nlog®n]. Our work sheds more light on this

phenomenon. The results in [11] were extended by the first and third authors [12] to the
dlogn )1/d
loglogn

) for all m > n. Los and Sauerwald [16] recently disproved this conjecture by

d-thinning setting and the optimal maximum load of (d+ o(1))( could be achieved
with high probability.

Another relaxation of the two-choice model was recently studied by Los and Sauerwald
[16]. They considered the situation that each ball is offered two random bins and is allowed
to send up to k binary queries, each to one of the two bins. In one model, it inquires whether
the absolute load crosses some threshold, and in the other model, it inquires whether the
number of bins with loads higher than that of the queried bin is greater than some percentile.
The k = 1 case is equivalent to our two-thinning model. They showed that in both models a
maximum load of O(k(logn)/*) can be achieved with high probability.

Here, we study the long-term behavior of the two-thinning model. Our discussions above
and Theorems 1 and 3 show that, in the balls-and-bins and the two-choice models, the optimal
single-time and the typical maximum loads are asymptotically nearly identical. However, in
contrast with these two models, there is a big gap between the optimal typical and the all-
time maximum loads in the two-thinning setting. We attribute this difference to the fact
that in the two-thinning setting, short periods of relative high maximum loads are necessary
for the process to “release steam” with the benefit of arriving at low maximum loads at the
end of these periods. A comparison of the maximum loads in these three models is given in
the following table.

m = O(nlog*n) | MaxLoad/ (m) | MaxLoad/([m]) | MaxLoad/ ([m])
a<1 &) logn ) logn e} logn
Balls-and-bins (log logn) (log logn) (log logn)
a>1 @( /mlToLgn) @( /mlggn) @( /mlzgn)
1 logn logn logn
ac [07 2) © ( 10glogn> © ( loglogn) © ( loglogn)
a=1 O(v/logn) O(y/logn) O(v/logn)
Two-thinning )
= (%, 2) (log n)/2+e() (log n)/2+e() @((log n)%)
o o logn
a>2 (log n)1/2+ (1) (log n)1/2+ 1) @(10gign)
Two-choice a>0 O©(loglogn) ©(loglogn) ©(loglogn)

Table 1: A comparison of the single-time, all-time and typical maximum loads. Here, we
write m = ©(nlog®n) and select ¢ = o(1), where « is allowed to depend on n, but some
of the results require m to be at most polynomially large in n. In the two-thinning model,
the results for & = 0 appear in [11] and the lower bound for & = 1/2 appears in [16] and
the remaining results are new. In the two-choice model, the results follow from [5]. In the
balls-and-bins model, the results are classical (see e.g. [21]).



1.3 Upper bound strategies and lower bound techniques

In the following, we give a brief description of our strategies that achieve the upper bounds
in our main results as well as techniques for establishing the lower bounds. We write m = nt
for t € N. Different strategies are required for values of ¢ in different ranges.

The single-time maximum load. For ¢ = O(y/logn), our upper bound is achieved
by the threshold strategy employed in [11], which retries a ball if the number of primary
allocations accepted by the suggested bin reaches certain threshold. For ¢ > w(y/logn), the
threshold strategy alone is not sufficient since the optimal choice of the threshold would be
t 4+ O((tlogn)'/3) and this yields a maximum load of O((tlogn)/?), which is much larger
than our desired upper bound (logn)'/2t°(1)_ Instead, we divide the process into multiple
shorter stages and, in each stage, apply the threshold strategy with a smaller threshold. It
is likely that this will cause more retries and even a temporarily high maximum load. To
prevent this from causing a high load at the end of the process, we always retry a ball if its
primary allocation is a heavily loaded bin. The number of retries caused by this requirement
is relatively small since the number of heavily loaded bins is small. This, together with
a careful selection of time lengths of the stages, enables us to achieve the maximum load
of (logn)/?+°(M) at the end of the process. We call this strategy the multi-stage threshold
strategy. For t > w(logn), we need another ingredient in the form of a drift strategy. Under
this strategy we retry a ball with positive probability if its primary allocation has a positive
load, and surely if its load is very high. This creates a drift in the load of positively loaded
bins towards zero, resulting in a load distribution with exponential tail and a maximum
load of @(log)ﬁ)gn) (in some sense, this is an improvement of a similar strategy in [7]). For
t > w(logn), we first apply this drift strategy up to O(logn) time before the end, and then
apply the aforementioned multi-stage threshold strategy to allocate the remaining ©(nlogn)
balls. Our lower bound follows from the simple observation that if we retry too many balls,
the secondary allocations will cause a high maximum load, and if we retry too few balls, the
primary allocations will cause a high maximum load.

The all-time maximum load. Our upper bound strategy is a time-adaptive version of
the threshold strategy for the single-time maximum load, which we call a relative threshold
strategy. We use a threshold strategy where the threshold after throwing ¢n balls, is t + ¢ for
a fixed ¢ > 0. This strategy results in a uniform control of the maximum load throughout
the process. Our lower bound follows from the observation that a uniform bound on the
maximum load in the process upper-bounds the number of retries in the allocation of each
batch of n balls, and hence — the total number of retries in the entire process. Subject to
this constraint, we consider the maximum load after all balls have been allocated and show
it to be large.

The typical maximum load. As mentioned before Theorem 3, it suffices to consider
the case t > w(y/logn). For w(y/logn) <t < O(logn), we apply a multi-scale strategy. Each
scale consists of iterations of two strategies. In the first, longer part of each iteration, we apply
the strategy of a smaller scale, while in the second, shorter part, we use a different regulating
strategy. The strategy in the smallest scale is simply the relative threshold strategy, while
the regulating strategy is the multi-stage threshold strategy used to control the single-time
maximum load. These regulating segments play the role of “releasing steam” from the process
— although they result in a high maximum load for a short period of time, they yield good
control the maximum loads at the end of these segments, so that we can re-initiate the next
iteration. For ¢t > w(logn), we iterate over long segments of this strategy, separated by short
segments of the drift strategy followed by the multi-stage threshold strategy.




1.4 Outline

This paper is organized as follows. In the next section, we introduce two-thinning strategies
that are used to achieve the desired bounds on three types of maximum loads as stated in
Theorems 1, 2 and 3. We provide some preliminary tools in Section 3, which are used in the
analysis of different two-thinning strategies and the proofs of the main results. The proof
of Theorem 1 on the single-time maximum load is provided in Section 4 (upper bound) and
Section 5 (lower bound). The proof of Theorem 2 on the all-time maximum load is provided
in Section 6 (upper bound) and 7 (lower bound). In the last section, we prove Theorem 3 on
the e-typical maximum load.

2 Strategies for taming the maximum loads

In this section, we provide two-thinning strategies that are used to control the maximum
loads. We give the formal definition of a two-thinning strategy in Section 2.1, and provide an
alternative, indirect way of describing a two-thinning strategy in Section 2.2. Several basic
two-thinning strategies are given in Section 2.3, which are building blocks of more advanced
strategies in Section 2.4. We provide an outline of how these strategies are used to obtain
the main theorems in Section 2.5.

2.1 Two-thinning strategy

A decision strategy is a function
fn] > [0,1] — {1,2},

which, given a primary allocation and an external random number in [0, 1], decides whether
to accept (denoted by 1) or reject (denoted by 2) the suggested allocation. Given Zi, Zs, a
pair of independent random variables, uniform on [n] and U uniform on [0, 1], we can consider
the output of a decision strategy given by Z¢(z, ).

A thinning strategy f is a sequence of functions { f }ren, where the function

fi+ (In] x [n] x {1,21)"71 x [n] x [0,1] — {1,2},

given the history H € ([n] x [n] x {1,2})*~1 of the process up to time k — 1 (that is, the
primary allocations, the final allocations and the decisions of the first k—1 balls), the primary
allocation at time k£ and an external random number in [0, 1], decides whether to accept or
reject the suggested allocation. Hence, given the history of the process, the thinning strategy
provides a decision strategy for the next allocation.

A thinning strategy f generates the decisions sequence {Dy}ren and the allocations se-
quence {Z }ren in the following way. We denote by {Z} }ren and {Z7}ren two independent
sequences of random variables, which are independent and uniformly distributed in [n]. Here,
Z ,i represents the primary allocation of the k-th ball, while {Z,%}keN is used as a pool of sec-
ondary allocations. Set Ry = 0 and we denote by Rj the number of rejections among the
first k& primary allocations. Let {Uy }ren be a collection of uniform random variables on [0, 1].



For the k-th allocation, we can inductively define

D = fi ({Z}jepp-1 {25} jepo—11> {Dj Y jepo—1) Zio» Uk) »

R, =Rp_1+ Dy —1, (2.1)
Z}  if D, =1,

Zy=3"F%
ZRk if D, = 2.

In other words, we look at the history H of the process up to time k£ — 1 and at the primary
allocation Z,i at time k along with an additional source of randomness Uy and apply f to
determine whether to accept Z,i or not. If we reject Z ,i, we will then allocate the k-th ball
to the next unused secondary allocation Z%k from our pool.

We allow bins to start with some initial loads {L;(0)};cpn satisfying >, L;(0) = 0,
where L;(0) is the initial load of the i-th bin. Let m € N and let i € [n]. The load of bin i
after allocating m balls using the thinning strategy f is defined as

Ui m
LI (m) = Li(0) + Y Lz—iy — —. (2.2)
k=1

For any M C [m], we define

L{,(M)=|{keM:Z =iand Dy =1}|,

; L (2.3)

LQ,i(M) = |{k EM: Zp = ZH
Hence, L{ ;,([m]) represents the number of primary allocations accepted by bin i after allo-
cating m balls, and Ly i([m]) represents the number balls that bin i receive from secondary
allocations. It is clear that Llf(m) = L;(0) + L{l([m]) + Lgl([m}) —m/n. For any S C [n]
and £ € R, we define 7 7

¢l (m) = Hz eS:Li(m)> z} , (2.4)

which is the number of bins in S with loads at least ¢ after allocating m balls using the
thinning strategy f, and

Ps(M) = , (2.5)

keM

which is the number of bins in S that are suggested as primary allocations at least ¢ times
during the allocations of balls in M. The maximum load over a set of bins S after allocating
m balls using the thinning strategy f is defined as

MaXLoadf;(m) = max L{(m) (2.6)

We will omit the index S in these notations when S = [n]. For any M C [m], we define the
maximum load achieved during the allocation of balls in M as

MaxLoad/ (M) = max MaxLoad” (k). (2.7)
€

The e-typical maximum load MaxLoad/ (M) over the set M is defined as

MaxLoad! (M) = max {¢ > 0 : |[{k € M : MaxLoad” (k) > ¢}| > ¢|M|}. (2.8)



2.2 A realizability criterion

Under certain circumstances, instead of providing an explicit, formal description of a two-
thinning strategy, we only show the realizability. The following result provides a criterion for
a probability distribution to be realized by some two-thinning strategy.

Lemma 2.1. Any probability distribution P on [n] with probability mass function {p;}icn

for which

<p<ife

S0

n

for some ¢ > 0 and for every i € [n], is the distribution of the output of a two-thinning
decision strategy.

Proof. Let Zy, Z2,U be independent random variables uniformly distributed in [n|. Here, U
is the external randomness. We define the two-thinning function f : [n] x [0,1] — {1,2} as

f(Zvu) =

17 np; — ¢ 2 u,
2, np; —c < u.

Let Z = Zy(z, vy be the output of f. For any i € [n], we have
P(Z=1i)=P(Z1 =14, f(Z1,U) =1) + P(Z2 =i, f(Z1,U) = 2)

=P(Z1 = i)P(f(i,U) = 1) + P(Z; = i) ZP% = H)P(f(j,U) = 2)

j=1
1 n
= (i) oY (Lo - np))
7=1
= Di.
The second identity follows from the joint independence among 71, Zs, U. O

2.3 The basic strategies

Here, we introduce some basic two-thinning strategies, which are building blocks of more
advanced strategies in the next section. The first two thinning strategies are deterministic
and rather natural.

The threshold strategy. The {-threshold strategy accepts the primary allocation of a
given ball whenver the suggested bin has accepted thus far less than ¢ primary allocations.
In other words,

1 if L] (k) < ¢,

fu(Ho ) = {2 if L] (k) > ¢

This strategy is used to control the single-time maximum load of allocating O(ny/logn) balls.

The relative threshold strategy. The (-relative threshold strategy accepts the k-th
primary allocation if the suggested bin has accepted less than £+ % primary allocations or
if the load of the suggested bin is below —logn. In other words,

1 if L{Z(k) <l+ % or LZ(I{:) < —logmn,

H,i,u) =
il ) {2 if L{Z(k) > (+ *=1 and L{(k) > —logn.



This strategy is designed to control the all-time maximum load of allocating o(nlog? n) balls.

The drift strategy. The third strategy relies on a coupling of the allocation process
and a continuous time random process. This strategy can be used to achieve appropriate
initial conditions for other strategies as it is very robust and can rather quickly reduce the
load vector to a stationary distribution with an exponential tail. We denote by {Xi(t)}ic[n)
a collection of independent regular point processes with initial values X;(0) = L;(0) and
conditional intensity functions

A(E) = {1 10, X;(t) <t 2.9

10, Xi(t)>t.

Write X () = Y i | X;(t). We define the random process {Zj }ren as follows. For any k € N,
we set
Zy, =i if the k-th point of X (¢) for t > 0 is a point of X;(¢). (2.10)

We will show that, conditioned on Z1,...,Z,_1, the variable Z; meets the conditions of
Lemma 2.1. Hence {Z}ren is realizable as the output of a two-thinning strategy. We call
this strategy the 0-drift strategy.

We write F; for the natural filtration of X (¢) and denote by T}, = inf{t : X(¢) = k}. To
see that the conditions of Lemma 2.1 are indeed satisfied, it suffices to show that there exists
some ¢ > 0 such that

c . 1+ec
SSP(Ze=il 21, D T ) S — (2.11)
holds for all k € N and all ¢ € [n]. By the definition of {Zy }xen, we have
inf \;(t) sup \;(t)
16 0" . >0 1+6
— SP(Zk:Z|Zla"' 7Zk—laka_1)§ -

= < .
n(l+6 nmaxsup \;(t nmin inf \;(t) — n(l -0
( ) s tzg i(t) jein] t20 i(t) ( )

One can check that the criterion (2.11) holds for all 0 < § < /5 — 2.

A varying drift strategy. Our forth strategy is a modified drift strategy where the
downwards drift is extremely strong for bins with loads above certain level £. We denote by
{Xi(t)}icn) a collection of independent regular point processes with initial values X;(0) =0
and conditional intensity functions given by

1+€17 Xl(t) <t,

Ai(t) =410, t<Xi(t) <t+¢, (2.12)
03, Xl(t) >t+ /L.
Here, we set 0; = 0 = ﬁ and 03 = \/1102@' We write X (t) = > ;| X;(t). For any k € N,

we set Zj =i if the k-th point of X (¢) for ¢ > 0 is a point of the process X;(t). We write F;
for the natural filtration of X (¢) and denote by T}, = inf{t : X (¢) = k}. Unlike in the case of
the drift strategy, in certain situations, the distribution of Z; given Zj,..., Zr_1 is not the
output of any two-thinning decision strategy. However, as the next lemma shows, this does
not happen as long as the number of bins with very high load is not too large. We call the
strategy which realizes Zj, for as long as possible (and, say, accepts all primary allocations
from that time and on, for the sake of completion), the ¢-varying drift strategy.



Lemma 2.2. For sufficiently large n, for any k € N, if

n
€ n]: Xi(Tg—1) > Ty + 0} £ —, 2.13
i€ I Xu(Th) > T + ) < < (213)
then the distribution of Zy given Zy,...,Zr_1 can be realized by a two-thinning decision

strateqy.

Proof. We need to verify that the distribution of Z given Zy, ..., Z_; satisfies the condition
of Lemma 2.1. To this end, it is enough to show that there exists some ¢ > 0, which could
depend on n, such that for sufficiently large n, for all i € [n] we have,

c 1+ec
n -~ n
Denote ng = |{i € [n] : Xi(Tp—1) > Tk—1 + ¢}|. Then, the condition (2.13) says that

n

ng < Tog By the definition of Z, we have

<P(Zy=il|Z1,  Zk-1,Fr ) < (2.14)

1+64

0 .
3 < ]P)(Zk =1 | Zl,"' 7Zk5—].7ka—1) S (n—no)(l _ 92) +n093

(n—mno)(1+01) +nobs —

Using the fact that the denominators above are maximized when ng = 0 and are minimized
— n 3
when ng = Tz We obtain

1
6 I+t oen 1 1
<SP(Zp=i| Z1, 2ot Fri ) < B g(1+ )
) ) ) — 1 2
ny/logn n(l _ Tgn) n Vviogn
for all n sufficiently large. Thus, inequality (2.14) holds with ¢ = \/ﬁﬁ. O
We shall see in Section 6.2 that for £ = 218"  the condition of Lemma 2.2 is indeed

loglogn?’
satisfied with high probability over polynomially long time in n.

2.4 Combinations of the basic strategies

In many scenarios, particularly when the number of balls is large, we need to adjust and
combine the basic strategies in an appropriate way to obtain the upper bounds in our main
results. The following are several such combinations.

The multi-stage (¢, Lo, {)-threshold strategy. Set to = 0 and k = L?&%J' We
divide the process into k stages, where the i-th stage proceeds from time nt;_; to time nt;,
where the definition of ¢; as a function of ¢ is given at the end of this description. We write
Hy for the set of bins with loads greater than Ly at time ty. We inductively define H; as the
set of bins in (U;;llHj)C (or in HE in the case i = 1) whose loads at the end of the i-th stage
are at least Lo + 2i£. Then our strategy can be stated as follows. In the first stage, we retry
a ball if its primary allocation bin has a load of at least —logn and either it is in Hy or it
has accepted t; — tg + ¢ primary allocations in the first stage so far. In i-th stage for ¢ > 2,
we retry a ball if its primary allocation bin has a load of at least —logn and either it is in
U;'.;llH j, or it is a bin that has accepted ¢; —t;_1 + ¢ primary allocations during the i-th stage
so far.

Now we conclude the description with the definitions of {#;};c;). Denote a =

Given 7 € [0, %i/;], weset =a-+mn = 22(*2:), and 3; = B — (26-129)i e then define

2k+1
t; = Lt—logﬂinj for1<i<k-—1,and ¢t =t.

logt
loglogn*
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Remark 2.3. It might be worthwhile to point out that after the first stage, we do not retry
primary allocations that are bins in Hy unless they consist of bins with load at least —logn
and already accepted £ primary allocations more than the average in the current stage. Hence,
the initial set of heavily loaded bins Hy will play the same role as any other bins from stage
two and on.

This multi-stage threshold strategy is designed to control the single-time maximum load
for time ¢ > w(y/Iogn), in which case the threshold strategy alone is not sufficient. Indeed,
optimizing the choice of the threshold in the threshold strategy gives t+©((tlogn)'/3), which,
in turn, yields a maximum load of O((tlogn)'/?); much larger than the desired upper bound
(log n)l/ 2+o(1) Hence, we divide the process into multiple shorter stages and in each stage
apply the threshold strategy with a smaller threshold. This is likely to cause more retries
and even a temporarily higher maximum load. To prevent this from causing high load at the
end of the process, we identify at the beginning of every stage heavily loaded bins (H;) and
from this time and on retry a ball if its primary allocation is one of these. The number of
retries caused by this requirement is relatively small since the number of heavily loaded bins
is small. This, together with a careful selection of time lengths of the stages, will effectively
reduce the maximum load to (logn)'/2t°(1) at the end of the process.

A sketch of the analysis of the strategy is as follows. We first control the maximum load
after the first stage, and the number of relatively heavily loaded bins at the end of it (i.e., Hy).
In every subsequent stage ¢ there are two causes for retries: either the suggested bin already
accumulated ¢ primary allocations more than the average in this stage, or it was marked as
heavily loaded in previous stages (i.e., it is in U;;llH ;). By inductive bounds on these, we
are able to control the number of such retries. For a bin to be included into H;, it must
accumulate at least 2¢ allocations above average, so that at least £ of them are secondary.
Using binomial estimates we can control the number of such bins with high probability and
establish our bound on H;. Similar computations also allow us to control the maximum load
in bins Ué‘:lH ;j, taking advantage of the negative drift of the load in Ué;llH j, caused by the
fact that they are always rejected as primary allocations (except if the load is already lower
than —logn).

The drift-multi-stage (0,t',t, Lo, {)-threshold. This strategy is a combination of the
drift strategy and the multi-stage threshold strategy. It is designed to control the single-time
maximum load for ¢ > logn. This is simply done by applying the 6-drift strategy up to time
t' followed by the multi-stage (t, Lo, £)-threshold strategy starting at time ¢’ and ending at
time t' + t.

The Q-multi-scale strategy. This strategy is designed for controlling the typical max-
imum load for about n(log n)1+0(1) time. The strategy is formed by multiple scales, each
of which extends the previous one and consists of multiple iterations of the previous scale
strategy separated by a different regulating strategy. Whenever we initiate a new strategy at
some time, we treat this time point as the initiation time and the current loads as the initial
loads for the new strategy. To avoid countless rounding operations, each strategy is applied
for a not-necessarily integer time, and our policy is that if an integer point falls within the
time domain of a strategy, then this strategy is applied to it.

We now give the exact description of the strategy, which is accompanied by an algorithmic
description and a demonstration of the first three scales in Figure 1. We postpone the
technical definitions of the parameters L > 0,k € N, {cy, o}, {; }ien after the description. We
write N; = (3%&1 and Q% = (2k+1)(j—1)4;. In the first scale, we simply apply the L-relative
threshold strategy up to time n|log® n]. In the second scale, we apply N; iterations of the
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first scale strategy (the last iteration may be incomplete) and the j-th iteration is followed
by the multi-stage (log®n, Q + Q7 + ¢1, £1)-threshold strategy. The value of Q in the j-th
iteration of the first scale strategy is increased by Q'. Generally, in the (i 4+ 1)-th scale, we
apply NV; iterations of i-th scale strategy and the j-th iteration is followed by the multi-stage
(log“;n, Q+ Q" +1;, 4;)-threshold strategy. In the j-th iteration, all values of @ in the nested
multi-scale strategies are increased by Q*/ (in comparison with the value of @ in the current
scale).

The technical definitions of the aforementioned parameters are given as follows. We set

_ 1 2 _ Lhog _ | _logl . .
a1 = 5+ [iosToslomn T1/4" L= (logn) 3 and k = L%J. We inductively define the
sequences {a;, o}, ;}ien via the following equations
20(2‘ —1
€ = g
2(k+1)
a;—1/24+ke;
fi = (log n)%"‘T—H
1 2a;—1—¢
Iy — — .+ -t 2.15
G T T k1 (2.15)
log®*+1n = N;(|log®n| + |log®in]). (2.16)

According to the description of our strategy, the first part of each iteration runs for nlog®n
time, and the second part runs for n logagn time, so that the (i+1)-th scale runs for nlog®+'n
time in total.

The idea behind this strategy is as follows. In each scale of the strategy, most of the
time we apply the lower scale strategy, which yields a good control of the typical maximum
load. However, the number of bins with loads close to the threshold will accumulate along
the time. In order to mitigate this effect, we need to apply the multi-stage threshold strategy
with a low threshold for a short period of time. This enables us to dramatically reduce the
number of such relatively high loaded bins at the end of each regulating period, although it is
possible that during these regulating periods, certain bins may temporarily accumulate very
high loads. Once the regulating period is over, the small number of relatively high load bins
allows us to iterate the lower scale strategy once again.

In the following figure, we provide an algorithmic description of the QQ-multi-scale strategy
and a demonstration of the first three scales of the strategy.

Algorithm 1 Q-multi-scale (Scale=i + 1)
if i =0 then
Run L-relative threshold for log®* n time
else
for j =1 to N; do:
Run (Q + Qi’j)—multi—scale (z) for log®n time
Run multi-stage (logo‘;n, Q + Q% + £;,4;)-threshold
end for
end if

12



Figure 1: Above: an algorithmic description of the Q-multi-scale strategy. Below: the first
three scales of this strategy. The first scale is the L-relative threshold strategy. The second
scale consists of Ny iterations, the j-th of which incorporates the strategy of the first scale
followed by the multi-stage (logall n,Q + QY + (1, f1)-threshold strategy. The third scale
consists of Ny iterations, each of which consists of the second scale strategy with its @) set to
be Q + Q%7, followed by the multi-stage (logo‘/2 n, Q + Q> + {3, f3)-threshold strategy.

st
1% scale L-relative threshold strategy
log® 7 (v, -, ¢1)-multi-stage threshold strategy
e (-, -, {5)-multi-stage threshold strategy
204 scale

|log™ n] [log™ n|

Nj-iterations
3" scale

|log™® n| Llog“‘,2 n|

No-iterations

The d-multi-scale long-term combined strategy. This strategy is used to control
the typical maximum load for arbitrarily long time and it consists of multiple iterations.

2 L = (logn)% and
|VIogloglogn|+1/4°
k = L?&%J. The sequence {a;}ien is defined in (2.15) and (2.16). We denote by
imax = max{i € N:a; <1}. We set

As in the @-multi-scale strategy, we set oy = % +

Q =L = (log n)H%, A= \/Gd(log n) 1 Qimax+1 (2.17)
mo = [200dnlogn], m; = n(logn)¥maxtl mg = [16nA]. (2.18)

o172 log(mo/n)

Lo = L(logn)%+(2_wl+l)THJ, where o = (2.19)

loglogn
In this strategy, a standard iteration consists of three phases: The first one consists of the
allocation of mg balls according to the multi-stage (mq/n, Lo, Lo)-threshold strategy defined
in Section 2.4; the second phase consists of the allocation of m; balls using the Q-multi-scale
strategy; the third phase consists of the allocation of balls according to the 1/5-drift strategy
given in Section 2.3, until the first time m when the following three conditions are satisfied

o At least mo balls were allocated during this phase,

o maxcp, |L (m)| < 100dlogn,
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{i € n]: L (m) > Lo}‘ < 4000ne~Lo/15,

The strategy itself consists of applying such iterations indefinitely, with the exception that
we skip the first phase in the first iteration. The purpose of this exception is to make this
strategy an extension of the @-multi-scale strategy.

2.5 Optimal strategies

We summarize in Table 2 the strategies and the time intervals where these strategies are em-
ployed to control the single-time, all-time and typical maximum loads. Notice that strategies
that work for larger values of m encapsulate those that work for smaller values so that the
more advanced strategy could be also used for smaller values of m.

m<0(nylogn) | m < O(nlogn) | m < O(nlog?n) m < nfW generic m
. Multi-stage
Mz Threshol
: dXHI.l . reshold threshold Drift multi-stage threshold strategy
load at time m strategy
strategy
Maximum
load up to Relative threshold strategy Varying drift strategy -
time m
Typical load Relative
upylt)o time m threshold @-multi-scale threshold strategy | d-multi-scale long-term combined strategy
) Strategy

Table 2: Optimal strategies for the single-time, all-time and typical maximum loads.

3 Preliminaries

3.1 Poisson approximation

One difficulty of analyzing the balls-and-bins model is the correlation among the loads of
different bins. The following result shows that the joint distribution of the loads of different
bins can be well approximated by assuming that the loads of these bins are independent
Poisson(m/n) random variables.

Let Ng = NU {0}. Given z,y € (Ng)", we say that x < y if 2; < y; for all i € [n]. A
subset S C (Np)" is called monotone decreasing (resp. increasing) if x € S implies that y € S
for all y < z (resp. =z < y).

Lemma 3.1 ([19], Theorem 5.10). Let {X;}ic|n be the number of balls in bins i € [n] when
m balls are independently and uniformly placed into n bins. Let {Yi}ie[n] be independent
Poisson(m/n) random variables. For any monotone set S C [n], we have

P((Xy, -+, Xp) €85) <2P((Yy,---,Y,) €5).

We borrow the following lemma from [11], which provides a concentration bound on the
maximum load over a subset of bins.
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Lemma 3.2 ([11], Lemma 2.2). Let {X;};c|n be the number of balls in bins i € [n] when
|0n],0 < 0 <1, balls are independently and uniformly placed into n bins. For k € |0n| and

S C [n], we have
PmaxX; < k) <2ex —9k|5|
ies " - P ek! )

3.2 Poisson tail estimate

Let X be a Poisson(\) random variable. When A is an integer, X can be seen as the sum
of X independent Poisson(1) random variables. As a consequence of Cramér’s Theorem (e.g.,
[10], Theorem 2.2.3), A1 X satisfies the Large Deviation Principle (LDP), namely, for any
closed set F' C R,

. 1 1 .
— < — *
llin sup >\ log]P)()\ X S F) ;nf A (ﬁ),

and for any open set J C R,

1
liminf < logP(A\"1X € J) > — inf A*(z),
A—o0 A zeJ

where the rate function

A*(2) l—xz+2xlogz, >0
xr) =
400, otherwise.

The statement actually holds for general A that is not necessarily an integer. This LDP
readily implies the following Poisson tail bounds.

Lemma 3.3. Let X be a Poisson(\) random variable. For sufficiently large X\ and any k > 0,
e MW/ < P(X > N+ k) < e MO, (3.1)
and for any 0 < kK < A,
e RN < P(X <\ — k) < e MR/, (3.2)
where I(x) = A*(1+x) = (14 2)log(l +x) —x for z € (—1,00).

Remark 3.4. In fact, the upper bounds hold for any A > 0 and this readily follows from
Chernoff’s argument. As the name, LDP, indicates, Lemma 3.3 provides a good approxi-
mation of the Poisson tail when k is larger than the standard deviation v/X. The following
approximation of the rate function I(x) will be repeatedly used. For 0 < x < 4, we have

z? x?
—<1I < — .
<@ <Y (33
and, for x > 4, we have
xlog L < I(x) < 3zlog L (3.4)
e e

The following result will be repeatedly used in later sections to estimate the number of
retries in the allocation of balls using the threshold strategy.
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Lemma 3.5. Let {X;}icy be independent Poisson(\) random variables. Let £ > 0. We
define Y; = max{0,X; — A — £} and Y = 31" | Vi. Set r* = 6ne M) /log(1 + €/\), where

the function I(x) is given in Lemma 3.3. Then we have

P(Y > r*) < exp (—ne_M(e/A)) . (3.5)
Proof. The statement follows from the classical Chernoff’s argument. For any u > 0, we have
Eequ <1 + e—uf Z eu(k‘—/\) X ]P(Xl — ]f)
k=[A+£]
—lhet Y N (P(Xl > k)~ P(X; >k + 1))
k=[A+(]
=14+e ¥ Z " PN U P(X > k) — et Z BN P(X) > k)
k=[A+{] k= A+0]+1
=14 IV PG > A+ +(1—e™) Y eV PX > k)
ke=[A+0]+1
Write ¢* = [A + £] — X and ji = k — X\. We obtain
Eequ <14+ e—uﬁ (eue* . P(Xl >\ +£*) + (1 o e—u) Z eujk ]PD(XI > )\+]k)> . (36)
k=A+ex+1
For any k£ > 0, we apply Lemma 3.3 to obtain
R P(X) > A+ k) < erulk/N) (3.7)

where g, () = (1 +u)z — (1 + x)log(1 + x). One can check that g}, () = u — log(1 + ) and
that ¢/(z) = —(1 4+ 2)~' < 0. Let u* = Llog(1 + ¢/)\). Then, g,-(z) is a decreasing and
concave function for x > ¢/\. Hence, we have for any k > ¢ that

e/\gu*((k+1)/)\) u* k+1 )\ - Yu* k )\ / / S

where the second equality follows from the formula for g/,. (z) and our choice of u*. Combining
(3.6), (3.7) and (3.8), we have

o0
Eet Y1 <« 1 4 ¢ (e)\gu* (/X +(1- e—u*) Z M (jk/A))
k=A+0+1
<14 eut (exgu* /%) 4 exgu*((ml)/x))

< 142U Aur (/N | | 9 M(E/N)

< exp (26_)‘I(£//\)> ,

where the second last inequality follows from the fact that £* > ¢ and that g,«(z) is decreasing
for x > £/X. Then we apply Markov’s inequality to obtain for any r > 0 that

* * * * n
P(Y >7) <e W TEe"Y = ¥ (Ee“ Yl) < exp (2%6_)\1(0)\) — u*r) :
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Recall that u* = 1log(1 + ¢/)). In particular, for r* = 6ne /) /log(1 + £/)), we have
P(Y > r*) <exp (—ne_M(é/A)) .
This concludes the proof. O

3.3 Concentration bounds for the drift strategy

As our drift strategy is based on a coupling of the allocation process and a continuous
time random process, our concentration bounds for the drift strategy rely on the study of a
particular type of temporal point processes. We refer the interested readers to [8, 9] for more
details of general temporal point processes.

f-standardizing point process. A temporal point process X (t) is called 0-standardizing
if the conditional intensity function A(t) satisfies

At) <1—0, if X(t)>t, (3.9)
At) > 146, if X(t) <t (3.10)

We say that X (t) is upper 0-standardizing if (3.9) holds, and that X () is lower 8-standardizing
if (3.10) holds.

Lemma 3.6. Let {X(t)}+>0 be a temporal point process adapted to the filtration {F;}¢>0. Let
s >0 be a stopping time with respect to {F;}i>0 and let n € [0,1] be a Fs measurable random
variable. Denote Y (t) = X (t) —t.

1. If X (t) is upper 20-standarizing, then we have

E[eey(H") | Fs] < e 0. Y (5) 4 20 (3.11)
and for any X satisfying (1 — 20)e* < \/2, we have

E[e)‘Y(SJ”’) | Fs] < e 2. AV 42 (3.12)

2. If X(t) is lower 20-standarizing, then we have
E[e_GY(SJr") | F] < e~ . o=V (5) 4 of (3.13)

3. If X(t) is 20-standarizing, then we have

E[ee‘y(”m‘ | Fs] < e YO 4 3620, (3.14)
Proof. We denote by Z(3) a Poisson(/3) random variable throughout the proof. We first prove

inequalities (3.11) and (3.12). We need to estimate the Laplace transform of Z(a(1 — 26))
for any o > 0 as follows

EeMZ(a(1-20))~a] _ ja(1-20)(e*~1)—aA
a(1=20) AM+A)—ad < ca(W?=20) < )\ <1
< =A== (3.15)
a(l 20)e* —a\ < e—Aa/2 (1 — 29)€>‘ < )\/2
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We define s, = min{t € [s,s + 7] : Y(¢t) > 1} and set s, = s+ 7 if the minimum is taken
over an empty set. Then, s, is a stopping time with respect to {F:}+>0. We have

E[ AY (s+n) | Fe. ] MY (s+) | E[ ALY (s+n) =Y (s+)] ’]_- ]

AV (54) IE[ AZ((1-20)(s+n—5x))—(s+n—54)] ‘ ]_—S*]
e (stn=s) Y (s) )\ — ¢,

{ 3 (s+n—sx) | AV (s4) (1—20)e* < A/2.

0%n . eGY(s) + e20 A=6,
T Jem2m- V() 42 (1—260)e* < \/2.

IN

IN

(3.16)

To see the first inequality, observe that Y (t) = X (t) —t > 0 for ¢t € [s4, s + n]. Since X(¢) is
upper 26-standardizing, Y(s+n) — Y (sx) = X(s+n) — X(s«) — (s + 1 — sx) is dominated by
Z((1—=20)(s+mn—sx)) — (s+n—s4). The second inequality follows from (3.15). In each case
of (3.16), the first term is an upper bound for the case s. = s, while the second term uses
the fact that Y (s.) < 2 when s, # s. Inequalities (3.11) and (3.12) follow from the tower
property of conditional expectation and (3.16).

Next we prove (3.13). Write E = {Y'(t) <0 for all ¢ € [s,s+n]}. Observe that, whenever
E€ occurs, we have Y (s +n) > —1. Hence,

E[e—eY(s+n) | Fu] = E[e*QY(””)lE T C e Fs)
< B[ em1, | 7] 4
N0 ‘E[e —O () =Y ()] | Fs| + e’
< e O 6) [0l r20mnl | 7]y of

< 6—9277 . e—@Y(s) —1—66.

To see the second inequality, observe that, whenever E occurs, we have Y (t) = X(t) =t <0
for all t € [s,s + n]. Since X (¢) is 20-standardizing, Y (s +n) — Y (s) = X(s+n) — X(s) — n
dominates Z((1 + 260)n) —n. The last inequality follows from that for any « > 0,

Ee—01Z(a(1420))—a a(1420)(e=?—1)+ab a(1420)(—6+62/2)+ab —a92.

I —¢ <e <e

When X (t) is 20-standarizing, it is both upper and lower 26-standarizing. Hence, in-
equalities (3.11) and (3.13) hold. Observe that

E[69|Y(s+n)| ,fs] < E[eey(s+n) | ]_—S] +E[679Y(s+n) !-7:5]-
This, together with (3.11) and (3.13), yields (3.14). O

Corollary 3.7. Let {X(t)}+>0 be a temporal point process adapted to the filtration {Fi}i>o.
Denote Y (t) = X(t) —t.

1. If X (t) is upper 20-standarizing, we have for any t > s,

E[eeY(t) ’ fs] < 6*92(1‘/*5) . e@Y(s) + 9727 (317)
and for any A satisfying (1 — 29)6)‘ < \/2,
2 2X
]E[e)\y(t) | -Fs] < efg(tfs) . e)\Y(S) + ]__667—)\/2 (318)
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2. If X(t) is lower 20-standarizing, we have for any t > s,

2) 0
E[eer(t) ’ JT_‘S] < 6*92“*5) . eer(s) + 9—62 (319)
3. If X(t) is 20-standarizing, we have for any t > s,
oy 52 oly 6629
Ele MOl Fi<e (t=s) . Y ()] 4 - (3.20)

Proof. We only prove (3.17) and inequalities (3.18), (3.19), (3.20) can be proved in a similar
manner. Lemma 3.6 yields that for any k£ € N,

20 20
e e
E eGY(s-Hc) N — 692(s+k) ‘ Forho| < €6Y(s+k—1) _ — 692(s+k—1)_
1—e¢ 1—e
Hence, {(eGY(SJrk) — 12%) 692(S+k)}k . is a supermartingale and for any k € N, we have
- €

629(1 o 679%)

E[eQY(S-i-k) ’ ]:Sj| < 6—02k . e@Y(S) + .
1—e?

(3.21)

For any t > s, we have

E [eey(t) | .7:3]

E[E [eeY(t) | ]:s-&-Lt—sJ] ’ -7:3]
6792(t—37Lt78J) 'E[GHY(S+LI‘/*SJ) ‘ ]:S] 4 629

IN

IN

20
< e P(t=s) Y (s) | 2e

In the first inequality, we use Lemma 3.6, and in the second inequality, we use (3.21). The
last inequality follows from e™® > 1 — z. O

Corollary 3.8. We denote by {X;(t)}ic|n independent 20-standarizing point processes with
indtial values {X;(0)}iepn such that | X;(0)| < L for alli € [n]. For allt > L/, we have

20
Ee/1 Xt~ < 5 (3.22)

Write Y (t) = L3 | X;(t) —t. For allt > L/6, we have

REellY @) < 27(2) and TEeMY®I <« (Zg) . (3.23)

In addition, for 0 <t < L/, we have

20

B0t < o1 20 gl < 69L+ﬁ.

02 (3.24)
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Proof. Inequality (3.20) and the assumption that | X;(0)| < L imply that
, 6
REefI KO-t < 6792t+9L ;2 .

For t > L/, the RHS of the above inequality is at most 1+ 6 2 , it can
be trivially bounded above by e~ 20 . This proves 1nequahty (3 22) and the first mequahty
of (3.24). Then we can use inequahty (3 22) to obtain for ¢ > L/ that

n 1/n
n 20
Bl (O < Fen i X0t — (H Eealxi(t)_t> < 2

and

EelnY O] < pef Sy Xt HEee\X 1 < <e(2)> ,

Similarly, we can use the first inequality of (3.24) to obtain the second inequality of (3.24). [

Consider a collection independent regular point processes {X;(t)};c[n) with the initial
value {L;(0)};e[) and conditional intensity functions {;()};c[,) given in (2.9). The process
{Z }ren defined in (2.10) is the output of the #-drift strategy f as per Section 2.3. We show
the following concentration bounds on the load vector {L{ (m) }iein)-

Lemma 3.9. Suppose that |L;(0)| < L for all i € [n]. Set 8 = 1/5. The 0-drift strategy f
satisfies that for any m > (3 10 o log 02)n any i € [n] and any k > 0,

¥ 320 0k
(\L )| > k;) <> exp< =) (3.25)
Taking the union bound, we have
f 5 320n 0k

Proof. Set t* = m/n + k/2 and t, = max(m/n — k/2,0). We denote by E = {X (t*) > m}
and F' = {X(t.) < m}. Using the law of total probability, we obtain

P (1L (m)| > k) =P (L{(m) > k) + P (Lf(m) < =)
<P (L{(m) >k, E) +P(E) + P (L{(m) <k, F) FR(FY).  (3.27)

We now estimate the first two terms of (3.27). Since X;(¢) given in (2.9) is #-standardizing,
we apply the first inequality of (3.23) and Markov’s inequality to obtain

IP’(EC):}P’<X<t*)<t*—]2€><e_gf-Eexp<0XS*) t><2§ p<_9f>. (3.28)

n 2
Whenever E occurs, we have Llf (m) < X;(t*) — m/n. This, together with inequality (3.22)
and Markov’s inequality, yields

P (L{(m) > k:E) <P (Xl-(t*) - +k:) —P (Xl-(t*) >t 4 ];)

n

0 0k
<e T -Eexp (2\Xi(t*) — t*[) < Z—Sexp <—4> . (3.29)
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We next estimate the last two terms of (3.27). We first estimate P(F°). For k > 2m/n
we have ¢, = 0 and X (tx) = > ;¢ Li(0) = 0. This yields P(F) = 0. For k < 2m/n, we use
the fact that t, = m/n — k/2 to rewrite F' = {X (t.)/n < t. + k/2}. Set ko = 2m/n —4L/0.
One can check that t, > 2L/6 for 0 < k < kg and that 0 < ¢, < 2L/0 for kg < k < 2m/n. We
apply the first inequality of (3.23), the second inequality of (3.24) and Markov’s inequality

to obtain
P(F°) =P (X(t*) >t + k) < e T . Eexp (9 X(t) >
n 2 n

2
80 —0k/4, 0<k<ko
(P12 4+ 89) e=Ok/4 ko < k < 2m/n
8e=0R/4 0 <k < ko,

T e %5, ko< k< 2m/n,

(3.30)

where the second case of inequality (3.30) follows from e?Z/2 4 80/6% < e%0/20 < ¢fk/20 Tq
see this, we observe that our assumption on m and our choice of § = 1/5 imply that

2L 10 80\ 2L 10 10 80 3L 10 80 _m
| 0L12 4 2 ) < 224 log (9/?) + —log— = ==+ —log — < —.
9+9°g<€ tp) S g gl () + s gy = Sr+ plog gy <

This can be rewritten as ky/2 > % log ( OL/2 4 7 ) which is equivalent to the desired state-
ment.

We now estimate the third term of (3.27). For k > 2m/n, we derive from the assumption
on m that

m dm
L >—-L——>—-——>—k.
i (m) o> >
In this case, we have ]P’(Lf ) = 0. We now deal with the case that k£ < 2m/n.
Whenever F' occurs, we have L{( ) Xi(t ) m/n. Together with ¢, = m/n — k/2, this
yields

P (L{(m) < —/-c,F) <P (Xi(t*) < % . k) —P (Xi(t*) <t — g) .

Recall that kg = 2m/n—4L/60 and the fact that ¢, > 2L/6 for 0 < k < ko and that ¢, < 2L/0
for kg < k < 2m/n. We apply inequality (3.22), the first inequality of (3.24) and Markov’s
inequality to obtain

P (Lfm) < —kF) < ¥ B (G100 1)

80 o~ 0k/4, 0<k<ko
(P72 4+ B3y e=/1 ko < k < 2m/n

IN

= e k5, ko < k < 2m/n, .
where the second case of inequality (3.31) again uses e?2/2 4 80/6% < ePk0/20 < ¢0k/20,
Combining (3.27)-(3.31), we obtain (3.25). O
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Lemma 3.10. Suppose that |L;(0)| < L for all i € [n]. Set 6 = 1/5 and ko = 1+ 3 log 59
The 6-drift strategy f satisfies that for any m > 2nL/0 and any k > 3k,

P (Hz € [n]: L (m) > k}’ > 19620n69§) < 2eXp< 2n (22) 623’€>. (3.32)

Proof. Set t* = m/n + ko. Let E = {X(t*) > m}. Denote Sy = {i € [n] : L{(m) > k}. By
the law of total probability, we have

160 _ox 160 _ o .
p(ysk\ > e ) gIP(]Sky > e E) + P(EF). (3.33)

The second inequality of (3.23), Markov’s inequality and our choice of ky yield

P(E®) = P(X(£*) < nt* — nko) < (22)nexp <—”92k°> — exp <—92”> . (3.34)

To estimate the first term in (3.33), we introduce independent Bernoulli random variables
W;, which are indicator functions of the events that X;(t*) > m/n + k. Hence,

P(W; =1) =P (Xi(t*) > % + k) = P(X;(t") > t* + k — ko)

2k 80 0k
<P X;(t" | <= ——,
< ( (t)>t+3>_02exp< 3>

where in the first inequality, we use the assumption that k£ > 3kg, and in the second inequality,
we use the fact that X;(¢) is -standarizing and (3.22). Observe that, when the event E occurs,
we have L{(m) < X;(t*) — m/n, which implies that |S| < >, W;. This, together with
Hoeffding’s inequality, yields

1
<|Sk| 2 %”67%7 ) <P<ZW > @ne 93k> Sexp( 2n (28) e 23]“)

This, along with (3.33) and (3.34), gives

160 ok 80\ 2 20 On
P(\Sk]> T 4)§exp< 2n<92) e )—i—exp( 2).

This, together with the condition that k > 3 + §log 52, yields (3.32). O

We also provide a concentration bound on the time it takes the drift strategy to bring
certain quantities close to stationarity.

Lemma 3.11. Suppose that |L;(0)| < L for alli € [n]. Set § = 1/5. Denote

- / 5. 320m
Am{?elf[ﬁ‘l/ )‘Ska‘F@lOg? ;

= {H’L €| ) > kb}‘ 160716_9?)},
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and assume that

Ok, 80\* _zom,\ 1
exp <— 5 > + 2exp (—2n <92> e 3 ) < 3
If T = min {m eN:A,NB, holds}, then under the 0-drift strategy, we have
E(T) < Cn(L + logn)
for some absolute constant C' > 0 and all large enough n.

Proof. Set mg = 0 and recursively define

10n 80
Mmj+1 = m; + h? ?61%( ‘L{(’mg’)} + Tlog 92-‘ :

Denote
J =min{j : Ay, N By, }-

It is obvious that T" < mj;. By Lemma 3.9, Lemma 3.10 and the union bound, we have,
conditioned on the history of the process until m; balls have been allocated, that

c c Okq 80\? _am ) 1
P(Aij UBp,., | fmj> < exp (—5> + 2exp <—2n <02> e 3 ) <3

Thus, we have P(J > j) < 277 and hence
E(J) <2.

For j > 1, we have by Lemma 3.9 that

P 5. 320m Ok,

which implies that

o1 7 (G )+ ]
Putting all these together, we obtain
E(T) < E(my) < Cn(L +logn)
for some C' > 0 and n large enough. O

4 Single-time load discrepancy: upper bound

In this section, we investigate two-thinning strategies that can achieve the upper bounds on
the single-time load discrepancy as stated in Theorem 1. Write ¢ = m/n. Observe that for
any thinning strategy f and any m € N,

MaxLoad/ ([t]n) — 1 < MaxLoad” (m) < MaxLoad” ([t]n) + 1. (4.1)

Hence, at the expense of an additive constant to the maximum load, we can always assume
that m is divisible by n, and then it suffices to study MaxLoad (tn) for ¢t € N.
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4.1 Case 1: t < O(y/logn)

In this case, we apply the (t+/)-threshold strategy introduced in [11] (see Section 2.3). Recall
that this strategy retries a ball if its primary allocation is a bin which has accepted at least
t 4+ ¢ primary allocations.

Proposition 4.1. Assume that L;(0) = 0 for all i € [n] and that t < e=%\/logn. We set
{ = 1/@%. For any € > 0 and sufficiently large n, the (t + £)-threshold strategy f
satisfies

P (MaXLoadf(tn) > (24 5)5) <3n ‘. (4.2)

Proof. We write r := R, for the total number of retries throughout the process. The strategy
f guarantees that no bins accept more than ¢ + ¢ primary allocations, i.e., L{Z([tn]) <t+ 4.

This, together with the equation L{(tn) = L{Z([tn]) + Lgl([tn]) — t, implies that

P (MaxLoadf(tn) > (24 E)E) <P <ms[1>}< ng([tn]) > (1+ 5)6) , (4.3)
i€n ’

where ng([tn]) defined in (2.3) represents the number balls that bin i receives from secondary

allocations. Set r* = 6ne~*/(/Y) /log(1 + £/t). By the law of total probability, we have

P (max L3 ([tn]) > (1 + 5)€> <P <max L3 ([tn]) > (1 +e)t,r < r*> +P(r>1%).  (4.4)

1€[n] i€[n]

First, we estimate the second term of (4.4). We write {X;};c[,) for independent Poisson(t)
random variables. Define Y; = max{0,X; —t — ¢} and Y = > | ¥;. Lemmata 3.1 and 3.5
provide the following tail bound

P(r > r*) < 2P(Y > r*) < 2exp <_ne—t1w/t))

< 2exp (—n <eg>34> = exp (_n1,0(1)> , (4.5)

where the last inequality follows from the upper bound in (3.4) and the fact that ¢ > 4¢ for
large enough n.

Next, we estimate the first term of (4.4). Again, using the lower bound in (3.4), we obtain
r* < 6n(et/0)" for n large enough. Set A = 6(et/¢)". We denote by {W;};c[, independent
Poisson(A) random variables. Lemma 3.1 and the union bound argument yield

P (maxL;i([m]) > (14e)l,r < r*) <P (max {s<r* : Z2=1i}> 1+ e)e>

i€[n] i€[n]
< 2P (Ilrel%f}( Wi > (1+ 6)€>
<2nP(W7 > (1 +¢€)0). (4.6)
Apply Lemma 3.3 and the lower bound of I(x) in (3.4) to obtain

AI((142)/) 6e  fet\ T pen\ (o
< e M((+e — - : :
P(W; > (1+¢e)l) <e < (1+8)€<£> <<€> (4.7)
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One can check that

(14€)e?
et 3 log(loglogn — 2logt) + 2 — log 3
— = —(1 = (1= 1 :
<f) exp< (1+e¢) 2 < loglogn — 2logt cen

Our assumption of ¢ yields that loglogn — 2logt > 18. This, together with the fact that
" !log z is decreasing for x > e, yields that

log(loglogn — 2logt) +2 —log3 _ log(18) +2 —log3 1
< < —.
loglogn — 2logt - 18 3

Hence, we obtain

(1+4¢)¢?
(i;f) < p—(149),

This, combined with (4.6), (4.7), yields

P (m?}]( ng([tn]) > (1+e)l,r< T*) <2n"°. (4.8)
i€eln ’
The desired statement (4.2) follows from (4.3), (4.4), (4.5) and (4.8). O

Our next result complements the proof of the case ¢ < O(y/logn). Moreover, it also
provides a tight upper bound for the maximum load for t = (logn)'/2+e(),

Proposition 4.2. Assume that L;(0) = 0 for all i € [n] and that Q(log"/?n) < t < o(log?n).
We set £ = (ctlogn)'/3, where c is an absolute constant such that £ < t. For any ¢ > 0 and
sufficiently large n, the (t + £)-threshold strategy f satisfies

P (MaxLoadf (tn) > (4(1:5) + 1) e) < 3n7°. (4.9)

Proof. We slightly modify the proof of Proposition 4.1. Set r* = 6ne= /" /log(1 + ¢/t).
As before, we define independent random variables {X;}ic(n), {Yi}icpn and {Wi}igjn) where
X; ~ Poisson(t), Y; = max{0, X; —t — ¢} and W; ~ Poisson(\) for A = r*/n. As before, we
set 7 := Ry;. Similar to (4.3), (4.4) and (4.6), we have

P (oot () > (452 1) ) <2 (g o) > 1)
e ’
4 +e)

<P (max Lgl([tn]) > -

T < r*) +P(r > r*)
i€[n]

4(1
< 2P <m?)}( W; > (1—8)6> +P(r >r*)
1en
4(1
< 2nP (W1 > (1_5)6> +P(r >r"). (4.10)

Similar to (4.5), Lemmata 3.1 and 3.5 yield that

2
P(r >r") < 2exp (—ne_”(f/t)> < 2exp (—n exp <_§t>>

< 2exp(— nefz) =exp(— nlfo(l)), (4.11)
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where the last two inequalities follow from the upper bound of I(z) in (3.3) and the fact that
¢ < t. Using the lower bound of I(z) in (3.3) and log(1 + z) > /2 for 0 < z < 1, one can

check that A = r*/n < % exp (—%) = o(1). This, together with Lemma 3.3 and inequality
I(x) > xlog(z/e) for x > 4, yields

3(1+e)¢
4(14¢e) 3(1+¢e) ceA c
P — | < M| ———— < | =
(Wl ” c > = &P ( ( cA “\3(1+¢e)
(4ot
< 4cet . 2 e
T exo | ——
“\(1+e)? P\ 75t
3
< exp <(1 o)t ) = n~(1+e),
ct
Combining this with (4.10) and (4.11), we can obtain (4.9). O

4.2 Case 2: Q(y/logn) <t < O(logn)

1,1
For t = O((log n) 2t legosTon ), Theorem 1 follows from Proposition 4.2. Thus, here we treat

Q((logn)%+vlogliglogn) <t < O(logn).

In this subsection, we study the allocation problem in a more general setting. The initial
loads are not necessarily perfectly balanced (i.e., allowing L;(0) # 0). This will play an
important role in Sections 4.3 and 8.

Recall that k = L&%J. Set ¢ = |log? n|, where By, is defined in Section 2.4. One

a+tn—1/2
can check that ¢ = | (log n)%+(27ﬁ) T |. Then we have the following result.

sy _ logt . . 1 1 v/logloglogn
Proposition 4.3. Lett > 0 and o = Toglogn satisfying o € [5 + JoshosToan? 1+ Tog Iog 1 ]

Suppose that for Ly > 0 the following conditions hold:

1. MaxLoad(0) < ct for some constant 0 < ¢ < 1,

2

J4
2. ’H()‘ S 37’L6Xp <—m
load greater than Lg.

), where Hy = {i € [n] : L;(0) > Lo} is the set of bins with

Then the multi-stage (t, Lo, )-threshold strateqy f (as defined in Section 2.4), with the pa-
rameters above, satisfies that

P (MaxLoadf (tn) > Lo + 2k:£) < peViErEET

For w(ny/logn) < m < O(logn), Theorem 1 follows as an immediate consequence of the
following corollary.

Corollary 4.4. Lett > 0 and « as above, satisfying o € [% + \/logléglogn’ 14+ \/l(l)c%ghl)fglzgn}.
The multi-stage (t, 0, £)-threshold strategy f satisfies that

i (MaxLoadf (tn) > (log n)%+o<1>> < eV EEEER.
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Proof. Apply Proposition 4.3 with n = 0 and L(0) = Ly = 0 and observe that the two
conditions lof Proposition 4.3 trivially hold. Hence the corollary follows from the fact that
¢ = (logn)zt°M and k = log®M n. O

For 1 < ¢ < k, we denote by r; be the number of retries in stage ¢ of the multi-stage
(t, Lo, £)-threshold strategy. Recall our notation H; for the set of bins in (U;;%)Hj)c whose
loads after the i-th stage are at least Lo + 2i¢. To establish Proposition 4.3, we use the
following lemma, to inductively bound the number of retries in every stage and the size of
H;, the set of heavily loaded bins.

Lemma 4.5. Under the assumptions of Proposition 4.3, for all 1 <1 <k, we have

P(r; > 1) <exp <—n1/2*°(1)> , (4.12)
where 20nlog’ 1 n 2
i = =P <510gﬁ’1n> . (4.13)
In addition, for 1 <i <k —1, we have
P <|Hl-\ > 472?2@) < exp (—n1/2_0(1)) : (4.14)

e *
where \; :==r}/n.

Before presenting the proof, we first make some technical observations. Using £ = Uogﬁ Fn|

and B = — ng;jl_s), it is easy to check that

katets  k(l+e)+f

¢-logl < (logn) 2++1 1 loglogn = (log n)%“(l). (4.15)

For n large enough, we have

£2 KZ 1 2k(1+4e)—(2k—1)8
= (logn)?* =B > Z(logn)~  2F+1
logPn  log®%n (logn) 2( gn)
1 1-(2k—1)(B—1)
> (logn) — 71— > (loglog n)§ o), (4.16)
where the last equality follows from that 8 — 1 < L/ ;thoil) and our choice of k. We also have
3 . - _
¢ < (log n)zﬁ_gk%iJrll : = (logn)l_%(ﬁ_%)"'zﬁkl
logﬁn
< (logn)l_%(ﬁ_%%r%ﬂ (5_%)
= (log n)l’(ﬂ’%) = o(logn), (4.17)

where the last equality uses § > a > % + m. For 1 < ¢ < k and n large enough, we

have
0< <1 (4.18)
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To see this, notice that {8;}*_, is a decreasing arithmetic progression, hence, {\;}%_; is a
decreasing sequence and it suffices to show that 0 < A1 < 1. Observe that

N 20log®n ( 2 ) 0 . 20log®n
=———exp|— =exp| —— +log——— |,
! 14 P 5 logﬁn P 5 logﬂn s 14

and 5
1
log% < Bloglogn < 2loglogn.

This, together with (4.16), yields that 0 < A\; < 1 and hence (4.18).

Proof. We prove (4.12) and (4.14) inductively by establishing the i-th case of (4.12) on
condition that (4.14) holds for all j < i, and by establishing the i-th case of (4.14) on
condition that (4.12) holds for the same i. The case ¢ = 1 is treated separately.

Bounding P(r; > r}) assuming that |H;| < 4n)\§/€! for j <i. We denote by r; 1 the
number of balls in the i-th stage whose primary allocations are bins that, at the time of the
allocation, already accepted t; —t;_1 4 ¢ primary allocations during stage 7. We write ry o for
the number balls in the first stage whose primary allocations are bins from Hy, and write 7; o
for ¢+ > 2, for the number of balls in the ¢-th stage whose primary allocations are bins from
Uj.;llHj. By the definition of the strategy, we thus have r; <71 + 7 2.

Estimating 7;;. Recall that t; = |t — logPin| for 1 <i <k—1,t, =t, £ = |logn],
where 3; = 8 — (252;7_1;18”, and observe that ¢ < t; —t;—; for 1 < ¢ < k. Also, recall that I(z)
defined in Lemma 3.3 is the rate function of the large deviation bound of a Poisson random

variable. We have
12n(t; — t;— 02 —(ti—ti—1)I(€/(ti—ti—1))
§Tf L2n(t: = ti1) exp | — One =, (4.19)
5 14 4(ti _ti—l) log(1+€/(ti _ti—l))
where the first inequality follows from the definition of 7} in (4.13), and the second inequality
follows from the lower bound of I(z) in (3.3) and that log(l + x) > z/2 for 0 < z < 1
(indeed £/(t; — t;—1) < 1). Define Y = max {0, X" — (t; — t;_1 +€)}, where {X\"}

J€ln]
is a collection of independent Poisson(t; — t;—1) random variables, and write Y = 2?21 Yj(z)

By Lemmata 3.1, 3.5 and inequality (4.19), we have

3 3
P(T@l > 57”;‘) < 2P (Y> 57”;‘) <2P(Y >r")

< 2exp (—nexp <—(tz‘ —ti-1)] (tz—gtH)))
oo o)

< 2exp ( — ne_ﬁ) = exp ( — nl_o(l)), (4.20)

where the last two inequalities follow from the upper bound of I(z) in (3.3) and the fact that

0/(t; —t;—1) < 1. The last identity follows from the fact that ¢ = (log n)%+0(1).
Estimating r; 2. Here we estimate the number of balls in the first stage whose primary

allocations are bins from Hy. Using the assumption |Hy| < 3nexp ( — ), we have for n

62
4log’n
large enough

2 > 6nlog’n ( 0 ) 2
2(t1 — to)|Ho| < 6n(ty —to)exp | — < exp | — <-ry, (4.21
(=)ol < 6n(t —to)exp (— o) < P Ry () < B (4
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where 77 is given in (4.13), and the second inequality follows from t; — to < log’n and
the observation that £ = o(exp (1 m )) by (4.16). We denote by {XJ(Z)}je[n]
Poisson(t; — t;—1) random Varlables and write Z for a Poisson random variable with the
> Lemmata 3.1, 3.3 and inequality (4.21) yield

independent

parameter 3n(ty — to) exp ( 41€gﬁn

2 * 1 2 « 2 N
P<T172>5T1> SQP ZXJ()>gr1 SQP <Z>57’1>

JE€EHo

€2
<2P(Z >6n(t; —t —
<28 (2> 6n(t ~ ) exp (— o))

52
< 2ex —n(t] —tg) ex —
< 2exp (n(ts — w)exp 410%))

< 2exp (—n(tl - to)e_g)
= exp (—nt7oW). (4.22)
This, together with the ¢ = 1 case of (4.20), implies the base case of (4 12) ie.,i=1.

1 Recall that 7; o
is the number of balls in stage ¢ whose primary allocatlons are bins from U =1 H . Again, write

Estimating r; » for ¢ > 2, assuming that

{X (Z)} for independent Poisson(ti — t;—1) random variables, and write Z for a Poisson

4n/\

random Varlable with parameter 2" i An(ti—ti—1) SV AL Define E = {|H;| < —2,

=1 A 1<j5< z—l}
Lemmata 3.1 and 3.3 imply that

i—1 i—1

871(751' — tifl) . Y, (4) 8n(t1 - tifl) ¢

Plria> =" X, B <2P| > XP>—" "3 X, E
Jj=1 j=

1—1
mEszlHj

i—1
8?7,(752' — ti—l) ZZ ¢

i—1

n ti — ti_ n/\E
< exp _(6!1) ZA§ < exp <_€'1>
j=1
ES
< exp < exp (logn — logPn — Elogé))
= exp (—nl_o(l)) , (4.23)

where the penultimate transition uses the fact that Ay = r§/n > exp (— where 77 is

£2
4logﬁn) ’
given in (4.13), and the bound ¢! < ¢¢, and the last transition uses (4.15) and (4.17). Using
the fact that 0 < \; < 1 and that k& < ¢, we have

tz 1) Z}\g Sknlogﬁl in Snlogli-in 8nlogﬁi*1nexp (_Elogf)

i< STu-n ST 4 2
8n logﬁl—1 n < 0 ) 2
<8 T o[ —— ) =L, 4.24
- 14 P 5logfi-1n 5" (4.24)
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where the penultimate inequality uses Stirling’s approximation and the last inequality follows
the fact that £ < log”~! n. Combining (4.23) and (4.24), we have

2
P <n~,2 > 57";‘, E) = exp (—n170(1)> .
This, together with (4.14) for 1 < j <4 — 1, implies that for 2 < i < k,

i—1 /¢
An X\
P<T12>§ ><]P)<T7,2> )-l— P(’H|> j)zexp(—n1/2°(1)>.

7=1

This, combined with (4.20) and (4.22), yields

2
P(Ti > 7‘:() S P <7‘j71 > gﬁ) +P <Ti,2 > 5T;<> = exp <_n1/270(1)) .

This concludes the proof of the i-th case of (4.13) condition on that (4.14) holds for j < i.
Bounding P(|H;| > 2p;n) assuming that r; < r} for i > 1. Recall that

H; = {j €[n] : L(tin) > Lo +2i¢} \ | ] Hg.

1<

Let j € H;. We have Lj-c(ti_ln) < Lo+ 2(i — 1)¢ (otherwise we would have j € H;_1). Let us
show that j must have received at least ¢ secondary allocations in the i-th stage. During the
i-th stage, if bin j accepted less than ¢; — ¢t;_1 4+ £ primary allocations, it clearly must have
received at least ¢ secondary allocations in order to belong to H;. Otherwise, once j accepted
more than ¢; —t;_1 + ¢ primary allocations (in the i-th stage), it rejects all further allocations
unless its load is at most —logn. Hence its load after accepting the last primary allocation
must have been at most —logn, so that in order to belong to H; it must have received at
least Lo + 2if + logn secondary allocations.

Let {X{"} 1
function of the event that X](-l) > /. Then, {}/j(l)}je[n]

variables, where p; = P(Xfi) > E). Let Y = Z?Zl Yj(l). By Lemma 3.1 and Hoeffding’s
inequality,

be independent Poisson();) random variables. Let Yj(i) be the indicator

are independent Bernoulli(p;) random

P(|H;| > 2pin,r; < 7F) < 2P(Y > 2p;n) < 2e~ 27 (4.25)
Using the fact that 0 < A\; < 1, we have
A NN 2N
ol <P FTT
j=¢

This, together with (4.25), yields that, for 1 <i <k —1,

4n v 2n (A’
<|H\ > —Lr <71y ) < 2exp (—67; <£:> ) : (4.26)

Since {\;}¥_, is a decreasing sequence, we will upper bound the RHS of (4.26) for i = k — 1.
Using the fact that ¢! < e\/£(£/e)?, by Stirling’s approximation, we obtain

2
on (A, on e\ 2 eNp_1
_ > _ —— o ) .
o2 ( 7 =y < 7 ) o1 &XP <logn log ¢ + 20 log 7 > (4.27)
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Using £ = [log’*n| < logP-1n, (4.13) and (4.14), we have A\;_; > exp (—L) , and

5log’k—2 n
- 510g6’“*2n 5log36’“n
1 2(k+1)e—(26-1) 1
> —Z(log n) T e =— Oin, (4.28)

where the second equality follows from that ¢3/log3% n =1 — o(1) and 8; = 3 — (2'32;7};15)1',
and the last equality uses ¢ = 22(5_:) Combining (4.26), (4.27), (4.28) and (4.15), we have

4nAt

P (165> L i <) < oxp (—l /20

This, together with (4.12), implies that

AnAt AnA!
P <|Hz’ > Z, Z) <P <’Hz| > %7” < 7”?) +P(ri >r)) <exp (—nl/Z_O(l)) )

This concludes the proof of the i-th case of (4.14) given that the i-th case of (4.12) holds.
This establishes the induction and thus the lemma. O

In the next lemma, we keep our notation r; for the number of retries in the i-th stage,
which proceeds from ¢;_; to t; and set tx11 1=t + £.

Lemma 4.6. For1 <1 <k we have

2/log loglog n

P (Jje L ((tim1,ti]) > tig — ) < 207 (4.29)

Proof. Denote E = {Eje[n]Lg’j((ti_l,ti] > tiy1 — ti}. Recall that r} is defined in (4.13).
Using the law of total probability, we have

P(E)<P(E |7 <r])+P(r; >1r7)). (4.30)
We have already showed in Lemma 4.5 that

P(r; > r’) <exp <fn1/2_0(1)) . (4.31)

Next, we estimate the first term on the RHS of (4.30). Denote by {X ]@}je[n] independent
Poisson(A;) random variables, where \; is given in (4.14). By Lemma 3.1, we have

P(E | r; <r¥) < 2P <3je[n]x§i) > tin — ti> . (4.32)

Using the face that 0 < \; < 1 in (4.18), we have

. 2)\t‘i+1*ti . tit1—t;
P (sz) > tiy1 — tz‘) < < e
(tig1 —t;)! tit1 —ti

C(tip — ti)) log”n
<exp|-——"F— | <exp| ————
= o < 4logli-1n ) ~ P 5log’i-1n

<e -5 | = ¢ ——1lo € ni.
= o ( 6log’-1n P 6 °
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The second inequality follows from Stirling’s approximation n! > v/2mn(n/e)” for n € Z..
The transition to the second line uses the definition of A; given in (4.14). In the penultimate

inequality, we use t; = [t — logBinJ7 where 3, = 8 — (2[32;7}:16)1‘, and that logP+1n = o(logﬂin).

The last inequality uses the fact that ¢ = Uogﬁ’“nj. Taking into account of ¢ = %,
k= L?&%J and 3 > % + W, we have log®n > e3Vlogloglogn  Taking the union
bound, we have for n large enough,
) 1 Vlogloglogn
P [ max X > tiv1 —t; ) <nexp ——log!'™n) < €7V B CEIOE T (4.33)
PR 6
The desired statement (4.29) follows from (4.30)—(4.33). O

Now we are ready to prove Proposition 4.3.

Proof of Proposition 4.3. We will estimate the maximum loads after ¢ stages for all 1 < i < k.
By the definition of H;, we have

MaxLoad{Ui_ yye(tin) < Lo + 2il. (4.34)
i

Next, we estimate the maximum load over U§:1Hj after i stages. For 1 < j <17 <k, we

denote by EZJ = {MaXLoadf{j (tin) > tiy1 —ti+ Lo+ (25 — 1)2}, where 11 =t +£. We will
show that

_62\/10g Toglogn

P(E}) < (i—j+1)-2n (4.35)

We denote by r; the number of retries in the i-th stage. In the i-th stage, for a bin in H; to
accept more than t; — ¢;_1 + ¢ primary allocations, it is necessary that the load of this bin
before accepting its last primary allocation is at most —logn. Hence, we have

MaXLoad];Ii (t;n) < max {MaxLoad]I; (ti—in) + £, —log n} + max L§7p((ti—17 ti])

; f
< _ - .
< Lo+ (20 —1)¢ +pné%1)§L27p((tZ 1,t)),

where the second inequality uses the fact that H; C (UE;BH ;)¢ and the i — 1 case of (4.34).
Using the inequalities above and Lemma 4.6, we obtain

IP(EZZ) < P <max Lé[,p((ti—l?ti]) > ti+1 —t; (436)

_»2+/logloglogn
< 2n~¢ )
pEH;

For 1 <j <i—1andi > 2, the strategy guarantees that in the i-th stage, each bin of H;
either accepts no primary allocations, or has a load at most — logn before accepting its last
primary allocation. Hence, we have

MaxLoade (t;n) < max {MaXLoade (ti—in) — (t; — ti—1), — log n} + Imax Lgp((ti_l, ti]).
pEH; ’

Hence, event Ef occurs only if one of the two conditions holds: max,cp, Lgvp(ri) > tiv1 —
or max {MaxLoad}cIj (tiein) — (t; — ti—1),—logn} > Lo+ (2j — 1)¢. The latter condition is
equivalent to event Ef;l. This and Lemma 4.6 imply that

; ; ; _ .2/Togloglogn
P(E!) < B(EL,) + P (e L (0.t > i — ) < B(BL) + 2077
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Iterating this argument to obtain

762\/10g loglogn 2+/log loglog n

P(E]) <P(EJ) + (i —j) -n <(i—j+1)-2n7° )

where the second inequality follows from (4.36). This concludes the proof of (4.35).

Now, we estimate the maximum load over Hy. In the first stage, each bin in Hj either
accepts no primary allocations or has a load at most — logn before accepting its last primary
allocation. Hence, we have

MaXLoadj;,0 (t1n) < max {MaxLoad{Io (ton) — (t1 — to), — log n} + max Lgp((to, t1]). (4.37)
peHo 7

In general, in the i-th stage for 2 < i < k, for bin of Hy to accept more than ¢; —t;_1 + ¢
primary allocations, the load of this bin before accepting its last primary is at most — logn.
Hence, we obtain

MaxLoad];IO (tin) < max {MaXLoadeO (ti—in) + £, —log n} + max Lgp((ti_l, ti]).  (4.38)
peHo 7

Iteration of (4.38), together with (4.37), yields
MaxLoad/ (t;n) < max {MaXLoadf (tin) + ¢, —log n} + (i —2)¢0+ Z max L ((tj—1,t5])
Ho\Y = Hy ’ peHo 2,p\\"J—1» %7
j=2
< max {MaxLoadeo (ton) — (t1 — to), — log n}

i~ 1)¢ L ((tiq,t;
+ (i ) JFZ;?&?}; 2,p((] 1, 45])

i
< max Lg

— peHy P
J=1

((tj—1,t]) + (i = 1) —min {(1 — ¢ — o(1)) (¢t — to)),logn},
(4.39)

where the last inequality follows from the fact that MaxLoadeO (ton) < c(t — to) for some
constant 0 < ¢ < 1, and that t; — ¢y = (1 — o(1))(t — to). Observe that t;11 —t; = o(t — to),
tiv1 —t1 <logn and (i — 1)¢ = o(t — tp), (i — 1)¢ < logn. Hence, we have

(tz’—i-l — ti) + (Z — l)g < min {(1 — C— 0(1))(t — to)), logn}.
This, together with (4.39), implies that

P(MaxLoad (t: n)>0) <P ZmaxL Sty t]) > b — 1

< ZIP’ <maxL s p((tim1,t5]) >t — tj>

€Hyp

S Z . Qn_e \/logloglogn’ (440)

where the last inequality follows from Lemma 4.6. Combine inequalities (4.34), (4.35), (4.40)
to obtain

P (MaxLoadf(tn) > LO + 2]{6) < k - 2nfe2\/logloglogn < nfex/logloglogn.

This concludes the proof. ]
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4.3 Case : t > w(logn)

Proposition 4.7. Denote by f the (%,t — glog n, % logn, ¢, E)-dm'ft-threshold strategy with k
and ¢ as in Proposition 4.3. Then, for n large enough, f has

P <MaxLoadf(tn) > (2k + 1)£> <n YT,

Proof. We employ the aforementioned concatenated strategy described in Section 2.4. In-
equality (3.26) in Lemma 3.9 yield

P (MaxLoadf(ton) > glog n) <n V6,

Employing once again the notation
Hy={i € [n]: L{ (ton) > ¢},

we apply Lemma 3.10 to obtain

1 2

The inequalities above imply that, with probability at least 1 — @(n‘l/ 6), the conditions in
Proposition 4.3 hold with 7 = 0 (observe that « there, satisfies &« = 1 + %. Hence,
with high probability, we can apply the multi-stage (¢, ¢, £)-threshold strategy in Section 4.2

from time tg to time t. Then we can apply Proposition 4.3 to conclude the proof. ]

5 Single-time load discrepancy: lower bound

In this section, we show that no two-thinning strategy can achieve a maximum load better
than that in Theorem 1. Due to inequality (4.1), we can again assume that m = tn for t € N.
The lower bound in Theorem 1 is an immediate consequence of the following statement

applied on the process starting from time max { Lt - 1§§”J , 0}.
Proposition 5.1. Given t < Vlgg", we set { = \/12(log1(1)(;gnn—210gt)' Then any two-thinning

strategy [ with any initial load vector {L;(0)}icp,) € Z" satisfies
P (MaXLoadf(tn) < E) < 3¢V (5.1)

Proof. If MaxLoad/ (0) > ¢ + ¢, we will have MaxLoad/ (tn) > ¢ and inequality (5.1) trivially
holds. Hence, we will assume that MaxLoad/ (0) < t+¢. We denote S = {i€[n]:L;i(0) >0}
and S¢ = [n]\ S. We first show that

n

> — . .
‘S‘_t—}-ﬁ—i-l (5:2)

To see this, observe that

0="> Li(0)=>Y Li0)+ Y _ Li(0).
]

i€n i€s iese
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This, together with our assumptions that {L;(0)};c[, € Z" and MaxLoad/ (0) < t + £, yields

5 < > 1Li(0)] = Y Li(0) < [S] - (¢ + ).

1€5¢ €S

Then inequality (5.2) readily follows from the inequality above and |S¢| =n — |S|.
Next, we set 7* = ||S|e 2!/ /2], where I(x) is given in Lemma 3.3. We denote by
the number of retries up to time tn. By the law of total probability, we have

P (MaXLoadf(tn) < €> <P (MaxLoadé(tn) < E)
=P <MaxLoad£(tn) <tlr< r*) (5.3)

+P (MaxLoadg(tn) <lr> r*) . (5.4)

We first estimate the probability in (5.3). Recall that ¢/5™(tn) defined in (2.5) represents the
number of bins in S that are suggested as primary allocations at least ¢ 4 ¢ times up to time
tn. Observe that if we retry fewer than @/J?e (tn) balls, the maximum load will be at least /.

Hence, we have
P (MaxLoadg(m) <lr< r*) <P (¢g+€(m) < r*) . (5.5)

We denote by {X;};c[n independent Poisson(t) random variables. Let W; be the indicator
function of the event {X; > ¢ + £}. Hence, {W;};c[n are independent Bernoulli random
variables such that
2 *
pi=P(W;=1)=P(X; > t+0) > 200 > é (5.6)
where the first inequality follows from Lemma 3.3. We then apply Lemma 3.1, inequality
(5.6) and Hoeffding’s inequality to obtain

P (v (tn) < 1) < 2P <Z Wi < r*> < 2P <Z Wi < |52|p>

1€S €S

2
< 2exp (|S£p) < 2exp <|§‘e—4tl(é/t)>

12¢
< 2exp ___n (4
= 2t + 0+ 1) \ ¢
= exp (—nl_o(l)) , (5.7)

where the penultimate transition follows from the upper bound of I(x) in (3.4) and the fact

that ¢ > 4t for t < Y287

Next we estimate the probability in (5.4). Recall that Ly ;([tn]) defined in (2.3) represents
the number of balls that bin ¢ receives from secondary allocations. Then we have

P (MaxLoadg(m) <lr> r*) <P (masx Lgl([tn]) <t+4L,r> r*) . (5.8)
(S ’
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Apply Lemma 3.2 to obtain

(5.9)

* t+4
P (maéngi([tn]) <t4+4l,r> 7“*> < 2exp <_]S](r/n)> :
1€ ’

e(t+10)!
Using the upper bound of I(x) in (3.4) and the fact that ¢ > 4t for ¢ < ¥ lggn, we obtain
r* > @ (%)GZ. This, together with Stirling’s approximation k! < ev/k(k/e)*, yields that for
n large enough

(T*/n)tw - 1 e t+4 gt 64(t+20) y f 1202
e(t+0)! T et + 0 \2(t+0)(t+0+1) 14 14 ‘

This, together with (5.8) and (5.9), yields

" 1202
P (MaXLoadf(tn) <l,r> r*) < 2exp <_Wn+1) <> < 2e7 V7, (5.10)

where the second inequality follows from the fact that

12¢2 1Og€ _ logn 1— log(loglogn — 2logt) + log 12 _ logn.
¢ 2 loglogn — 2logt 2

Then we can obtain (5.1) by combining (5.3), (5.4), (5.5), (5.7) and (5.10). O

6 All-time load discrepancy: upper bound

In the previous sections, we studied different thinning strategies which yield a good control
of MaxLoad” (m), the maximum load at the end of the process. Here we are interested in
thinning strategies that can control MaxLoad/ ([m]), the maximum load throughout the entire
process.

As before, we assume that m = tn for t € N. Clearly, MaxLoad/ ([m]) > MaxLoad/ (m)
and that MaxLoad/ ([m]) is monotone non-decreasing function of m. On the other hand, we
also have MaxLoad/ ([m]) < MaxLoad/(m) + t, where the RHS is the maximum number of
balls in a single bin at the end of the process. Hence, for t = O(y/logn), we can apply the
(t + ¢)-threshold strategy as per the analysis in Section 4.1 and obtain an optimal all-time
maximum load (up to some multiplicative constants). In the following couple of sections, we
prove the upper bound in Theorem 2 for t = w(y/logn).

6.1 Case: w(y/Iogn) <t < O(log?n/(loglogn)?)

Proposition 6.1. Suppose that w(y/logn) <t < m. Set ¢ = (tlogn)Y/3. We also

assume that for all i € [n] the initial load satisfies L;(0) < Lo for some Ly > 0. Then for
any ¢ > 0 and sufficiently large n, the {-relative threshold strategy f satisfies
P (MaxLoadf ([tn]) > Lo + (12¢ + 9)@) <n~e (6.1)

Proof. Observe that for any s € [t] and any (s — 1)n < k < sn,

MaxLoad/ ((s — 1)n) — 1 < MaxLoad” (k) < MaxLoad” (sn) + 1.
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Hence, it suffice to show that

P (maﬁ( MaxLoad” (sn) > Lo + (12¢ + 8)€> <n ¢ (6.2)
sSE(t

For s € [t], we denote by rs the number of retries in the s-th stage, i.e., in the time interval
(n(s —1),ns]. On the one hand, if a bin ¢ € [n] accepts more than s + ¢ primary allocations
in the first s stages, the load of this bin before accepting the last primary allocation has to
be at most —logn. For such a bin ¢ € [n], we have

L{(sn) < Lgi ([sn]) —logn + 1,

where the function Lf given in (2.3) is the number of balls bin ¢ receive from secondary
allocations. On the other hand, if a bin ¢ accepts at most s 4+ ¢ primary allocations in the
first s stages, we have

L] (sn) < Li(0) + £ + L3 ; ([sn]) < L3, (Isn]) + Lo + .
Write By = {ry < r} forall 1 < k < s}, where r} = 6ne */¥) /log(1 + ¢/k) and I(z) is
given in Lemma 3.3. The inequalities above and the law of total probability imply that

P (MaxLoadf(sn) > Lo+ (12¢+ 8)6) <P <max ng ([sn]) > (12¢+ 7)€>

i€[n]
<P <m?>]<L§Z. (Isn]) > (12¢+ 7)Y, E> +P(EY).
1€n ’
(6.3)

We first estimate IP’(ELS) The definition of our f-relative threshold strategy given in
Section 2.3 guarantees that if a retry occurs in the k-th stage, then it is necessary that the
suggested bin has accepted at least k — 1 + ¢ primary allocations. Hence, for a single bin, the
number of retries in the k-th stage is either 0 or the difference between the number of times
this bin was suggested as a primary allocation up to stage k and k — 1 4+ £ provided that
the difference is positive. We write { X }ieln) for independent Poisson(k) random variables.
Define Y* = max {0,XF —k— ¢+ 1} and Y* =3 | Y. Lemmata 3.1 & 3.5 yield

P(ry, > r}) < 2P(Y* > 7)) < 2exp (_nefkl(ﬂ/k)) .

One can check that I(z)/z is an increasing function. Then it is not hard to see that for any
fixed £ > 0, the function e ¥/ (/¥ is increasing with respect to k. Hence, for all k € [t], we

have
P(ry, > ;) < 2exp (_n671(2)> < 2exp (_n (Z>3e> |

where the last inequality follows from the upper bound of I(x) in (3.4). Our assumption of

t and the choice of £ yield ¢ < M&% and hence

e\ 3¢
n(z) —exp<logn—3ﬁlog )>\f

Take the union bound to obtain (for n large enough),

P(Eg) S ZP(T‘k > 7";:) S 236_\/5 ] e_(l_o(l))\/ﬁ' (64)
k=1
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Now, we estimate the first term of (6.3). Recall that r; = 6ne *(/k) /log(1 + £/k).
We again use the fact that I(x)/x is increasing to deduce that r} is an increasing function.
Hence, when E; occurs, the total number of retries is no more than ¢rf. We denote by
{Zi}iejn) independent Poisson()\) random variables, where

A=

tr* Gtet(E/1) 12¢2 02
t p< ) (6.5)

n log(1+¢/t) <7 4t

where the inequality follows from the lower bound of I(z) in (3.3) and log(1 4+ =) > x/2 for
0 < 2 <1 and the fact that £ <¢. Using Lemma 3.1, we obtain

P (max Ly, (Isn]) > (12¢ + 7)¢, E> < 2P <max Z; > (12¢ + 7)£> . (6.6)

i€[n] i€[n]

Apply Lemma 3.3 to obtain

P(Z 12 —+ / f < P(Z + 12 < /\I((lZC 6)€/>‘) .
(1>( C )) <1>A ( C—i—ﬁ)e) e < (16 )

12¢ + 6)¢3 2et?
< exp <_(4t) + (126 + 6)610g W) 5

where the first inequality follows from that A\ < ¢, the third inequality follows from the lower
bound of I(z) in (3.4), and in the last inequality we use the upper bound on A in (6.5). Our
choice of ¢ and the assumption on ¢ guarantees that ¢ > 12tlogt, which yields

9 2 3

1
5 </llogt < —

flog —— .
% 2c+ 1)0 12¢

Combine the two inequalities above to obtain

3
P(Zy > (12¢+ 7)) < exp <_W> _ (e,

This, together with (6.6), yields that

P <mz[z>]<L£i ([sn]) > (12¢+ T)¢, Es> < 2nP(Zy > (12¢ 4 7)0) < 2n7 %,
€N ’

Combining the inequality above with (6.3), (6.4), we obtain that for any s € [t] and n large
enough,

P (MaxLoadf(sn) > Lo+ (12¢+ 8)5) < e (IoVn 4 gp=2¢ < 3p=2¢

Taking a union bound, we can obtain for n large enough,

P <ma{u}< MaxLoad” (sn) > Lo + (12¢ + 8)€> < 3tn~%* <n7C
selt

This proves (6.2), and hence (6.1). O
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6.2 Case: w(log®n/(loglogn)?®)) <t < nfW

In this case, we utilize the varying drift strategy to control the all-time maximum load. We
set Zj = 4 if the k-th point of X (¢) is a point of the process X;(¢) define in Section 2.3. We
will show that, with high probability, the random process {Zj }ren can be realized by some
two-thinning strategy f and that it achieves the desired bound.

Proposition 6.2. Let m,n € N sufficiently large and denote d = llfjgg’;z. Let £ = 1§g1(1)§gnn' The
L-varying drift strategy f defined above satisfies

P (MaxLoadf ([m]) > (d + 4)£) <2 1053 " (6.7)

Next, we provide an estimate of the probability that the realizability criterion (2.13) holds
for a period of time, which implies that, with high probability, the process {Zj}ren can be
realized by some two-thinning strategy f for quasi-exponential time.

Lemma 6.3. For any T > 0 and sufficiently large n, we have

P(Hte[O,T] : Hie[n]:XZ-(t)—t>€H> (6.8)

n <Te i
X - .
Viegn /) — P 2logn

Proof. We first estimate the probability P(sup,cfs41)(Xi(s) —s) > ¢) forall 0 <t < T — 1.
We denote by E = {X;(t) <t-+¢/2}. By the law of total probability,

P ( sup (Xi(s) —s) > E) <P < sup (Xi(s) —s) > ¢, E) + P(E°). (6.9)

sE[t,t+1] sE[t,t+1]

Since X;(t), given in (2.12), is \/léﬁ—standardizing, we can apply inequality (3.22) in Corollary
3.8 and Markov’s inequality to obtain

14 Viogn 1
P(E®) <P |X;(t) —t] > =) <801 . — . 1
(B < <| () -t = 2) < 80logn exp< 2loglogn> < 4+/logn (6.10)

Next we bound P <sups€[t’t+1] (Xi(s) —s) > ¢, E) Let Y be a Poisson(1 + 6#;) variable.
Observe that, by (2.12), X;(t + 1) — X;(t) is stochastically dominated by Y. Hence, we have

P <S€T$H(Xi(s) ) E) <P <Y > ;) < exp (_<1 oI (2(1‘%))

L l 2
< ——log —— | =n "3t 6.11
<exp (~glogy ) =n-Feow, (6.11)
where in the second inequality, the function I, appearing in Lemma 3.3, is the rate function
of the deviation bound of Poisson random variables, and the last inequality follows from the
fact that I(x) > xlog(z/e) for x > 4. Combine (6.9), (6.10) and (6.11) to obtain

1 2 1
P sup (Xi(s)—s)>1| < +p 3t < )
(se[t,t+1]( (5) =) ) 4y/logn 2y/logn
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We denote by S(t) = {i € [n] : supyep p41)(Xi(s) — ) > £}. Let W; be the indicator function
of the event {sup ¢ 11(Xi(s) —s) > £}. Hence, {W;};c[n) are independent Bernoulli random
variables such that

1
PW,=1)=P sup (X;(s)—s) >/ | < .
( ) <s€[t,t+1]( S ) 2+/logn

By Hoeffding’s inequality,

19><|5(t)|>¢£ﬁ>zp(gw-2\/£ﬁ> §exp<—21:gn>.

The desired statement (6.8) follows by taking a union bound. O

We are now ready to establish Proposition 6.2.

Proof of Proposition 6.2. Set T = m/n + A, where A = 1+ 2y/lognlog(80logn). Let E be
the event that {Z;};en can be realized by some two-thinning strategy f. Lemma 6.3 yields

P(E) < Texp (-21:gn) . (6.12)

For each fixed 1 < k < m, we set t* = k/n+ A. We write F = {X (t*) > k}. The law of total
probability yields

P (LI (k) > (d+4)¢) <P (L{(k) > (d+4)¢, ENF) +P(E) +P(F°). (6.13)

Since X;(t) given in (2.12) is \/b%gﬂ—standarizing, we can apply the second inequality of (3.23)
in Corollary 3.8 and Markov’s inequality to obtain

P(F°) =P (X (t*) < nt* —nA) < (80logn)"™ exp <— (6.14)

nA o n
= <o | ——
2¢/logn P 2\/logn )’

where the last equality follows from our choice of A. The definition of X;(¢) in (2.12) implies
that X;(t) — £ is upper (1 — —22—)-standardizing. One can check that the condition of

Vlogn
inequality (3.18) in Corollary 3.7 holds for 260 = 1 — \/1102ﬁ’ A= 1°g120g . Hence, we apply
inequality (3.18) to obtain
log1 2e2*
Eexp | 228" (x,(t) —t—0)) <1+ —_ <log’n. (6.15)
2 1—e 2

Whenever the event E N F occurs, we have Lf(k) + k/n < X;(t*). Inequality (6.15) and
Markov’s inequality yield

P(L{(k) > (d+4)¢, EmF) < <Xi(t*) > %Jr (d+4)€>

P
P(X;(t*) —t* — > (d+3)0 — A)
P (X;(t") — t* — € > (d+2)0)
d+2)

IN A

(logn)® - n~
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This, together with (6.12), (6.13), (6.14), yields that, for sufficiently large n,
P (L{ (k) > (d+ 4)5) < 2(logn)? - n~(@+2),
Taking union bound over m and n, we obtain
P (MaxLoadf([m]) > (d+ 4)6) < 2(log n)*mn =4+,

Then, inequality (6.7) follows from the fact that m = n? O

7 All-time load discrepancy: lower bound

Here we prove the lower bounds in Theorem 2. We again assume that m is divisible by n
and write m = tn for some t € Z. Observe that the lower bound of the single-time maximum
load in Theorem 1 implies that of the all-time maximum load up to ¢t = O(y/logn). Our next
result covers the regime of v/logn < t < log?n/(24loglogn)3. This, together with the fact
that the all-time maximum load is non-decreasing with respect to ¢, implies the lower bound

of @(b{gol%) for t > log®n/(24loglogn)®. This completes the proof of the lower bounds in
Theorem 2.
Proposition 7.1. Suppose that \/logn < t < %. Set ¢ = [(tlogn)'/3]. Any
two-thinning strategy f satisfies that for n large enough,
P (MaxLoadf([tn]) < E) < exp (—n1/5> . (7.1)
Proof. We denote by r the total number of retries and set r* = %6*52/ . Then we have
P <MaXLoadf([tn]) < 8) =P (MaxLoadf([tn]) <lr< r*) (7.2)
+P (MaxLoadf([tn]) <tl,r> 7“*) . (7.3)

We estimate (7.2). Recall that ¢+¢(tn) defined in (2.5) represents the number of bins that
are suggested as primary allocations at least ¢ 4 ¢ times after allocating ¢n balls. If we retry
less than "¢ (tn) balls, then we will have MaxLoad/ (tn) > . Hence we obtain

P (MaxLoadf([tn]) <lr< r*) <P (MaXLoadf(tn) <lr< r*)

<P (zpt“f(m) < r*) : (7.4)

We denote by {X;};c[, independent Poisson(t) random variables. Write Y; for the indicator
function of the event {X; > ¢ + (}. Hence, {Y;};c[n are independent Bernoulli(p) random
variables with

p=PX;>t+0)> e 2tI(L/t) 6—82/15’

where the first inequality follows from Lemma 3.3 and the second inequality uses the upper
bound of I(z) in (3.3) and the fact that £ < ¢t. Apply Lemma 3.1 and Hoeffding’s inequality
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to obtain

P (' (tm) <) <P (v**(tn) < 7)< 2P (;Y < p;”‘)
< 2exp (_1?2272> < exp (_%efQKQ/t)
= exp (—n! ). (75)

Next we estimate (7.3). Recall that Ry given in (2.1) is the number of retries after
allocating k balls. Define sy = inf {s € [t] : Ren — R(s_1), = 7*/t}. Whenever the event

{r > r*} occurs, we have sy < oo. Write S = {i € [n] : Lf((so —1)n) > 0}. As per (5.2), we
show that whenever the event {MaXLoadf ((so — 1)n) < £} occurs, we have

|S| > (7.6)

(+1

To see this, observe that

O—ZLf 80—1 ZLf 80—1 +ZLf 80—1

i€[n] €S i€S¢

This, together the fact that {L{((so — l)n)}ie[n] € Z" and MaxLoad/ ((sg — 1)n) < ¢, yields

15 < ST ((so = V)n)| =Y LI ((so — 1)n) < |S]- (€ +1).

€S5S¢ i€S

Then we can obtain (7.6) using |S¢| =n —|S].
Apply Lemma 3.2 to obtain

P (MaXLoadf([tn]) <tl,r> T‘*> < P(sp < o0, MaxLoad/ (son) < ¢)

<P L. -1 ¢
< (so<oo7 rlneegx 271(((50 )njsgn}) < >

< 2exp (Jj <;>Z> . (7.7)

Recall that r* = %e‘gg/t, ¢ = |(tlogn)'/3| and |S| > n/(£+ 1). One can check that

SN s v (1N vt Ve
— | — ] 22— = L )
el \tn) ~e(l+1)!\2t - (0 + 1)6+3/2 > 30 >n (7.8)

where the second inequality uses Stirling’s approximation (£ + 1)! < e\/{ + (£+1)£+1 in the
third inequality, we use the fact that £ < t and the last inequality follows from our choice of
¢ and the assumption on ¢. Combine (7.7) and (7.8) to obtain

P (MaxLoadf([tn]) <tlyr> r*) < 2exp <—n1/4) .
This, together with (7.3), (7.4), (7.5), yields
P (MaxLoadf([tn]) < Z) < exp (—n1*0(1)> + 2exp (—n1/4) < exp (—n1/5) .

This concludes the proof of (7.1). O
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8 Typical load discrepancy

In this section, we investigate two-thinning strategies for controlling the e-typical maximum
load MaxLoad/ ([m]). The main technical statement in this section is the following Proposi-
tion, which implies Theorem 3.

1 1
Proposition 8.1. Fiz d > 1. Set { = (logn)5+v10g1°g1°gn and ¢ = e~zVioeloglogn  py,
sufficiently large n € N and m < n?, there exists a set S C [m] with |S| > (1 —¢)m such that
the d-multi-scaled long-term combined strategy f satisfies

P (MaxLoadf (S) > z) <. (8.1)

1
n
For d > 2 and general values of m, the d-multi-scaled long-term combined strategy f satisfies
1
P (MaxLoadg ([m]) > z) < - (8.2)
n
The proof of this result requires the following four propositions, each of which tells us
certain property of the process after a phase of an iteration. The proofs of these propositions
are given in the following subsections. Throughout this section we use the notations in (2.17),
(2.18) and (2.19).

Proposition 8.2. Fizr d > 1. Let n € N be sufficiently large. Suppose that the initial
load vector {Li(0)}icn) satisfies that [{i € [n] : Li(0) > Lo}| < 4000ne=Lo/15 and that
|L;(0)] < 100dlogn for all i € [n]. Then the multi-stage (mo/n, Lo, Lo)-threshold strategy f
satisfies that

P (sz(mo) < —300dlogn or L! (mo) > L for some i € [n]) < peVmEETE

log(m/n)
loglogn

—2 /logloglogn
. Further, we denote by e = e~ 3VIosloglogn

Proposition 8.3. Fix ¢ > 0. Let m,n € N be sufficiently large. We write o = and

assume that o € [l + 3 1+

1
2 ' {/logloglogn’ 30+/log log log n]

and £ = (log n)%Jrvlogl;glogn. Suppose that the initial load vector {L;(0)}icin satisfies that

1,1
Li(0) < (logn)2 " ™Viglostosn for alli € [n]. Then, there ezists Ay, C [m] with |Ap| > (1—€)m
such that the 0-multi-scale strategy f satisfies that

P(MaxLoadf (Am) > e) <ne (8.3)
Proposition 8.4. Fiz d > 1. Let n € N be sufficiently large. Suppose that the initial load

vector {Li(0)}iepn satisfies that —300dlogn < L;(0) < Q for all i € [n]. Then the Q-multi-
scale strateqy f satisfies that

P (mz[m]( |L{(m1)| > A> <n~3, (8.4)

1em
Proposition 8.5. Fiz d > 1. Let n € N be sufficiently large. Suppose that the initial load
vector {Li(0)}icn) satisfies that [L;(0)] < A for all i € [n]. Then the 1/5-drift strategy f

satisfies that

P <mz[u]< |L{(m2)| > 100d logn or Hz € [n]: L{(mz) > LOH > 4000ne_L0/15> < o3,
i€n
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Proof of Proposition 8.1. Observe that Lemma 3.11 guarantees that the third phase of each

iteration eventually terminates so that there are almost surely infinitely many iterations. Set

Ml,O = Ml,l =0, MLQ =ma, M1’3 =my+ma1. FOI'j >2and k € {O, 1,2,3}, we define
Mjo = Mj13, Mj1=Mjo+mo, Mjz=Mj1+mi, M;z=M;s+ma;.

Hence, for k € {0,1,2}, M, is the starting time of the (k4 1)-th phase in the j-th iteration.

For 57 € N, we define events

B = {~300dlogn < L] (M;;) < L for all i € [n]},

_ {max|L{ (M;2) | < A}7

F.
J 1€[n]
Gj = {m27j = mg}.

Our strategy guarantees that the load vector {L{ (Mj0)}
iteration satisfies that

iefn] at the beginning of the j-th

max |2/ (M; )| < 100dlogn  and Hz e [n): L (M;0) > LOH < 4000ne~L0/15,
i€n
Hence, we apply Proposition 8.2 to obtain for all j > 1 that

P(ES) < e

This inequality trivially holds for E{. By Proposition 8.3, we have for all j > 1 that
P (MaXLoadf (A, + Mj1) > 0| Ej) <n73d (8.6)
By Proposition 8.4, we have for all j > 1 that
P(Ff | E;) <n (8.7)
By Proposition 8.5, we have for all j > 1 that
P (GS | Fj) < 2n 3, (8.8)

Set M = mg + mq + ma. On the event ) G, we have

€k

K k—1
(Am, + Mj71) = U(Am1 + JM).
=1 j=0

J

Set S = U;’:&(Aml + jM). Putting together (8.5), (8.6), (8.7),(8.8) and taking the union
bound, we now get

P (MaXLoadf(S) > E) < 5kn 3,

For m < n9, we take k = |m/M| < n?, so that the probability above is less than 1/n.
Next, we complete the proof of (8.1) by showing that |S| > (1 — /4)m. Notice that S is
a disjoint union of copies of A,,, shifted by multiples of M. Hence, it suffices to show that
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|Ap, | > (1 —¢/4)M. Indeed, we have shown in Proposition 8.3 that |A,,,| > (1 —¢&’)m; with
¢ = ¢~3Vlogloglogn By the definitions of mg, m1, ms in (2.18), we have

@_1_M
M M

1— ax+1 I S
f) >1—O<(logn) Gwm), (8.9)

=1-0 ((log n)
where the equality follows from (8.21). These, together with & > ¢’ yield that for sufficiently
large n we have |A;,,| > (1 —2¢')M > (1 — ¢/4)M and hence that |S| > (1 —¢/4)m.

We now prove (8.2). We say that the j-th iteration is bad if either ES, F7, G5 happened
or MaxLoad” (A,,, + M;1) > {; otherwise we say that it is good. We denote by J the set
of bad iterations among the first x iterations. By definition, each good iteration has length
at most M = mg + m1 + meo and the maximum load over Ujelr\J (Mj1+ Ap,) is bounded
above by £. Hence, we have

[{m' < m s Maxtoad! (m') > £}] < 3 (mo +ma +mag) + (5 = ) (M = | A, )
jeJ
Em
< ;(mo +mq + mQ,j) + 7,
J

(8.10)

where the second inequality follows from x« < m/M, |A,,| > (1 —/4)M and (8.9).

We now estimate the first term of (8.10). As we have just seen, the probability of an
iteration being bad is bounded above by 5n73¢ and hence E|.J| < 5kn =3¢, Then we apply
Markov’s inequality to obtain

P (\Jy > 5mf2d> <nd. (8.11)
This, together with mg < m; and k < m/my, yields
P ((mo +my)|J| > 10mn_2d) <n 4 (8.12)

We now estimate Zje smaj. Note that the load vector at the beginning of the third
phase of each iteration satisfies

max | L] (M;2)| < 100d1ogn +mo +mi = o(n?).

We apply Lemma 3.11 to obtain E(mg ;) < n? and hence

E Z m27j = E Z m2,j ﬂjeJ S 5f€n3_3d.
jes J€ls]

Then we apply Markov’s inequality to obtain

K d

3-2d -
P ngJ > bmn < p— <n“ (8.13)
jeJ
For d > 2 and sufficiently large n, we combine (8.10), (8.12) and (8.13) to obtain
1
P (‘{m’ < m : MaxLoad/ (m/) > 0} > am) < —.
n
This concludes the proof of (8.2). O
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8.1 Proof of Proposition 8.3

We first make some technical observations on the parameters used in the @-multi-scale

log 1 . |vIogloglogn|+1/4’ = (logn) 3,
kh: L%J’ Ni = [3’%&1 and Q7 = (2k + 1)(j — 1)¢;. We first have for i € N, j € [N;]
that

strategy given in Section 2.4. Recall that a1 = % +

Q" < L. (8.14)

Observing from (2.16) that {a;}ien is a non-decreasing sequence, we have for i > 1 and
sufficiently large n that

’ 2a;,—1—¢g4 _(1_ a;—1/2
(logn)* ™% = (log n)féw = (logn) (5—0() %/
—(L-o(1)) 22 __2/5-o(h) |1
< (logn) ‘5 172 < (logn) Vislelogn k7172
= (logn)i(%io(l))%
< ¢ Vlogloglogn, (8.15)

Recall that ipmax = max{i € N: a; < 1}. Using (2.16), we have for all ¢ < ipay that

L " (1+O(1))L (1 +0(1)) 201 -1 _ o;—1/2+4ke; 2a1—1_0(%)'

Ni:{Skéi = = (logn) © 2+1 = (logn)~ 6

3k, 3k
(8.16)

Using (2.16) and (8.15) we observe that N; = (1 — o(1))(logn)®+1~%. This, together with
(8.16), yields the iteration formula

20, — 1 1
Qi1 = aj + —2 —O(). (8.17)

6 k
This, along with the definition of iy, implies that

imax < (1+ 0(1))6(1 —) _ 3+0(1) < y/logloglogn. (8.18)

200 — 1 207 —1

In addition, we have

1 20441-1-¢41 207 —1

(logn)® =%+ = (logn)®~*+1 75— 251 = (logn)~ "¢ +6(%) = o(1). (8.19)

The main technical instrument for establishing Proposition 8.3 is the following lemma,
the proof of which is provided in the next subsection.

Lemma 8.6. Consider the Q-multi-scale strategy with the initial load vector {Lpy(0)}pefn]

1 1
satisfying L,(0) < Q < L for all p € [n]. Fizc> 0. Set { = (logn)§+vlog10g10gn. For any
s =y gn([log¥n] + llog®n]) with 0 < j; < N; — 1, we have

P(MaxLoadf([s, s+ nllog*n]]) > E) <n ¢ (8.20)

Proof of Proposition 8.3. We will show that the @-multi-scale strategy with @) < L satisfies
the statement in Proposition 8.3. Recall that imyax = max{i € N:a; < 1}. We first show for

sufficiently large n that
1

; > 1+ .
Fimat1 = 30+/logloglogn

(8.21)
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To this end, we iterate equation (8.17) to obtain

- . 20&1 -1 1 - 1 . 20&1 -1 imax
Qa1 = Q1 F Imax < 5 0 (k>> =3 + (imax + 3) G 0 ( . > . (8.22)

The monotonicity of {a;},en and the definition of iy, implies that «; ., +1 > 1. This
inequality, equation (8.22) and the fact that ipax is an integer yield that

) 6 1 Tmax

Recall that oy = 1 + L\/loglogIQOgnJJrl/él’ k= L?&%J and the bound i, < v/logloglogn

given in (8.18). Then, for sufficiently large n, we can further write inequality (8.23) as

3|VIogloglogn| + 3/4 + 0(1)-‘ < 3|Vlogloglogn| +1
4 - 4 '

Z.max+32’r

Plugging this into (8.22), we obtain

1 imax 1
: > 1 -0 > 1 :
Qjppax+1 = 1+ 24[/Iogloglog n| + 6 < k ) = 30+/log loglogn

This proves (8.21).
We next prove the main statement (8.3). For m € N, we define the set

Apm = Useg,, {m' e N:s <m' <max{m,s+nllog*n]}},
where J,, is defined as
Jm = {s = jin([log®n] + [log®n]) : 0 < j; < N; — 1, s < m} .
1€EN

Observe that by the condition of Proposition 8.3, we have

oo logtm/m) 4
= Toglogn — ' 30vlogloglogn — Ymaxt1:
and hence
m =log®n < (log n)aimax-s-l — Nimax(L(log n)o‘imaXJ + L(log n)a;maxj).
n

=

Together with (8.21) we thus have

imax
I = {s = ij(Uogo“nj + [log%n]): 0<j; < N; — 1, s < m} :
i=1

For any fixed constant ¢ > 0, we apply Lemma 8.6 and the union bound argument to obtain

P(MaXLoadf(Am) > E) < Z }P’(MaXLoadf([s, s+ nllog*n]]) > E)
SEJm
< || -n7% < n7¢, (8.24)
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where the last equality follows from that |J,,| < m/n < log®n.
We next show that |A,,|/m > 1 —ec. We define i* = max{i € N: nlog®*n < m}. It is
clear from the condition of Proposition 8.3 and (8.21) that i* < iy,.x. We further denote

¢ =min {&' € N: &n([log™" n| + [log®* n]) > m},
me = &n([log™" n| + [log™ n)).

Observe from the definition of i* that £ < N;«. This, along with (8.15), implies that m¢ < 2m.
Hence it suffices to show that A, |

mel 5 _ £, (8.25)
m5 2

For 1 <i <i*, we define

B {Zji'"moga“’” + [log®n]) : 0 < ji < Ny — 1} ,
Ni-1

Bi = U (jn([logo‘inj + [log®n]) + Ci) , where
7=0

C; = (0,n[log" n|].

Observe that B; + (J; 1 N[mg]) = C;+ (J;7 N [me¢]) consists of a disjoint union of shifted copies
of B; and that Cjy1 + (J;, N [me]) consists of a disjoint union of shifted copies of Cj;1. We

thus obtain
ICi+ (JFnme))|  IBi+ (JiaNimel)l | By

[Cort + (T, (el ~ [Covt + (g N Imel)] — ol
By (2.16) and (8.15), we obtain

B; log®: log® -
’ ' | _ a.L 0g nJ ~ -1 a.L 0g nJ ~ >1-— (logn)o‘i SN ey}
|Cit1l  |log®n| + [log%in| |log®n| + |log®in|

where § = e~ Viogloglogn N[oreover, we have

|Cix + (Ji N [me])| _ [log™ n]

= - >1-46.
my [log® n] + [log® n]

Iterating these observations we obtain
[Amel _ |C1+ (Ji 0me])| _ [Cis + (J5 N me])| - [Cr+ (7 N [me])]
me mg me ‘CZ* + (J;l N [md)‘

_ |G- +(J N [me]) |Ci + (J; N [mg])]
H |Cit1 + ( z+1m[m€])|

> (1 o 5)lmax >1— \/log loglog n e—\/logloglogn’

where the inequalities follow from the fact that i* < ina.x < /logloglogn. This completes
the proof of (8.25). O
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8.1.1 Proof of Lemma 8.6

For i € N,j € [Ni], we write s/ = (j — 1)n(|log®n]| + |log¥n]) and ¢/ = s/ 4 n[log®n|.
Hence, (sz , tf | and (tf , S{H] are discrete time intervals in the (i 4+ 1)-th scale where we apply
the j-th iteration of the i-th scale strategy and the j-th iteration of the regulating multi-
stage threshold strategy, respectively. Fix ¢ > 0. We set ap = 52 4 loligi cgf) so that
log®®n = (12¢ + 9)L. One can check that ag < «a; for n large enough. We introduce the
following events

/L'7j —_—

{MaxLoad! (i, ]) < log™ 0 + Q" + @}
o = {MaxLoadf (st < QW 4 Q} ,
Gy = {‘HZ)J < 3nexp (—41027?%”)} , where

pen]:Lyt) > Q" +¢ +Q}.

(8.26)

In this subsection, in order to simplify the notations, we denote by E the complement of
the event E. The following result plays a key role in establishing Lemma 8.6.

Lemma 8.7. Consider the Q-multi-scale strategy with the initial load vector {Lpy(0)}pefn]

satisfying L,(0) < @ < 2L+/logloglogn for all p € [n]. Fiz ¢ > 0. For sufficiently large n
and all © € N such that a; < 1, we have

] ] i,J —c
Pl |J EFYNEY NG | <n" (8.27)
JE[NI]

Proof of Lemma 8.6. Recall the notation Q% = (2k 4+ 1)(j — 1)¢;. The statement (8.20) is a
consequence of the following stronger statement

P | MaxLoad’([s, s + n[log*'n]]) > Q@ +log®™n + Y @Q"it! | <n et (8.28)

1S [imax]

1 2
Recall that L = (log n)2+3(L logloglogn]+1/4) - () < L and log®n = (12¢+ 9)L. These, together
with (8.18) and (8.14), yield

Q + log®n + Z QW < Q4 (12¢ + 9)L + imax L < 2L+/logloglogn < ¢.
’L’E[imax}
For 0 <4 < tynax, We write

Tmax

si= Y junl|log™n] + [log®n))
h=i+1

so that s) = s and s;,,. = 0. We further denote Q); = Q+ZZ“‘:*‘Z?‘+1 QMintl o that Q;.. = Q
and define K; = {MaxLoad/(s;) < Q;}. Keeping the notations Py (-) as in the proof of
Lemma 8.7, we have

P(MaXLoadf([s, s+ nllog*n]]) > Qo + log™n | K1> < Py, (Eé’llerl) . (8.29)
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Since Q1 < 2L+/logloglogn, we may apply Lemma 8.7 to obtain
Po, (EQ’ﬁH) <n7Z (8.30)

Next, we estimate P(K7). As mentioned in the proof of Lemma 8.7, the j-th iteration of the
i-th scale of the @-multi-scale strategy is identical to the first iteration of the i-th scale of
the (@ + Q" )-multi-scale strategy. This self-similar property implies that

P(Ki N Ki+1) < PQi, (FCSH»l] - ) ’

Using this inequality and the fact K;_, = {MaxLoadf (0) < Q} which is trivially satisfied

by the starting conditions, we obtain

max

Tmax—1 Tmax—
P(Ki)=P < U (KinN Kin ) Z PQi ( 632117]2“) < (imax — 1) -0 7%, (8.31)

i=1

where the last inequality uses Lemma 8.7, which is applicable since Q; < 2L+/logloglogn.
Combining (8.29), (8.30), (8.31) and the fact that iy.x < v/logloglogn, we have for suffi-
ciently large n that

P <MaxLoadf([s, s+ nllogMn]]) > Q + loga0n> <limax N 2C < nTC

This concludes the proof of (8.28), and hence (8.20). O

We now present a couple of auxiliary lemmata that are used in our proof of Lemma 8.7.
The first lemma provides an upper bound on the number of bins with loads above certain
level.

Lemma 8.8. Lett > (£ >0, h,r* >0 and p € [0,1]. Let {Li(0)};c[n) be an initial load vector
such that L;(0) < Lg for all i € [n]. Let f be any two-thinning strategy, which satisfies that
P(MaxLoadf([tn]) < h) >1—p. Define H={i € [n]: Li(tn) > Lo+ {}. Then we have

02 72 n(r*/tn)h
[ * < — [ PR S .
P<|H|>2nexp( 4t)+r> 2exp< 2nexp< 2t>>—|—4exp( e(h 1)!>—|—p

Given an event F and @ > 0, we write Pg(FE) for the maximum probability of E under
the @-multi-scale strategy with the initial maximum load bounded above by ). Then the
second lemma is as follows.

Lemma 8.9. Consider the Q-multi-scale strategy with the initial load vector {Ly(0)}pen)

satisfying L,(0) < Q < 3L+/logloglogn for all p € [n]. Fiz ¢ > 0. For sufficiently large n
and all i € N such that a; <1 and all j € [N;], we have

Py (EQ1’1> <n~e (8.32)
Po (Fg' By Gy ) <nm (8:33)
Po (ng, B}, ng‘l) < 2exp (—n1/2—°<1>) . (8.34)

With these two lemmata at hand, we now prove Lemma 8.7.
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Proof of Lemma 8.7. For i € N, j € [N;], we write

UEJOF’]OG

/<J

with Ué’o = (). Observe that for i € N, j € [V;] we have
i ] Z7] 17_] Z?] Z?] Z’J 11.7_1 7‘7] 7‘7]_1 Z?]_l
U (F NE; NG )U(GQ NE; nF, )u(EQ NFS >UUQ .

Notice that this indeed holds for j = 1 since the initial load condition implies that Fé’o = Q.
This, along with (8.33), (8.34) from Lemma 8.9, yields

Po (U§) < Po (FY BY . GY) + Po (G§ . ES FS™)
+ P (EZ Fy™) + Po (U5 ™)

< Py (Eé,j?Fé,j—l)_'_P (U g 1) +n7€\/710gloglogn+2exp (—n1/2*0(1)> . (8.35)
Observe that the j-th iteration of the i-th scale of the @)-multi-scale strategy is identical to
the first iteration of the i-th scale of the (Q + Q“/)-multi-scale strategy. Recall that the event
FQ’J ! asserts that the load at time s! is at most Q + Q™. Hence we have

PQ <Eci2,j7FC§’jil) < PQ+Qi,j <EQ’+Q” ) . (8.36)
Iteration of (8.35) and the above inequality yield
el —w(1
( ) Z Q+Q1] ( Q“rQi’jl ) +n w( ) (837)
/<j

In order to iterate this inequality, we now show that for all Q' > 0 and 7 > 2 the following

inclusion inequality holds

ES cubth- (8.38)

To see this, we define the event
EQ’] = {MaxLoadf(( j g+1]> < logo‘; n+4+ QW 4 Q} .

The statement (8.38) follows from the monotonicity of U, Z, and the following inclusion rela-
tions

BG (Ui 0BS ™), (8.39)
By c (EQ’,J UF ’J) c Ui, (8.40)
To see (8.39), observe that E’ ! asserts that over (0, ¢! 1= Ujeni_ 1]( 1S f 1] the maximum

load is greater than log®—1' n + @', while EQ, EF17 agserts that over (s] ' 1 z +1} the maximum

load is greater than log®i-1 n + Q'~19+! + Q'. Using (8.15), we have log® i1 = o(log®~1n)
and by (8.14) we have Q=1+l < L = o(log®—* n). These observations yield (8.39). To see
(8.40), observe that

MaXLoadf(ng) > MaxLoadf((tf, sgﬂ]) (¢, 11| = MaxLoadf((tz, sgﬂ]) — log® n.

z’z
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Hence, whenever FQi’,j occurs, we have MaxLoadf ((tf , s{“]) < log® n + Q%*! 4+ @'. This,
along with Eéf , implies that (Eé,] N Fé’,j ) C EZ?/] , which is equivalent to the first inclusion
inequality in (8.40). The second inclusion inequality in (8.40) is trivial.

Then we can use (8.38) to iterate (8.37) and obtain

1,7 N | I .
o (UQ ) : Z Z Z Qi tqQuan (EQ"!‘Qi»ji—i-A..—f—Ql,]'l ) +n @),
Ji<j ji—1<N;—1 J1<Ny

One can use (8.18) and (8.14) to check that

Q+ QWi+ + QY <Q+iL < Q+ imaxL < 3L\/logloglog n.

Then we apply (8.32) from Lemma 8.9, (8.16) and (8.18) to obtain for sufficiently large n
that

Py (Uéj) < <H Ny) n=2 4 pe@ < (log n)i’“a"'hé ln_Qc + @
=1
— (logn)O(l) .2 + nfw(l) <nC

This concludes the proof. ]

8.1.2 Proofs of Lemmata 8.8 and 8.9

Proof of Lemma 8.8. We denote by r the total number of retries up to time ¢n and by H’
the set of bins which are suggested as primary allocations at least ¢ + ¢ times by time tn.
Then, we have

|H| < |H'| + .

Hence, we have

4t

2 2
P <\H\ > 2nexp <—£> + T*> <P (\H’\ > 2nexp <—it>> +P(r >1r"). (8.41)

We now estimate the first term. We denote by {X;};c[, independent Poisson(t) random
variables. Write Y; for the indicator function of the event {X; > ¢+ ¢} and Y =>"" , Y;. By
Lemma 3.3, we have

2
P(Y; =1) =P(X; >t +£) < e 1D < exp (—i) :

where the second inequality follows from the lower bound of I(z) in (3.3) and the assumption
that £/t < 1. Lemma 3.1 and Hoeffding’s inequality imply that

, 0? 02 0
_— < . < — _ .
P<|H|>2nexp< 4t>> _2]P(Y>2nexp< 4t>> _2exp< 2nexp< 2t>>
(8.42

Next, we estimate the second term. Set E = {MaxLoad/ ([tn]) < h}. By the law of total
probability,

P(E)=PE,r>r*)+P(E,r <r*) <P(E,r >7r*)+P(r <r”)
=PE,r>r*)+1-P(r>r"). (8.43)
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Recall that Ry given in (2.1) is the number of retries after allocating k balls. We denote
by so = inf {s € [t] : Ry — R(s—1)n = 7*/t}. Whenever {r > r*} occurs, we have sy < oo.
Write S = {i € [n] : sz((so —1)n) > 0}. As per (5.2), we show that whenever E occurs, then

n

h+1

S| > (8.44)

To see this, observe that

O—ZLf 80—1 ZLf 30—1 —I—ZLf 80—1

€S €S5S¢

This, together with the fact that {sz((so —1)n)}.

ieln] € 7" and MaxLoad ((so — 1)n) < h,

yields
592 57124 (50 — D)l = ST 2 (50— 1m) <[] (B + 1),
i€5¢ €S
Then we can obtain (8.44) using |S¢| =n — |5].
Denote by {Z;};e|n) independent Poisson (r*/tn) random variables. By Lemma 3.1 and
Lemma 3.2,

. n(r* /tn)"
< - < < _ . .
P(r>r ,E)_QP(I?G%XZZ_]Z> _4exp( e(h—|—1)!> (8.45)

Inequalities (8.43), (8.45) and the fact that P(E) > 1 — p imply that

n(r* /tn)"
P(r > r*) <4exp <_e((h/+t1;!> +p.

We can conclude the proof by combining this with (8.41) and (8.42). O

Proof of Lemma 8.9. Proof of (8.32). The statement readily follows from the application
of Proposition 6.1 with the parameters Lo := @, t := [log®'n], £ := L = (log n)H% and our
definition of « such that log®®n = (12¢+9)L.

Proof of (8.33). The statement follows from the application of Proposition 4.3 with the
parameters to = t], t := SJ+ ,ai=ak, ni=a;—al, Ly:= Q% + {; + Q. Hence it suffice to
show that the cond1t10ns of Proposition 4.3 are satisfied.

We first verity the technical requirement n < Oi;i/;, which is assumed in our definition
of the multi-stage threshold strategy in Section 2.4. Using n = a; — o}, @ = o and (2.15), we
can rewrite this requirement as

Oéi—l/2—€l'/2 < Ozi—]_/2
5k+5/2 — 4k—1"

which clearly holds.
We next show that both assumptions in Proposition 4.3 hold when E “J and G Y oc-

cur. Given the event G b , the second assumption trivially holds. We now verify the first

assumption that MaxLoadf (tf ) = ot — to). Assuming the event E, we have

MaxLoadf(tg) <log®1n+ Q" +Q <log*'n+ L+ Q,
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where the last inequality follows from (8.14). Recall oy = 3 + [ \/10g10g120gn T L =
+
(logn)~3 , Q < 3Ly/logloglogn and k = Lﬁ%] We have

l 2 +O(loglogloglogn)
L+ Q < 4L+/logloglogn = (logn) 2 3vlogloglogn loglogn /7

while
t —to = log® n = (log n)o‘i_o(%) > (log n)o‘l_o(%) = (log n)%JrWW*O(%).

These, together with (8.19), verify the first assumption of Proposition 4.3. Hence, we can
apply Proposition 4.3 to obtain (8.33).

Proof of (8.34). Recall our definition Géjj = {\HCS]\ < 3nexp (- }. We introduce

m)

- . /2 logn
Gl,_] — Hl,j < 2 _ (3 _ .
§ (= me () e () )

We will show that égf c ng and that

P (égf', Ej, Fé’j_1> < 2exp (—nl/ 2*0(”) : (8.46)
which implies (8.34).
To see G b G , it suffice to show that

— 1+ _ 1 1
a0 = 041 + @(bglogn) a1 =3 + @(\/logloglogn)’ gl - (logn)
Hence, usmg again log®n = (12¢ + 9)L, we have

log = 0( logn ) We recall that

logo‘l In+L+Q

+O( ) _ loglogn
and k = LSlogloglOgnJ'

/ logn _log™n+ L+Q 22 /log™'n
log n/ log®n+L+Q log®n log n/log™®
(12¢+10)L 4+ Q 271,001
pu— . 1
(ocroyr (gm0

< O(y/logloglogn) - (log n)_2a§71+0(%) =o(1),

where the inequality follows from that Q) < 3L+/logloglogn. For i > 2, we use the fact that
log¥"—'n+ L + @Q < 2log®~'n to obtain

logn 202 o .

L = 2 l (al 01171)41’0( )

logazn/logal I+ L+Q < (logn)l‘f'ai—ai—l (Og n) k
2cq1—1

= (logn)~~ v +9(&) = o(1),

where the second identity follows from (8.17). N N
Towards showing inequality (8.46), we observe that given Eé’J and Fé’j 71, we can apply
Lemma 8.8 to the process started at time sg with Ly = Q% + Q, t = [log®n|, £ = £;, p =0,

h =log® 'n+ Q" + Q and r* = nexp (— W&LLJ@) to obtain

P (< |H!| > 2ne i +ne logn NES NFLI—
H X — X —
E P\ 71 log®in P 2(log¥"'n+ L + Q) Q Q

2 Vn(logn)~@illes™ "t ntLAQ)
<2 -2 -t 4 — 4
= 4exp ( 7 OXp < 2|log®in]| >) +aexp ( ellog®-'n+ L+ Q]! , (8.47)
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where, in the second term of (8.47), we use the fact that h < log®~'n+ L+ Q. For the first
term of (8.47), we have

02
2 exp (—2n exp <_2Llogzo‘lnj>> = exp (—nlf"(l)) . (8.48)

The second term of (8.47) is increasing with respect to «a;_1, which, in turn, is increasing
with respect to 7. Hence, we can assume that i > 2 and use log®™'n+ L+ Q < 2log®'n to
obtain

e[logaifl n—+ L + Q—“ (2 logai—ln)2(10gn)°‘i*1
i
(2 log n)Q(O‘i"‘ai—ﬂ(logn)ai—l
o)

exp(bloglogn - log®~'n)

1 —a;(log¥i—1n+L+Q) 1 —2a;(logn)*i—1
Loxp (_ Vin(logn) < doxp [ Vo)

<4dexp <—

< 4exp (—
= exp (—n1/270(1)> , (8.49)

where the first inequality follows from Stirling’s approximation n! < ey/n(n/e)”, and the last
inequality — from the observation that o;_1 < 1 — W, which, in turn, follows from
the fact that oy < 1 and (8.17). Plugging and (8.48), (8.49) into (8.47), inequality (8.46),
and hence (8.34), follows. O

8.2 Proof of Proposition 8.4

Proof of Proposition 8.4. To establish equality (8.4), it would clearly suffice to show the
following estimates

P(MaxLoadf (m1) > A) <n4d (8.50)
P (mﬁ Li(m) < —A) <n 4 (8.51)
S

We first show that inequality (8.50) follows from Lemma 8.7. Our choice of m; in (2.18)
guarantees that the allocation of m; balls using the @-multi-scale strategy ends up with
Niax complete iterations of the ipyax-th scale strategy followed by the regulating multi-stage
threshold strategy. Recall the definition of Fé’] given in (8.26) and apply Lemma 8.7 to
obtain

P (MaxLoad! (1) > Q + @i iactt) = B (FI o ) <

Using (8.14), we have Q + QmaxNimaxt! < Q 4+ L < A. The two inequalities above yield
(8.50).

Next, we estimate P(L{(ml) < —A), which, together with the union bound argument,
implies inequality (8.51). For each ¢ € [n], we denote

k; = sup{k € [1,m1] : L;(k) > —300dlogn}

and write F; for the event {—oco < k; < mj; —logn}. Observe that, given our assumptions on
L;(0), on Ff we have L{ (my) > —A almost surely. We denote by Fj, the filtration generated
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by {L{(p): 1<p<k,ic [n]} By Chernoff’s argument, we thus have that for any A > 0,
P(Lf(m1) < —A| Fy, Fi,) < e - E[e ) | B R (8.52)

We write p, 7, , = ]P)(L{(k') — L{(k‘ —1)=1-1/n|Fs_1), i.e., the probability that the k-th
ball has been allocated to the i-th bin conditioned on the load vector in time & — 1. Our
strategy never retries a ball if its primary allocation is a bin with load below —logn. This
and the definition of k; imply that py 7, _, > 1/n for all k; < k < m;. We now compute

A
e_)\Llf(ml—l) |E7fk1] LM (1 _ 1—e > 7
n

Iterate this inequality to obtain

f f 1-— €_>\ ki
E[e_/\Li (m1) | Fi?‘Fki] < E[Q—ALZ- (ki) | F, ’Fk’i] . <e/\/n . (1 — ))

n

=2 my—k;
_ A (k) | <6A/n. (1 _1l-e ))
n

1—e*\\™
< eBOOAdlogn . <6)\/n . <1 _ )) , (853)

n

where the second inequality follows from that sz (k;) > —300d log n and that /™ (1 - %)
is increasing for A > 0. Combining (8.52) and (8.53), we obtain

1—eM\™
B(0 ) < 1 7y) <M b e (- 12)

A 1—e?
— exp (—)\A + 300Ad log 1 + % + my log (1 - ne ))

A 1—e
< exp (—)\A—i— 300Adlogn + AL mq - € )
n n

= exp (—)\(A — 300dlogn) + %(A -1+ e_’\)>

2
< exp (—)\(A — 300dlog n) + AQZ”) ,

where the second inequality uses log(l — z) < —z for 0 < z < 1, and the last inequality
follows from that e™* < 1 —x + 2%/2 for z > 0. We plug A\ = %ﬁflogn)
inequality to obtain

A —300dlog n)? 1—o0(1))A?
P(Lf(ml) < —A|F;, Fi,) < exp _n ogn) = exp —% <n~,
¢ ‘ 2my 2log%n

into the above

We recall that P(L{(ml) < —4) = P(L{(ml) < —AF) < P(L{(ml) < —A|F). Hence
inequality (8.51) follows from taking a union bound of the above inequality over i € [n]. [
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8.3 Proofs of Propositions 8.2 and 8.5

Proof of Proposition 8.2. The statement follows as easy consequence of Proposition 4.3 with
the parameters t = mg/n,a = %, n = 0. We first show that Proposition 4.3 is appli-
cable with the aforementioned parameters. Recall that my = |200dnlogn|. This, together
with the assumption that |L;(0)| < 100dlogn for all i € [n], implies that MaxLoad” (0) < ¢/2.
Hence, the first condition of Proposition 4.3 is satisfied. Notice that @ > 1 and that

Lo = (logn)2+ @), where k = L&%J. We thus have Lo > (Lg)?/log®n. This,

along with the assumption that |{i € [n] : L;(0) > Lo}| < 4000ne 0/15 guarantees the
validity of the second condition of Proposition 4.3. Thus we can apply Proposition 4.3 to
obtain that

P <MaxLoadf(mo) > (2k + 2)L0> < eV EeEeET

logloglogn 1

1
Observe that (2k+2)Lg = (log n)%+0( Eres”) and that L = (log n)5+®(vlog Tog logn) . Hence,
we obtain

V1ogloglogn

P (MaxLoadf (mo) > L) <ne (8.54)

Notice that the load of each bin can decrease by at most mg/n < 200d log n after the allocation
of mg balls. Since max;e|y |L{(0)| < 100d logn, we have

m[n? L! (mo) > —300dlog n.
€n

This, together with (8.54), concludes the proof of Proposition 8.2. O

Proof of Proposition 8.5. We apply Lemma 3.9 and Lemma 3.10 to obtain for sufficiently
large n that

P <max \L{(m2)| > 100d log n) <n73,
i€[n]

P (Hi € [n]: L (my) > Lo}| > 4000ne_L0/15> < exp (_nl—ou)) _

Then we can conclude the proof by taking the union bound. ]
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