
Long-term balanced allocation via thinning

Ohad N. Feldheim, Ori Gurel-Gurevich, Jiange Li ∗

October 13, 2021

Abstract

We study the long-term behavior of the two-thinning variant of the classical balls-
and-bins model. In this model, an overseer is provided with uniform random allocation
of m balls into n bins in an on-line fashion. For each ball, the overseer could reject
its allocation and place the ball into a new bin drawn independently at random. The
purpose of the overseer is to reduce the maximum load of the bins, which is defined as
the difference between the maximum number of balls in a single bin and m/n, i.e., the
average number of balls among all bins.

We provide tight estimates for three quantities: the lowest maximum load that could
be achieved at time m, the lowest maximum load that could be achieved uniformly over
the entire time interval [m] := {1, 2, · · · ,m}, and the lowest typical maximum load that
could be achieved over the interval [m], where the typicality means that the maximum
load holds for 1− o(1) portion of the times in [m].

We show that when m and n are sufficiently large, a typical maximum load of
(log n)1/2+o(1) can be achieved with high probability, asymptotically the same as the
optimal maximum load that could be achieved at time m. However, for any strategy, the
maximal load among all times in the interval [m] is Ω

(
logn

log logn

)
with high probability. A

strategy achieving this bound is provided.
An explanation for this gap is provided by our optimal strategies as follows. To

control the typical load, we restrain the maximum load for some time, during which we
accumulate more and more bins with relatively high load. After a while, we have to
employ for a short time a different strategy to reduce the number of relatively heavily
loaded bins, at the expanse of temporarily inducing high load in a few bins.

Keywords: balls-and-bins, load balancing, two-choice, two-thinning.

1 Introduction

In the classical balls-and-bins model, m balls are independently and uniformly at random
placed into n bins one after another. In this paper, we are interested in the following variant,
which is called the two-thinning model. For each ball, after a uniformly random bin, which
is called the primary allocation, has been suggested, an overseer has the choice of either
accepting this bin, or placing the ball into a new bin selected independently and uniformly
at random, which is called the secondary allocation. In this model, the overseer is oblivious
to the secondary allocation before deciding whether to accept the primary allocation. In
contrast, in the well-known two-choice model, which was introduced in the seminal work

∗O. F. and O. G-G are with the Hebrew University of Jerusalem. J. L. is with the Harbin Insti-
tute of Technology. E-mail: ohad.feldheim@mail.huji.ac.il, ori.gurel-gurevich@mail.huji.ac.il,

lijiange7@gmail.com.

1

[2], the overseer is aware of the secondary allocation and places the ball into the bin which
contains fewer balls (break ties arbitrarily).

1.1 Main results

We define the load of a bin as the difference between the number of balls in this bin and the
average number of balls among all bins. Given a two-thinning strategy f (see Section 2.1
for a formal definition), we denote by MaxLoadf (m) the single-time maximum load, which
is defined as the maximum load among all bins after allocating m balls using the strategy
f , and denote by MaxLoadf ([m]) the all-time maximum load, which is the maximum of
MaxLoadf (k) for all k ∈ [m] := {1, 2, . . . ,m}. In general, we can replace [m] by a subset
S ⊆ [m], and define MaxLoadf (S) in a similar manner.

Theorem 1. For all m,n ∈ N, there exists an explicit two-thinning strategy f := fm,n such
that, with high probability,

MaxLoadf (m) =


Θ
(√

logn
log logn−2 log(m/n)

)
Ω(n) ≤ m ≤ o(n

√
log n),

Θ(
√

log n) m = Θ(n
√

log n),

(log n)1/2+o(1) m = ω(n
√

log n).

Moreover, in the first two cases the maximum loads are optimal up to some multiplicative
constants, while in the third case we have a lower bound of Ω(

√
log n) for all two-thinning

strategies.

Theorem 2. There exists an explicit two-thinning strategy f such that, with high probability,

MaxLoadf ([m]) =


Θ
(√

logn
log logn−2 log(m/n)

)
Ω(n) ≤ m ≤ O(n

√
log n),

Θ
((m logn

n

)1/3)
Ω(n
√

log n) ≤ m ≤ o(n log2 n),

Θ
(logn

log logn

)
Ω(n log2 n) ≤ m ≤ nO(1).

Moreover, the all-time maximum load achieved by f is optimal up to a multiplicative constant.

For ε > 0, we denote by MaxLoadfε ([m]) the ε-typical maximum load, which is defined as
the largest ` > 0 such that MaxLoadf (k) > ` holds for at least εm many k ∈ [m]. Clearly,
we have MaxLoadf (m) ≤ MaxLoadfε ([m]) ≤ MaxLoadf ([m]).

Theorems 1 and 2 show that for m = O(n
√

log n), the difference between the optimal
single-time and all-time maximum loads is at most a multiplicative constant and hence the
optimal typical maximum load also has the same asymptotic behaviour. For m = ω(n

√
log n),

however, there is a gap between the optimal single-time and all-time maximum loads. The
next theorem shows that in this regime, the typical maximum load behaves like the single
time maximum load, so is the gap between the optimal typical and all-time maximum loads.

Theorem 3. Let m,n ∈ N, and write ε = e−
1
2

√
log log logn. There exists an explicit two-

thinning strategy f = fm,n such that for n large enough and for all m,

MaxLoadfε ([m]) ≤ (log n)
1
2

+o(1),

holds with high probability.

It is worth pointing out that for m ≤ nO(1) our strategy actually governs the loads in
some predetermined, large (i.e., 1 − ε portion) set of times in [m], with high probability
(see Proposition 8.1).

2

1.2 Discussion

The classical balls-and-bins model and its two-choice variant have been extensively studied in
probability theory, random graph theory, and computer science. Many applications have been
found in various areas, such as hashing, load balancing and resource allocation in parallel
and distributed systems (see e.g., [2], [3], [14], [22], [23]). In the balls-and-bins model, it
is known that for m = Θ(n), the maximum load is (1 + o(1)) logn

log logn with high probability,

and for m � n, the maximum load is Θ
(√

m logn
n

)
with high probability (see e.g. [21]). In

the seminal paper [2], Azar, Broder, Karlin and Upfal showed that in the two-choice model,
for m = Θ(n), the maximum load is log logn

log 2 + O(1) with high probability – an exponential
improvement over the balls-and-bins model. In fact, this phenomenon was first noticed by
Karp, Luby and Meyer auf der Heide [14] in the context of PRAM simulations when switching
from one hash function to two. In [2], the d-choice setting, where the overseer is given d > 2
choices, was also considered. In this setting, an optimal maximum load of log logn

log d +O(1) can
be achieved with high probability; that is, compared with the case d = 2, the performance
improves by merely a multiplicative factor for larger values of d. We refer the reader to the
survey [18] for more details about the two-choice model.

The long-term behavior of the two-choice model, in which case the number of balls m can
be super linear in n, proved to be more challenging. In the seminal paper [5], Berenbrink,
Czumaj, Steger and Vöcking showed that for arbitrarily large m, one can achieve the maxi-
mum load of log logn

log 2 +O(1) with high probability. A simpler proof of this result with a weaker
lower order term was given by Talwar and Wieder [25]. Since this result is achieved via a
single greedy strategy at all times, a simple union bound argument implies that this strategy
also maintains this bound as the all-time and the typical maximum loads for m polynomially
large in n.

Different variants of the two-choice model have been studied under weaker constraints
from practical considerations. These include load balancing with limited memory [1, 6, 17],
relaxation on the possible pairs the overseer may select from (known as two choices on graphs)
[15, 20] and a hypergraph variant of it [13]. Other relaxations include bins with different
selection probabilities [4] and balls with different weights [24]. An important purpose of this
course of study is to understand the robustness of the load reduction achieved by the power
of two choices, understanding the impact of constraints on memory, information and choice
patterns. Particularly, Peres, Talwar and Wieder [20] studied the setting of two choices with
errors, which is known as the (1+β)-choice model. In this setting, with probability β the ball
is allocated using the two-choice model, and with probability 1− β the ball is assigned to a
random bin as in the balls-and-bins model. The authors showed that, irrespective of m, the
gap between the maximum load and the average is O

(logn
β

)
. Since this result is irrespective

of m, a simple union bound argument implies that this bound is also valid for the all-time
and the typical maximum loads for m polynomially large in n.

The two-thinning variant is a different relaxation of the two-choice model which arises
naturally in a statistical scenario, where one collects samples one-by-one and is allowed to
decide whether to keep each sample or not, under the constraint of never discarding two
consecutive samples. In [7], Dwivedi, Ramdas and the first two authors showed that two-
thinning could reduce the discrepancy of a sequence of random points selected independently
and uniformly at random from the interval [0, 1] to be near optimal. The first two authors
studied the two-thinning variant of the balls-and-bins model in [11]. They showed that

for m = Θ(n), the optimal maximum load is (2 + o(1))
√

2 logn
log logn with high probability, a

3

polynomial improvement over the balls-and-bins model. Hence, this model is in some sense
more powerful than the (1 +β)-choice model. The authors also conjectured the upper bound

O
(√

logn
log logn

)
for all m � n. Los and Sauerwald [16] recently disproved this conjecture by

showing a lower bound of Ω(
√

log n) for m = Θ(n
√

log n), a bound which we show here
holds for all m = Ω(n

√
log n). They also showed that a load of Ω(log n/ log logn) holds

for at least Ω(n log n/ log logn) times in [1, n log2 n]. Our work sheds more light on this
phenomenon. The results in [11] were extended by the first and third authors [12] to the

d-thinning setting and the optimal maximum load of (d+o(1))
(d logn

log logn

)1/d
could be achieved

with high probability.
Another relaxation of the two-choice model was recently studied by Los and Sauerwald

[16]. They considered the situation that each ball is offered two random bins and is allowed
to send up to k binary queries, each to one of the two bins. In one model, it inquires whether
the absolute load crosses some threshold, and in the other model, it inquires whether the
number of bins with loads higher than that of the queried bin is greater than some percentile.
The k = 1 case is equivalent to our two-thinning model. They showed that in both models a
maximum load of O(k(log n)1/k) can be achieved with high probability.

Here, we study the long-term behavior of the two-thinning model. Our discussions above
and Theorems 1 and 3 show that, in the balls-and-bins and the two-choice models, the optimal
single-time and the typical maximum loads are asymptotically nearly identical. However, in
contrast with these two models, there is a big gap between the optimal typical and the all-
time maximum loads in the two-thinning setting. We attribute this difference to the fact
that in the two-thinning setting, short periods of relative high maximum loads are necessary
for the process to “release steam” with the benefit of arriving at low maximum loads at the
end of these periods. A comparison of the maximum loads in these three models is given in
the following table.

m = Θ(n logα n) MaxLoadf (m) MaxLoadfε ([m]) MaxLoadf ([m])

Balls-and-bins
α < 1 Θ

(logn
log logn

)
Θ
(logn

log logn

)
Θ
(logn

log logn

)
α ≥ 1 Θ

(√
m logn
n

)
Θ
(√

m logn
n

)
Θ
(√

m logn
n

)

Two-thinning

α ∈ [0, 1
2) Θ

(√
logn

log logn

)
Θ
(√

logn
log logn

)
Θ
(√

logn
log logn

)
α = 1

2 Θ(
√

log n) Θ(
√

log n) Θ(
√

log n)

α ∈ (1
2 , 2) (log n)1/2+o(1) (log n)1/2+o(1) Θ

(
(log n)

1+α
3

)
α ≥ 2 (log n)1/2+o(1) (log n)1/2+o(1) Θ

(logn
log logn

)
Two-choice α ≥ 0 Θ(log log n) Θ(log log n) Θ(log log n)

Table 1: A comparison of the single-time, all-time and typical maximum loads. Here, we
write m = Θ(n logα n) and select ε = o(1), where α is allowed to depend on n, but some
of the results require m to be at most polynomially large in n. In the two-thinning model,
the results for α = 0 appear in [11] and the lower bound for α = 1/2 appears in [16] and
the remaining results are new. In the two-choice model, the results follow from [5]. In the
balls-and-bins model, the results are classical (see e.g. [21]).

4

1.3 Upper bound strategies and lower bound techniques

In the following, we give a brief description of our strategies that achieve the upper bounds
in our main results as well as techniques for establishing the lower bounds. We write m = nt
for t ∈ N. Different strategies are required for values of t in different ranges.

The single-time maximum load. For t = O(
√

log n), our upper bound is achieved
by the threshold strategy employed in [11], which retries a ball if the number of primary
allocations accepted by the suggested bin reaches certain threshold. For t ≥ ω(

√
log n), the

threshold strategy alone is not sufficient since the optimal choice of the threshold would be
t + Θ((t log n)1/3) and this yields a maximum load of O((t log n)1/3), which is much larger
than our desired upper bound (log n)1/2+o(1). Instead, we divide the process into multiple
shorter stages and, in each stage, apply the threshold strategy with a smaller threshold. It
is likely that this will cause more retries and even a temporarily high maximum load. To
prevent this from causing a high load at the end of the process, we always retry a ball if its
primary allocation is a heavily loaded bin. The number of retries caused by this requirement
is relatively small since the number of heavily loaded bins is small. This, together with
a careful selection of time lengths of the stages, enables us to achieve the maximum load
of (log n)1/2+o(1) at the end of the process. We call this strategy the multi-stage threshold
strategy. For t ≥ ω(log n), we need another ingredient in the form of a drift strategy. Under
this strategy we retry a ball with positive probability if its primary allocation has a positive
load, and surely if its load is very high. This creates a drift in the load of positively loaded
bins towards zero, resulting in a load distribution with exponential tail and a maximum
load of Θ(logn

log logn) (in some sense, this is an improvement of a similar strategy in [7]). For
t ≥ ω(log n), we first apply this drift strategy up to Θ(log n) time before the end, and then
apply the aforementioned multi-stage threshold strategy to allocate the remaining Θ(n log n)
balls. Our lower bound follows from the simple observation that if we retry too many balls,
the secondary allocations will cause a high maximum load, and if we retry too few balls, the
primary allocations will cause a high maximum load.

The all-time maximum load. Our upper bound strategy is a time-adaptive version of
the threshold strategy for the single-time maximum load, which we call a relative threshold
strategy. We use a threshold strategy where the threshold after throwing tn balls, is t+ ` for
a fixed ` > 0. This strategy results in a uniform control of the maximum load throughout
the process. Our lower bound follows from the observation that a uniform bound on the
maximum load in the process upper-bounds the number of retries in the allocation of each
batch of n balls, and hence – the total number of retries in the entire process. Subject to
this constraint, we consider the maximum load after all balls have been allocated and show
it to be large.

The typical maximum load. As mentioned before Theorem 3, it suffices to consider
the case t ≥ ω(

√
log n). For ω(

√
log n) ≤ t ≤ O(log n), we apply a multi-scale strategy. Each

scale consists of iterations of two strategies. In the first, longer part of each iteration, we apply
the strategy of a smaller scale, while in the second, shorter part, we use a different regulating
strategy. The strategy in the smallest scale is simply the relative threshold strategy, while
the regulating strategy is the multi-stage threshold strategy used to control the single-time
maximum load. These regulating segments play the role of “releasing steam” from the process
– although they result in a high maximum load for a short period of time, they yield good
control the maximum loads at the end of these segments, so that we can re-initiate the next
iteration. For t ≥ ω(log n), we iterate over long segments of this strategy, separated by short
segments of the drift strategy followed by the multi-stage threshold strategy.

5

1.4 Outline

This paper is organized as follows. In the next section, we introduce two-thinning strategies
that are used to achieve the desired bounds on three types of maximum loads as stated in
Theorems 1, 2 and 3. We provide some preliminary tools in Section 3, which are used in the
analysis of different two-thinning strategies and the proofs of the main results. The proof
of Theorem 1 on the single-time maximum load is provided in Section 4 (upper bound) and
Section 5 (lower bound). The proof of Theorem 2 on the all-time maximum load is provided
in Section 6 (upper bound) and 7 (lower bound). In the last section, we prove Theorem 3 on
the ε-typical maximum load.

2 Strategies for taming the maximum loads

In this section, we provide two-thinning strategies that are used to control the maximum
loads. We give the formal definition of a two-thinning strategy in Section 2.1, and provide an
alternative, indirect way of describing a two-thinning strategy in Section 2.2. Several basic
two-thinning strategies are given in Section 2.3, which are building blocks of more advanced
strategies in Section 2.4. We provide an outline of how these strategies are used to obtain
the main theorems in Section 2.5.

2.1 Two-thinning strategy

A decision strategy is a function

f : [n]× [0, 1]→ {1, 2},

which, given a primary allocation and an external random number in [0, 1], decides whether
to accept (denoted by 1) or reject (denoted by 2) the suggested allocation. Given Z1, Z2, a
pair of independent random variables, uniform on [n] and U uniform on [0, 1], we can consider
the output of a decision strategy given by Zf(Z1,U).

A thinning strategy f is a sequence of functions {fk}k∈N, where the function

fk : ([n]× [n]× {1, 2})k−1 × [n]× [0, 1]→ {1, 2},

given the history H ∈ ([n] × [n] × {1, 2})k−1 of the process up to time k − 1 (that is, the
primary allocations, the final allocations and the decisions of the first k−1 balls), the primary
allocation at time k and an external random number in [0, 1], decides whether to accept or
reject the suggested allocation. Hence, given the history of the process, the thinning strategy
provides a decision strategy for the next allocation.

A thinning strategy f generates the decisions sequence {Dk}k∈N and the allocations se-
quence {Zk}k∈N in the following way. We denote by {Z1

k}k∈N and {Z2
k}k∈N two independent

sequences of random variables, which are independent and uniformly distributed in [n]. Here,
Z1
k represents the primary allocation of the k-th ball, while {Z2

k}k∈N is used as a pool of sec-
ondary allocations. Set R0 = 0 and we denote by Rk the number of rejections among the
first k primary allocations. Let {Uk}k∈N be a collection of uniform random variables on [0, 1].

6

For the k-th allocation, we can inductively define

Dk = fk
(
{Z1

j }j∈[k−1], {Zj}j∈[k−1], {Dj}j∈[k−1], Z
1
k , Uk

)
,

Rk = Rk−1 +Dk − 1, (2.1)

Zk =

{
Z1
k if Dk = 1,

Z2
Rk

if Dk = 2.

In other words, we look at the history H of the process up to time k − 1 and at the primary
allocation Z1

k at time k along with an additional source of randomness Uk and apply f to
determine whether to accept Z1

k or not. If we reject Z1
k , we will then allocate the k-th ball

to the next unused secondary allocation Z2
Rk

from our pool.
We allow bins to start with some initial loads {Li(0)}i∈[n] satisfying

∑n
i=1 Li(0) = 0,

where Li(0) is the initial load of the i-th bin. Let m ∈ N and let i ∈ [n]. The load of bin i
after allocating m balls using the thinning strategy f is defined as

Lfi (m) = Li(0) +
m∑
k=1

1{Zk=i} −
m

n
. (2.2)

For any M ⊆ [m], we define

Lf1,i(M) =
∣∣{k ∈M : Z1

k = i and Dk = 1
}∣∣,

Lf2,i(M) =
∣∣{k ∈M : Z2

Rk
= i
}∣∣. (2.3)

Hence, Lf1,i([m]) represents the number of primary allocations accepted by bin i after allo-
cating m balls, and L2,i([m]) represents the number balls that bin i receive from secondary

allocations. It is clear that Lfi (m) = Li(0) + Lf1,i([m]) + Lf2,i([m]) −m/n. For any S ⊆ [n]
and ` ∈ R, we define

φ`S(m) =
∣∣∣{i ∈ S : Lfi (m) ≥ `

}∣∣∣ , (2.4)

which is the number of bins in S with loads at least ` after allocating m balls using the
thinning strategy f , and

ψ`S(M) =

∣∣∣∣∣
{
i ∈ S :

∑
k∈M

1{Z0
k=i} ≥ `

}∣∣∣∣∣ , (2.5)

which is the number of bins in S that are suggested as primary allocations at least ` times
during the allocations of balls in M . The maximum load over a set of bins S after allocating
m balls using the thinning strategy f is defined as

MaxLoadfS(m) = max
i∈S

Lfi (m). (2.6)

We will omit the index S in these notations when S = [n]. For any M ⊆ [m], we define the
maximum load achieved during the allocation of balls in M as

MaxLoadf (M) = max
k∈M

MaxLoadf (k). (2.7)

The ε-typical maximum load MaxLoadfε (M) over the set M is defined as

MaxLoadfε (M) = max
{
` > 0 :

∣∣{k ∈M : MaxLoadf (k) ≥ `
}∣∣ ≥ ε|M |}. (2.8)

7

2.2 A realizability criterion

Under certain circumstances, instead of providing an explicit, formal description of a two-
thinning strategy, we only show the realizability. The following result provides a criterion for
a probability distribution to be realized by some two-thinning strategy.

Lemma 2.1. Any probability distribution P on [n] with probability mass function {pi}i∈[n]

for which
c

n
≤ pi ≤

1 + c

n

for some c > 0 and for every i ∈ [n], is the distribution of the output of a two-thinning
decision strategy.

Proof. Let Z1, Z2, U be independent random variables uniformly distributed in [n]. Here, U
is the external randomness. We define the two-thinning function f : [n]× [0, 1]→ {1, 2} as

f(i, u) =

{
1, npi − c ≥ u,
2, npi − c < u.

Let Z = Zf(Z1,U) be the output of f . For any i ∈ [n], we have

P(Z = i) = P(Z1 = i, f(Z1, U) = 1) + P(Z2 = i, f(Z1, U) = 2)

= P(Z1 = i)P(f(i, U) = 1) + P(Z2 = i)
n∑
j=1

P(Z1 = j)P(f(j, U) = 2)

=
1

n
· (npi − c) +

1

n
· 1

n

n∑
j=1

(1 + c− npj)

= pi.

The second identity follows from the joint independence among Z1, Z2, U .

2.3 The basic strategies

Here, we introduce some basic two-thinning strategies, which are building blocks of more
advanced strategies in the next section. The first two thinning strategies are deterministic
and rather natural.

The threshold strategy. The `-threshold strategy accepts the primary allocation of a
given ball whenver the suggested bin has accepted thus far less than ` primary allocations.
In other words,

fk(H, i, u) =

{
1 if Lf1,i(k) < `,

2 if Lf1,i(k) ≥ `.

This strategy is used to control the single-time maximum load of allocating O(n
√

log n) balls.
The relative threshold strategy. The `-relative threshold strategy accepts the k-th

primary allocation if the suggested bin has accepted less than `+ k−1
n primary allocations or

if the load of the suggested bin is below − log n. In other words,

fk(H, i, u) =

{
1 if Lf1,i(k) < `+ k−1

n or Lfi (k) < − log n,

2 if Lf1,i(k) ≥ `+ k−1
n and Lfi (k) ≥ − log n.

8

This strategy is designed to control the all-time maximum load of allocating o(n log2 n) balls.
The drift strategy. The third strategy relies on a coupling of the allocation process

and a continuous time random process. This strategy can be used to achieve appropriate
initial conditions for other strategies as it is very robust and can rather quickly reduce the
load vector to a stationary distribution with an exponential tail. We denote by {Xi(t)}i∈[n]

a collection of independent regular point processes with initial values Xi(0) = Li(0) and
conditional intensity functions

λi(t) =

{
1 + θ, Xi(t) < t,

1− θ, Xi(t) ≥ t.
(2.9)

Write X(t) =
∑n

i=1Xi(t). We define the random process {Zk}k∈N as follows. For any k ∈ N,
we set

Zk = i if the k-th point of X(t) for t > 0 is a point of Xi(t). (2.10)

We will show that, conditioned on Z1, . . . , Zk−1, the variable Zk meets the conditions of
Lemma 2.1. Hence {Zk}k∈N is realizable as the output of a two-thinning strategy. We call
this strategy the θ-drift strategy.

We write Ft for the natural filtration of X(t) and denote by Tk = inf{t : X(t) = k}. To
see that the conditions of Lemma 2.1 are indeed satisfied, it suffices to show that there exists
some c > 0 such that

c

n
≤ P(Zk = i | Z1, · · · , Zk−1,FTk−1

) ≤ 1 + c

n
(2.11)

holds for all k ∈ N and all i ∈ [n]. By the definition of {Zk}k∈N, we have

1− θ
n(1 + θ)

=

inf
t≥0

λi(t)

nmax
j∈[n]

sup
t≥0

λj(t)
≤ P(Zk = i | Z1, · · · , Zk−1,FTk−1

) ≤
sup
t≥0

λi(t)

nmin
j∈[n]

inf
t≥0

λj(t)
≤ 1 + θ

n(1− θ)
.

One can check that the criterion (2.11) holds for all 0 < θ ≤
√

5− 2.
A varying drift strategy. Our forth strategy is a modified drift strategy where the

downwards drift is extremely strong for bins with loads above certain level `. We denote by
{Xi(t)}i∈[n] a collection of independent regular point processes with initial values Xi(0) = 0
and conditional intensity functions given by

λi(t) =


1 + θ1, Xi(t) < t,

1− θ2, t ≤ Xi(t) ≤ t+ `,

θ3, Xi(t) > t+ `.

(2.12)

Here, we set θ1 = θ2 = 1√
logn

and θ3 = 12√
logn

. We write X(t) =
∑n

i=1Xi(t). For any k ∈ N,

we set Zk = i if the k-th point of X(t) for t > 0 is a point of the process Xi(t). We write Ft
for the natural filtration of X(t) and denote by Tk = inf{t : X(t) = k}. Unlike in the case of
the drift strategy, in certain situations, the distribution of Zk given Z0, . . . , Zk−1 is not the
output of any two-thinning decision strategy. However, as the next lemma shows, this does
not happen as long as the number of bins with very high load is not too large. We call the
strategy which realizes Zk for as long as possible (and, say, accepts all primary allocations
from that time and on, for the sake of completion), the `-varying drift strategy.

9

Lemma 2.2. For sufficiently large n, for any k ∈ N, if∣∣{i ∈ [n] : Xi(Tk−1) > Tk−1 + `
}∣∣ ≤ n√

log n
, (2.13)

then the distribution of Zk given Z0, . . . , Zk−1 can be realized by a two-thinning decision
strategy.

Proof. We need to verify that the distribution of Zk given Z0, . . . , Zk−1 satisfies the condition
of Lemma 2.1. To this end, it is enough to show that there exists some c > 0, which could
depend on n, such that for sufficiently large n, for all i ∈ [n] we have,

c

n
≤ P(Zk = i | Z1, · · · , Zk−1,FTk−1

) ≤ 1 + c

n
. (2.14)

Denote n0 = |{i ∈ [n] : Xi(Tk−1) > Tk−1 + `}|. Then, the condition (2.13) says that
n0 ≤ n√

logn
. By the definition of Zk, we have

θ3

(n− n0)(1 + θ1) + n0θ3
≤ P(Zk = i | Z1, · · · , Zk−1,FTk−1

) ≤ 1 + θ1

(n− n0)(1− θ2) + n0θ3

Using the fact that the denominators above are maximized when n0 = 0 and are minimized
when n0 = n√

logn
, we obtain

6

n
√

log n
≤ P(Zk = i | Z1, · · · , Zk−1,FTk−1

) ≤
1 + 1√

logn

n
(
1− 1√

logn

)2 ≤ 1

n

(
1 +

4√
log n

)

for all n sufficiently large. Thus, inequality (2.14) holds with c = 4√
logn

.

We shall see in Section 6.2 that for ` = 2 logn
log logn , the condition of Lemma 2.2 is indeed

satisfied with high probability over polynomially long time in n.

2.4 Combinations of the basic strategies

In many scenarios, particularly when the number of balls is large, we need to adjust and
combine the basic strategies in an appropriate way to obtain the upper bounds in our main
results. The following are several such combinations.

The multi-stage (t, L0, `)-threshold strategy. Set t0 = 0 and k =
⌊ log logn

3 log log logn

⌋
. We

divide the process into k stages, where the i-th stage proceeds from time nti−1 to time nti,
where the definition of ti as a function of t is given at the end of this description. We write
H0 for the set of bins with loads greater than L0 at time t0. We inductively define Hi as the
set of bins in (∪i−1

j=1Hj)
c (or in Hc

0 in the case i = 1) whose loads at the end of the i-th stage
are at least L0 + 2i`. Then our strategy can be stated as follows. In the first stage, we retry
a ball if its primary allocation bin has a load of at least − log n and either it is in H0 or it
has accepted t1 − t0 + ` primary allocations in the first stage so far. In i-th stage for i ≥ 2,
we retry a ball if its primary allocation bin has a load of at least − log n and either it is in
∪i−1
j=1Hj , or it is a bin that has accepted ti− ti−1 + ` primary allocations during the i-th stage

so far.
Now we conclude the description with the definitions of {ti}i∈[k]. Denote α = log t

log logn .

Given η ∈ [0, α−1/2
4k−2], we set β = α + η, ε = 2β−1

2(k+1) , and βi = β − (2β−1−ε)i
2k+1 . We then define

ti = bt− logβinc for 1 ≤ i ≤ k − 1, and tk = t.

10

Remark 2.3. It might be worthwhile to point out that after the first stage, we do not retry
primary allocations that are bins in H0 unless they consist of bins with load at least − log n
and already accepted ` primary allocations more than the average in the current stage. Hence,
the initial set of heavily loaded bins H0 will play the same role as any other bins from stage
two and on.

This multi-stage threshold strategy is designed to control the single-time maximum load
for time t ≥ ω(

√
log n), in which case the threshold strategy alone is not sufficient. Indeed,

optimizing the choice of the threshold in the threshold strategy gives t+Θ((t log n)1/3), which,
in turn, yields a maximum load of O((t log n)1/3); much larger than the desired upper bound
(log n)1/2+o(1). Hence, we divide the process into multiple shorter stages and in each stage
apply the threshold strategy with a smaller threshold. This is likely to cause more retries
and even a temporarily higher maximum load. To prevent this from causing high load at the
end of the process, we identify at the beginning of every stage heavily loaded bins (Hi) and
from this time and on retry a ball if its primary allocation is one of these. The number of
retries caused by this requirement is relatively small since the number of heavily loaded bins
is small. This, together with a careful selection of time lengths of the stages, will effectively
reduce the maximum load to (log n)1/2+o(1) at the end of the process.

A sketch of the analysis of the strategy is as follows. We first control the maximum load
after the first stage, and the number of relatively heavily loaded bins at the end of it (i.e., H1).
In every subsequent stage i there are two causes for retries: either the suggested bin already
accumulated ` primary allocations more than the average in this stage, or it was marked as
heavily loaded in previous stages (i.e., it is in ∪i−1

j=1Hj). By inductive bounds on these, we
are able to control the number of such retries. For a bin to be included into Hi, it must
accumulate at least 2` allocations above average, so that at least ` of them are secondary.
Using binomial estimates we can control the number of such bins with high probability and
establish our bound on Hi. Similar computations also allow us to control the maximum load
in bins ∪ij=1Hj , taking advantage of the negative drift of the load in ∪i−1

j=1Hj , caused by the
fact that they are always rejected as primary allocations (except if the load is already lower
than − log n).

The drift-multi-stage (θ, t′, t, L0, `)-threshold. This strategy is a combination of the
drift strategy and the multi-stage threshold strategy. It is designed to control the single-time
maximum load for t� log n. This is simply done by applying the θ-drift strategy up to time
t′ followed by the multi-stage (t, L0, `)-threshold strategy starting at time t′ and ending at
time t′ + t.

The Q-multi-scale strategy. This strategy is designed for controlling the typical max-
imum load for about n(log n)1+o(1) time. The strategy is formed by multiple scales, each
of which extends the previous one and consists of multiple iterations of the previous scale
strategy separated by a different regulating strategy. Whenever we initiate a new strategy at
some time, we treat this time point as the initiation time and the current loads as the initial
loads for the new strategy. To avoid countless rounding operations, each strategy is applied
for a not-necessarily integer time, and our policy is that if an integer point falls within the
time domain of a strategy, then this strategy is applied to it.

We now give the exact description of the strategy, which is accompanied by an algorithmic
description and a demonstration of the first three scales in Figure 1. We postpone the
technical definitions of the parameters L > 0, k ∈ N, {αi, α′i, `i}i∈N after the description. We
write Ni = d L

3k`i
e and Qi,j = (2k+1)(j−1)`i. In the first scale, we simply apply the L-relative

threshold strategy up to time nblogα1nc. In the second scale, we apply N1 iterations of the

11

first scale strategy (the last iteration may be incomplete) and the j-th iteration is followed
by the multi-stage (logα

′
1n,Q + Q1,j + `1, `1)-threshold strategy. The value of Q in the j-th

iteration of the first scale strategy is increased by Q1,j . Generally, in the (i+ 1)-th scale, we
apply Ni iterations of i-th scale strategy and the j-th iteration is followed by the multi-stage
(logα

′
in,Q+Qi,j+`i, `i)-threshold strategy. In the j-th iteration, all values of Q in the nested

multi-scale strategies are increased by Qi,j (in comparison with the value of Q in the current
scale).

The technical definitions of the aforementioned parameters are given as follows. We set

α1 = 1
2 + 2

b
√

log log lognc+1/4
, L = (log n)

1+α1
3 and k =

⌊ log logn
3 log log logn

⌋
. We inductively define the

sequences {αi, α′i, `i}i∈N via the following equations

εi =
2αi − 1

2(k + 1)
,

`i = (log n)
1
2

+
αi−1/2+kεi

2k+1 ,

α′i = αi −
1

5
· 2αi − 1− εi

2k + 1
, (2.15)

logαi+1n = Ni(blogαinc+ blogα
′
inc). (2.16)

According to the description of our strategy, the first part of each iteration runs for n logαin
time, and the second part runs for n logα

′
in time, so that the (i+1)-th scale runs for n logαi+1n

time in total.
The idea behind this strategy is as follows. In each scale of the strategy, most of the

time we apply the lower scale strategy, which yields a good control of the typical maximum
load. However, the number of bins with loads close to the threshold will accumulate along
the time. In order to mitigate this effect, we need to apply the multi-stage threshold strategy
with a low threshold for a short period of time. This enables us to dramatically reduce the
number of such relatively high loaded bins at the end of each regulating period, although it is
possible that during these regulating periods, certain bins may temporarily accumulate very
high loads. Once the regulating period is over, the small number of relatively high load bins
allows us to iterate the lower scale strategy once again.

In the following figure, we provide an algorithmic description of the Q-multi-scale strategy
and a demonstration of the first three scales of the strategy.

Algorithm 1 Q-multi-scale (Scale=i+ 1)

if i = 0 then
Run L-relative threshold for logα1 n time

else
for j = 1 to Ni do:

Run
(
Q+Qi,j

)
-multi-scale

(
i
)

for logαin time

Run multi-stage (logα
′
in,Q+Qi,j + `i, `i)-threshold

end for
end if

12

Figure 1: Above: an algorithmic description of the Q-multi-scale strategy. Below: the first
three scales of this strategy. The first scale is the L-relative threshold strategy. The second
scale consists of N1 iterations, the j-th of which incorporates the strategy of the first scale
followed by the multi-stage (logα

′
1 n,Q + Q1,j + `1, `1)-threshold strategy. The third scale

consists of N2 iterations, each of which consists of the second scale strategy with its Q set to
be Q+Q2,j , followed by the multi-stage (logα

′
2 n,Q+Q2,j + `2, `2)-threshold strategy.

L-relative threshold strategy

(·, ·, `1)-multi-stage threshold strategy

(·, ·, `2)-multi-stage threshold strategy

1st scale

blogα1 nc

2nd scale

blogα1 nc blogα
′
1 nc

N1-iterations
3rd scale

blogα2 nc blogα
′
2 nc

N2-iterations

The d-multi-scale long-term combined strategy. This strategy is used to control
the typical maximum load for arbitrarily long time and it consists of multiple iterations.

As in the Q-multi-scale strategy, we set α1 = 1
2 + 2

b
√

log log lognc+1/4
, L = (log n)

1+α1
3 and

k =
⌊ log logn

3 log log logn

⌋
. The sequence {αi}i∈N is defined in (2.15) and (2.16). We denote by

imax = max{i ∈ N : αi ≤ 1}. We set

Q = L = (log n)
1+α1

3 , A =
√

6d(log n)1+αimax+1 , (2.17)

m0 = b200dn log nc, m1 = n(log n)αimax+1 , m2 = d16nAe. (2.18)

L0 =
⌊
(log n)

1
2

+(2− 1
2k+1)α−1/2

2k+1
⌋
, where α =

log(m0/n)

log log n
. (2.19)

In this strategy, a standard iteration consists of three phases: The first one consists of the
allocation of m0 balls according to the multi-stage (m0/n, L0, L0)-threshold strategy defined
in Section 2.4; the second phase consists of the allocation of m1 balls using the Q-multi-scale
strategy; the third phase consists of the allocation of balls according to the 1/5-drift strategy
given in Section 2.3, until the first time m when the following three conditions are satisfied

• At least m2 balls were allocated during this phase,

• maxi∈[n]

∣∣Lfi (m)
∣∣ ≤ 100d log n,

13

•
∣∣∣{i ∈ [n] : Lfi (m) > L0

}∣∣∣ < 4000ne−L0/15.

The strategy itself consists of applying such iterations indefinitely, with the exception that
we skip the first phase in the first iteration. The purpose of this exception is to make this
strategy an extension of the Q-multi-scale strategy.

2.5 Optimal strategies

We summarize in Table 2 the strategies and the time intervals where these strategies are em-
ployed to control the single-time, all-time and typical maximum loads. Notice that strategies
that work for larger values of m encapsulate those that work for smaller values so that the
more advanced strategy could be also used for smaller values of m.

m≤O(n
√

log n) m ≤ O(n log n) m ≤ O(n log2 n) m ≤ nO(1) generic m

Maximum
load at time m

Threshold
strategy

Multi-stage
threshold
strategy

Drift multi-stage threshold strategy

Maximum
load up to

time m
Relative threshold strategy Varying drift strategy -

Typical load
up to time m

Relative
threshold
Strategy

Q-multi-scale threshold strategy d-multi-scale long-term combined strategy

Table 2: Optimal strategies for the single-time, all-time and typical maximum loads.

3 Preliminaries

3.1 Poisson approximation

One difficulty of analyzing the balls-and-bins model is the correlation among the loads of
different bins. The following result shows that the joint distribution of the loads of different
bins can be well approximated by assuming that the loads of these bins are independent
Poisson(m/n) random variables.

Let N0 = N ∪ {0}. Given x, y ∈ (N0)n, we say that x ≤ y if xi ≤ yi for all i ∈ [n]. A
subset S ⊂ (N0)n is called monotone decreasing (resp. increasing) if x ∈ S implies that y ∈ S
for all y ≤ x (resp. x ≤ y).

Lemma 3.1 ([19], Theorem 5.10). Let {Xi}i∈[n] be the number of balls in bins i ∈ [n] when
m balls are independently and uniformly placed into n bins. Let {Yi}i∈[n] be independent
Poisson(m/n) random variables. For any monotone set S ⊆ [n], we have

P((X1, · · · , Xn) ∈ S) ≤ 2P((Y1, · · · , Yn) ∈ S).

We borrow the following lemma from [11], which provides a concentration bound on the
maximum load over a subset of bins.

14

Lemma 3.2 ([11], Lemma 2.2). Let {Xi}i∈[n] be the number of balls in bins i ∈ [n] when
bθnc, 0 ≤ θ ≤ 1, balls are independently and uniformly placed into n bins. For k ∈ bθnc and
S ⊆ [n], we have

P
(

max
i∈S

Xi < k

)
≤ 2 exp

(
−θ

k|S|
ek!

)
.

3.2 Poisson tail estimate

Let X be a Poisson(λ) random variable. When λ is an integer, X can be seen as the sum
of λ independent Poisson(1) random variables. As a consequence of Cramér’s Theorem (e.g.,
[10], Theorem 2.2.3), λ−1X satisfies the Large Deviation Principle (LDP), namely, for any
closed set F ⊂ R,

lim sup
λ→∞

1

λ
logP(λ−1X ∈ F) ≤ − inf

x∈F
Λ∗(x),

and for any open set J ⊂ R,

lim inf
λ→∞

1

λ
logP(λ−1X ∈ J) ≥ − inf

x∈J
Λ∗(x),

where the rate function

Λ∗(x) =

{
1− x+ x log x, x > 0

+∞, otherwise.

The statement actually holds for general λ that is not necessarily an integer. This LDP
readily implies the following Poisson tail bounds.

Lemma 3.3. Let X be a Poisson(λ) random variable. For sufficiently large λ and any κ > 0,

e−2λI(κ/λ) ≤ P(X ≥ λ+ κ) ≤ e−λI(κ/λ), (3.1)

and for any 0 < κ < λ,

e−2λI(−κ/λ) ≤ P(X ≤ λ− κ) ≤ e−λI(−κ/λ), (3.2)

where I(x) = Λ∗(1 + x) = (1 + x) log(1 + x)− x for x ∈ (−1,∞).

Remark 3.4. In fact, the upper bounds hold for any λ > 0 and this readily follows from
Chernoff’s argument. As the name, LDP, indicates, Lemma 3.3 provides a good approxi-
mation of the Poisson tail when κ is larger than the standard deviation

√
λ. The following

approximation of the rate function I(x) will be repeatedly used. For 0 ≤ x ≤ 4, we have

x2

4
≤ I(x) ≤ x2

2
(3.3)

and, for x ≥ 4, we have

x log
x

e
≤ I(x) ≤ 3x log

x

e
. (3.4)

The following result will be repeatedly used in later sections to estimate the number of
retries in the allocation of balls using the threshold strategy.

15

Lemma 3.5. Let {Xi}i∈[n] be independent Poisson(λ) random variables. Let ` > 0. We

define Yi = max{0, Xi − λ− `} and Y =
∑n

i=1 Yi. Set r∗ = 6ne−λI(`/λ)/ log(1 + `/λ), where
the function I(x) is given in Lemma 3.3. Then we have

P(Y > r∗) < exp
(
−ne−λI(`/λ)

)
. (3.5)

Proof. The statement follows from the classical Chernoff’s argument. For any u > 0, we have

EeuY1 < 1 + e−u`
∞∑

k=dλ+`e

eu(k−λ) · P(X1 = k)

= 1 + e−u`
∞∑

k=dλ+`e

eu(k−λ)
(
P(X1 ≥ k)− P(X1 ≥ k + 1)

)

= 1 + e−u`

 ∞∑
k=dλ+`e

eu(k−λ) · P(X1 ≥ k)− e−u
∞∑

k=dλ+`e+1

eu(k−λ) · P(X1 ≥ k)


= 1 + e−u`

eu(dλ+`e−λ) · P(X1 ≥ dλ+ `e) + (1− e−u)

∞∑
k=dλ+`e+1

eu(k−λ) · P(X1 ≥ k)

 .

Write `∗ = dλ+ `e − λ and jk = k − λ. We obtain

EeuY1 < 1 + e−u`

(
eu`
∗ · P(X1 ≥ λ+ `∗) + (1− e−u)

∞∑
k=λ+`∗+1

eujk · P(X1 ≥ λ+ jk)

)
. (3.6)

For any k > 0, we apply Lemma 3.3 to obtain

euk · P(X1 ≥ λ+ k) ≤ eλgu(k/λ), (3.7)

where gu(x) = (1 + u)x− (1 + x) log(1 + x). One can check that g′u(x) = u− log(1 + x) and
that g′′u(x) = −(1 + x)−1 < 0. Let u∗ = 1

2 log(1 + `/λ). Then, gu∗(x) is a decreasing and
concave function for x ≥ `/λ. Hence, we have for any k ≥ ` that

eλgu∗ ((k+1)/λ)

eλgu∗ (k/λ)
= exp

(
gu∗((k + 1)/λ)− gu∗(k/λ)

1/λ

)
< eg

′
u∗ (k/λ) ≤ eg′u∗ (`/λ) = e−u

∗
, (3.8)

where the second equality follows from the formula for g′u∗(x) and our choice of u∗. Combining
(3.6), (3.7) and (3.8), we have

Eeu
∗Y1 < 1 + e−u

∗`

(
eλgu∗ (`∗/λ) + (1− e−u∗)

∞∑
k=λ+`∗+1

eλgu∗ (jk/λ)

)
< 1 + e−u

∗`
(
eλgu∗ (`∗/λ) + eλgu∗ ((`∗+1)/λ)

)
< 1 + 2e−u

∗` · eλgu∗ (`/λ) = 1 + 2e−λI(`/λ)

< exp
(

2e−λI(`/λ)
)
,

where the second last inequality follows from the fact that `∗ ≥ ` and that gu∗(x) is decreasing
for x ≥ `/λ. Then we apply Markov’s inequality to obtain for any r > 0 that

P(Y > r) ≤ e−u∗rEeu∗Y = e−u
∗r
(
Eeu

∗Y1
)n

< exp
(

2ne−λI(`/λ) − u∗r
)
.

16

Recall that u∗ = 1
2 log(1 + `/λ). In particular, for r∗ = 6ne−λI(`/λ)/ log(1 + `/λ), we have

P(Y > r∗) < exp
(
−ne−λI(`/λ)

)
.

This concludes the proof.

3.3 Concentration bounds for the drift strategy

As our drift strategy is based on a coupling of the allocation process and a continuous
time random process, our concentration bounds for the drift strategy rely on the study of a
particular type of temporal point processes. We refer the interested readers to [8, 9] for more
details of general temporal point processes.

θ-standardizing point process. A temporal point processX(t) is called θ-standardizing
if the conditional intensity function λ(t) satisfies

λ(t) < 1− θ, if X(t) ≥ t, (3.9)

λ(t) ≥ 1 + θ, if X(t) < t. (3.10)

We say thatX(t) is upper θ-standardizing if (3.9) holds, and thatX(t) is lower θ-standardizing
if (3.10) holds.

Lemma 3.6. Let {X(t)}t≥0 be a temporal point process adapted to the filtration {Ft}t≥0. Let
s ≥ 0 be a stopping time with respect to {Ft}t≥0 and let η ∈ [0, 1] be a Fs measurable random
variable. Denote Y (t) = X(t)− t.

1. If X(t) is upper 2θ-standarizing, then we have

E
[
eθY (s+η) | Fs

]
≤ e−θ2η · eθY (s) + e2θ, (3.11)

and for any λ satisfying (1− 2θ)eλ < λ/2, we have

E
[
eλY (s+η) | Fs

]
≤ e−

λ
2
η · eλY (s) + e2λ. (3.12)

2. If X(t) is lower 2θ-standarizing, then we have

E
[
e−θY (s+η) | Fs

]
≤ e−θ2η · e−θY (s) + eθ. (3.13)

3. If X(t) is 2θ-standarizing, then we have

E
[
eθ|Y (s+η)| | Fs

]
≤ e−θ2η · eθ|Y (s)| + 3e2θ. (3.14)

Proof. We denote by Z(β) a Poisson(β) random variable throughout the proof. We first prove
inequalities (3.11) and (3.12). We need to estimate the Laplace transform of Z(α(1 − 2θ))
for any α > 0 as follows

Eeλ[Z(α(1−2θ))−α] = eα(1−2θ)(eλ−1)−αλ

≤

{
eα(1−2θ)(λ+λ2)−αλ ≤ eα(λ2−2λθ) 0 ≤ λ ≤ 1,

eα(1−2θ)eλ−αλ ≤ e−λα/2 (1− 2θ)eλ ≤ λ/2.
(3.15)

17

We define s∗ = min{t ∈ [s, s + η] : Y (t) ≥ 1} and set s∗ = s + η if the minimum is taken
over an empty set. Then, s∗ is a stopping time with respect to {Ft}t≥0. We have

E
[
eλY (s+η) | Fs∗

]
= eλY (s∗) · E

[
eλ[Y (s+η)−Y (s∗)] | Fs∗

]
≤ eλY (s∗) · E

[
eλ[Z((1−2θ)(s+η−s∗))−(s+η−s∗)] | Fs∗

]
≤

{
e−θ

2(s+η−s∗) · eθY (s∗) λ = θ,

e−
λ
2

(s+η−s∗) · eλY (s∗) (1− 2θ)eλ ≤ λ/2.

≤

{
e−θ

2η · eθY (s) + e2θ λ = θ,

e−
λ
2
η · eλY (s) + e2λ (1− 2θ)eλ ≤ λ/2.

(3.16)

To see the first inequality, observe that Y (t) = X(t)− t ≥ 0 for t ∈ [s∗, s+ η]. Since X(t) is
upper 2θ-standardizing, Y (s+ η)− Y (s∗) = X(s+ η)−X(s∗)− (s+ η− s∗) is dominated by
Z((1− 2θ)(s+ η− s∗))− (s+ η− s∗). The second inequality follows from (3.15). In each case
of (3.16), the first term is an upper bound for the case s∗ = s, while the second term uses
the fact that Y (s∗) < 2 when s∗ 6= s. Inequalities (3.11) and (3.12) follow from the tower
property of conditional expectation and (3.16).

Next we prove (3.13). Write E = {Y (t) ≤ 0 for all t ∈ [s, s+η]}. Observe that, whenever
Ec occurs, we have Y (s+ η) ≥ −1. Hence,

E
[
e−θY (s+η) | Fs

]
= E

[
e−θY (s+η)

1E + e−θY (s+η)
1Ec | Fs

]
≤ E

[
e−θY (s+η)

1E | Fs
]

+ eθ

= e−θY (s) · E
[
e−θ[Y (s+η)−Y (s)]

1E | Fs
]

+ eθ

≤ e−θY (s) · E
[
e−θ[Z((1+2θ)η)−η] | Fs

]
+ eθ

≤ e−θ2η · e−θY (s) + eθ.

To see the second inequality, observe that, whenever E occurs, we have Y (t) = X(t)− t ≤ 0
for all t ∈ [s, s+ η]. Since X(t) is 2θ-standardizing, Y (s+ η)− Y (s) = X(s+ η)−X(s)− η
dominates Z((1 + 2θ)η)− η. The last inequality follows from that for any α > 0,

Ee−θ[Z(α(1+2θ))−α] = eα(1+2θ)(e−θ−1)+αθ < eα(1+2θ)(−θ+θ2/2)+αθ < e−αθ
2
.

When X(t) is 2θ-standarizing, it is both upper and lower 2θ-standarizing. Hence, in-
equalities (3.11) and (3.13) hold. Observe that

E
[
eθ|Y (s+η)| | Fs

]
≤ E

[
eθY (s+η) | Fs

]
+ E

[
e−θY (s+η) | Fs

]
.

This, together with (3.11) and (3.13), yields (3.14).

Corollary 3.7. Let {X(t)}t≥0 be a temporal point process adapted to the filtration {Ft}t≥0.
Denote Y (t) = X(t)− t.

1. If X(t) is upper 2θ-standarizing, we have for any t ≥ s,

E
[
eθY (t) | Fs

]
≤ e−θ2(t−s) · eθY (s) +

2e2θ

θ2
, (3.17)

and for any λ satisfying (1− 2θ)eλ < λ/2,

E
[
eλY (t) | Fs

]
< e−

λ
2

(t−s) · eλY (s) +
2e2λ

1− e−λ/2
. (3.18)

18

2. If X(t) is lower 2θ-standarizing, we have for any t ≥ s,

E
[
e−θY (t) | Fs] ≤ e−θ

2(t−s) · e−θY (s) +
2eθ

θ2
. (3.19)

3. If X(t) is 2θ-standarizing, we have for any t ≥ s,

E
[
eθ|Y (t)| | Fs

]
≤ e−θ2(t−s) · eθ|Y (s)| +

6e2θ

θ2
. (3.20)

Proof. We only prove (3.17) and inequalities (3.18), (3.19), (3.20) can be proved in a similar
manner. Lemma 3.6 yields that for any k ∈ N,

E
[(
eθY (s+k) − e2θ

1− e−θ2
)
eθ

2(s+k)
∣∣ Fs+k−1

]
≤
(
eθY (s+k−1) − e2θ

1− e−θ2
)
eθ

2(s+k−1).

Hence,
{(
eθY (s+k) − e2θ

1−e−θ2

)
eθ

2(s+k)
}
k∈N

is a supermartingale and for any k ∈ N, we have

E
[
eθY (s+k) | Fs

]
≤ e−θ2k · eθY (s) +

e2θ(1− e−θ2k)
1− e−θ2

. (3.21)

For any t ≥ s, we have

E
[
eθY (t) | Fs

]
= E

[
E
[
eθY (t) | Fs+bt−sc

]
| Fs

]
≤ e−θ2(t−s−bt−sc) · E

[
eθY (s+bt−sc) | Fs

]
+ e2θ

≤ e−θ2(t−s) · eθY (s) +
2e2θ

1− e−θ2

≤ e−θ2(t−s) · eθY (s) +
2e2θ

θ2
.

In the first inequality, we use Lemma 3.6, and in the second inequality, we use (3.21). The
last inequality follows from e−x > 1− x.

Corollary 3.8. We denote by {Xi(t)}i∈[n] independent 2θ-standarizing point processes with
initial values {Xi(0)}i∈[n] such that |Xi(0)| ≤ L for all i ∈ [n]. For all t ≥ L/θ, we have

Eeθ|Xi(t)−t| ≤ 20

θ2
. (3.22)

Write Y (t) = 1
n

∑n
i=1Xi(t)− t. For all t ≥ L/θ, we have

Eeθ|Y (t)| ≤ 20

θ2
and Eeθn|Y (t)| ≤

(
20

θ2

)n
. (3.23)

In addition, for 0 ≤ t < L/θ, we have

Eeθ|Xi(t)−t| ≤ eθL +
20

θ2
and Eeθ|Y (t)| ≤ eθL +

20

θ2
. (3.24)

19

Proof. Inequality (3.20) and the assumption that |Xi(0)| ≤ L imply that

Eeθ|Xi(t)−t| ≤ e−θ2t+θL +
6e2θ

θ2
.

For t ≥ L/θ, the RHS of the above inequality is at most 1+ 6e2θ

θ2
≤ 20

θ2
; for 0 ≤ t < L/θ, it can

be trivially bounded above by eθL + 20
θ2

. This proves inequality (3.22) and the first inequality
of (3.24). Then we can use inequality (3.22) to obtain for t ≥ L/θ that

Eeθ|Y (t)| ≤ Ee
θ
n

∑n
i=1 |Xi(t)−t| =

(
n∏
i=1

Eeθ|Xi(t)−t|
)1/n

≤ 20

θ2
,

and

Eeθn|Y (t)| ≤ Eeθ
∑n
i=1 |Xi(t)−t| =

n∏
i=1

Eeθ|Xi(t)−t| ≤
(

20

θ2

)n
.

Similarly, we can use the first inequality of (3.24) to obtain the second inequality of (3.24).

Consider a collection independent regular point processes {Xi(t)}i∈[n] with the initial
value {Li(0)}i∈[n] and conditional intensity functions {λi(t)}i∈[n] given in (2.9). The process
{Zk}k∈N defined in (2.10) is the output of the θ-drift strategy f as per Section 2.3. We show

the following concentration bounds on the load vector {Lfi (m)}i∈[n].

Lemma 3.9. Suppose that |Li(0)| ≤ L for all i ∈ [n]. Set θ = 1/5. The θ-drift strategy f
satisfies that for any m ≥

(
3L
θ + 10

θ log 80
θ2

)
n, any i ∈ [n] and any k > 0,

P
(∣∣Lfi (m)| > k

)
≤ 320

θ2
exp

(
−θk

5

)
. (3.25)

Taking the union bound, we have

P
(

max
i∈[n]
|Lfi (m)| > k +

5

θ
log

320n

θ2

)
≤ exp

(
−θk

5

)
. (3.26)

Proof. Set t∗ = m/n + k/2 and t∗ = max(m/n − k/2, 0). We denote by E = {X(t∗) ≥ m}
and F = {X(t∗) ≤ m}. Using the law of total probability, we obtain

P
(
|Lfi (m)| > k

)
= P

(
Lfi (m) > k

)
+ P

(
Lfi (m) < −k

)
≤ P

(
Lfi (m) > k,E

)
+ P(Ec) + P

(
Lfi (m) < −k, F

)
+ P(F c). (3.27)

We now estimate the first two terms of (3.27). SinceXi(t) given in (2.9) is θ-standardizing,
we apply the first inequality of (3.23) and Markov’s inequality to obtain

P(Ec) = P
(
X(t∗)

n
< t∗ − k

2

)
≤ e−

θk
4 · E exp

(
θ

2

∣∣∣X(t∗)

n
− t∗

∣∣∣) ≤ 80

θ2
exp

(
−θk

4

)
. (3.28)

Whenever E occurs, we have Lfi (m) ≤ Xi(t
∗) −m/n. This, together with inequality (3.22)

and Markov’s inequality, yields

P
(
Lfi (m) > k,E

)
≤ P

(
Xi(t

∗) >
m

n
+ k
)

= P
(
Xi(t

∗) > t∗ +
k

2

)
≤ e−

θk
4 · E exp

(
θ

2
|Xi(t

∗)− t∗|
)
≤ 80

θ2
exp

(
−θk

4

)
. (3.29)

20

We next estimate the last two terms of (3.27). We first estimate P(F c). For k ≥ 2m/n
we have t∗ = 0 and X(t∗) =

∑
i∈[n] Li(0) = 0. This yields P(F c) = 0. For k < 2m/n, we use

the fact that t∗ = m/n− k/2 to rewrite F = {X(t∗)/n ≤ t∗ + k/2}. Set k0 = 2m/n− 4L/θ.
One can check that t∗ > 2L/θ for 0 < k < k0 and that 0 < t∗ < 2L/θ for k0 < k < 2m/n. We
apply the first inequality of (3.23), the second inequality of (3.24) and Markov’s inequality
to obtain

P(F c) = P
(
X(t∗)

n
> t∗ +

k

2

)
≤ e−

θk
4 · E exp

(
θ

2

∣∣∣X(t∗)

n
− t∗

∣∣∣)
≤

{
80
θ2
e−θk/4, 0 < k ≤ k0(
eθL/2 + 80

θ2

)
e−θk/4, k0 < k < 2m/n

≤

{
80
θ2
e−θk/4, 0 < k ≤ k0,

e−θk/5, k0 < k < 2m/n,
(3.30)

where the second case of inequality (3.30) follows from eθL/2 + 80/θ2 ≤ eθk0/20 < eθk/20. To
see this, we observe that our assumption on m and our choice of θ = 1/5 imply that

2L

θ
+

10

θ
log

(
eθL/2 +

80

θ2

)
≤ 2L

θ
+

10

θ
log
(
eθL/2

)
+

10

θ
log

80

θ2
=

3L

θ
+

10

θ
log

80

θ2
≤ m

n
.

This can be rewritten as k0/2 ≥ 10
θ log

(
eθL/2 + 80

θ2

)
, which is equivalent to the desired state-

ment.
We now estimate the third term of (3.27). For k ≥ 2m/n, we derive from the assumption

on m that

Lfi (m) ≥ −L− m

n
> −4m

3n
> −k.

In this case, we have P
(
Lfi (m) < −k, F

)
= 0. We now deal with the case that k < 2m/n.

Whenever F occurs, we have Lfi (m) ≥ Xi(t∗) −m/n. Together with t∗ = m/n − k/2, this
yields

P
(
Lfi (m) < −k, F

)
≤ P

(
Xi(t∗) <

m

n
− k
)

= P
(
Xi(t∗) < t∗ −

k

2

)
.

Recall that k0 = 2m/n−4L/θ and the fact that t∗ > 2L/θ for 0 < k < k0 and that t∗ < 2L/θ
for k0 < k < 2m/n. We apply inequality (3.22), the first inequality of (3.24) and Markov’s
inequality to obtain

P
(
Lfi (m) < −k, F

)
≤ e−

θk
4 · E exp

(
θ

2
|Xi(t∗)− t∗|

)
≤

{
80
θ2
e−θk/4, 0 < k ≤ k0(
eθL/2 + 80

θ2

)
e−θk/4, k0 < k < 2m/n

≤

{
80
θ2
e−θk/4, 0 < k ≤ k0,

e−θk/5, k0 < k < 2m/n,
(3.31)

where the second case of inequality (3.31) again uses eθL/2 + 80/θ2 ≤ eθk0/20 < eθk/20.
Combining (3.27)-(3.31), we obtain (3.25).

21

Lemma 3.10. Suppose that |Li(0)| ≤ L for all i ∈ [n]. Set θ = 1/5 and k0 = 1 + 2
θ log 80

θ2
.

The θ-drift strategy f satisfies that for any m ≥ 2nL/θ and any k ≥ 3k0,

P
(∣∣∣{i ∈ [n] : Lfi (m) > k

}∣∣∣ ≥ 160

θ2
ne−

θk
3

)
≤ 2 exp

(
−2n

(
80

θ2

)2

e−
2θk
3

)
. (3.32)

Proof. Set t∗ = m/n + k0. Let E = {X(t∗) ≥ m}. Denote Sk =
{
i ∈ [n] : Lfi (m) ≥ k

}
. By

the law of total probability, we have

P
(
|Sk| ≥

160

θ2
e−

θk
4

)
≤ P

(
|Sk| ≥

160

θ2
e−

θk
4 , E

)
+ P(Ec). (3.33)

The second inequality of (3.23), Markov’s inequality and our choice of k0 yield

P(Ec) = P(X(t∗) < nt∗ − nk0) ≤
(

80

θ2

)n
exp

(
−nθk0

2

)
= exp

(
−θn

2

)
. (3.34)

To estimate the first term in (3.33), we introduce independent Bernoulli random variables
Wi, which are indicator functions of the events that Xi(t

∗) > m/n+ k. Hence,

P(Wi = 1) = P
(
Xi(t

∗) >
m

n
+ k
)

= P (Xi(t
∗) > t∗ + k − k0)

≤ P
(
Xi(t

∗) > t∗ +
2k

3

)
≤ 80

θ2
exp

(
−θk

3

)
,

where in the first inequality, we use the assumption that k ≥ 3k0, and in the second inequality,
we use the fact thatXi(t) is θ-standarizing and (3.22). Observe that, when the event E occurs,

we have Lfi (m) ≤ Xi(t
∗) − m/n, which implies that |Sk| ≤

∑n
i=1Wi. This, together with

Hoeffding’s inequality, yields

P
(
|Sk| ≥

160

θ2
ne−

θk
3 , E

)
≤ P

(
n∑
i=1

Wi ≥
160

θ2
ne−

θk
3

)
≤ exp

(
−2n

(
80

θ2

)2

e−
2θk
3

)
.

This, along with (3.33) and (3.34), gives

P
(
|Sk| ≥

160

θ2
e−

θk
4

)
≤ exp

(
−2n

(
80

θ2

)2

e−
2θk
3

)
+ exp

(
−θn

2

)
.

This, together with the condition that k ≥ 3 + 6
θ log 80

θ2
, yields (3.32).

We also provide a concentration bound on the time it takes the drift strategy to bring
certain quantities close to stationarity.

Lemma 3.11. Suppose that |Li(0)| ≤ L for all i ∈ [n]. Set θ = 1/5. Denote

Am =

{
max
i∈[n]

∣∣Lfi (m)
∣∣ ≤ ka +

5

θ
log

320n

θ2

}
,

Bm =

{∣∣{i ∈ [n] : Lfi (m) > kb
}∣∣ < 160

θ2
ne−

θkb
3

}
,

22

and assume that

exp

(
−θka

5

)
+ 2 exp

(
−2n

(
80

θ2

)2

e−
2θkb
3

)
<

1

2
.

If T = min
{
m ∈ N : Am ∩Bm holds

}
, then under the θ-drift strategy, we have

E(T) < Cn(L+ log n)

for some absolute constant C > 0 and all large enough n.

Proof. Set m0 = 0 and recursively define

mj+1 = mj +

⌈
3n
θ max
i∈[n]

∣∣Lfi (mj)
∣∣+

10n

θ
log

80

θ2

⌉
.

Denote
J = min{j : Amj ∩Bmj}.

It is obvious that T ≤ mJ . By Lemma 3.9, Lemma 3.10 and the union bound, we have,
conditioned on the history of the process until mj balls have been allocated, that

P
(
Acmj+1

∪Bc
mj+1

| Fmj
)
≤ exp

(
−θka

5

)
+ 2 exp

(
−2n

(
80

θ2

)2

e−
2θkb
3

)
<

1

2
.

Thus, we have P(J > j) ≤ 2−j and hence

E(J) ≤ 2.

For j ≥ 1, we have by Lemma 3.9 that

P
(

max
i∈[n]

∣∣Lfi (mj)
∣∣ > ka +

5

θ
log

320n

θ2

∣∣∣ Fmj−1

)
≤ exp

(
−θka

5

)
,

which implies that

E
(
mj+1 −mj | Fmj−1

)
≤
⌈

3n

θ

(
5

θ
log

320n

θ2
+

1

1− e−θ/4

)
+

10n

θ
log

80

θ2

⌉
.

Putting all these together, we obtain

E(T) ≤ E(mJ) ≤ Cn(L+ log n)

for some C > 0 and n large enough.

4 Single-time load discrepancy: upper bound

In this section, we investigate two-thinning strategies that can achieve the upper bounds on
the single-time load discrepancy as stated in Theorem 1. Write t = m/n. Observe that for
any thinning strategy f and any m ∈ N,

MaxLoadf (btcn)− 1 ≤ MaxLoadf (m) ≤ MaxLoadf (dten) + 1. (4.1)

Hence, at the expense of an additive constant to the maximum load, we can always assume
that m is divisible by n, and then it suffices to study MaxLoadf (tn) for t ∈ N.

23

4.1 Case 1: t ≤ O(
√

log n)

In this case, we apply the (t+`)-threshold strategy introduced in [11] (see Section 2.3). Recall
that this strategy retries a ball if its primary allocation is a bin which has accepted at least
t+ ` primary allocations.

Proposition 4.1. Assume that Li(0) = 0 for all i ∈ [n] and that t ≤ e−9
√

log n. We set

` =
√

3 logn
log logn−2 log t . For any ε > 0 and sufficiently large n, the (t + `)-threshold strategy f

satisfies

P
(

MaxLoadf (tn) > (2 + ε)`
)
< 3n−ε. (4.2)

Proof. We write r := Rnt for the total number of retries throughout the process. The strategy
f guarantees that no bins accept more than t+ ` primary allocations, i.e., Lf1,i([tn]) ≤ t+ `.

This, together with the equation Lfi (tn) = Lf1,i([tn]) + Lf2,i([tn])− t, implies that

P
(

MaxLoadf (tn) > (2 + ε)`
)
≤ P

(
max
i∈[n]

Lf2,i([tn]) > (1 + ε)`

)
, (4.3)

where Lf2,i([tn]) defined in (2.3) represents the number balls that bin i receives from secondary

allocations. Set r∗ = 6ne−tI(`/t)/ log(1 + `/t). By the law of total probability, we have

P
(

max
i∈[n]

Lf2,i([tn]) > (1 + ε)`

)
≤ P

(
max
i∈[n]

Lf2,i([tn]) > (1 + ε)`, r ≤ r∗
)

+ P(r > r∗). (4.4)

First, we estimate the second term of (4.4). We write {Xi}i∈[n] for independent Poisson(t)
random variables. Define Yi = max{0, Xi − t − `} and Y =

∑n
i=1 Yi. Lemmata 3.1 and 3.5

provide the following tail bound

P(r > r∗) ≤ 2P(Y > r∗) < 2 exp
(
−ne−tI(`/t)

)
< 2 exp

(
−n
(
et

`

)3`
)

= exp
(
−n1−o(1)

)
, (4.5)

where the last inequality follows from the upper bound in (3.4) and the fact that ` ≥ 4t for
large enough n.

Next, we estimate the first term of (4.4). Again, using the lower bound in (3.4), we obtain
r∗ < 6n(et/`)` for n large enough. Set λ = 6(et/`)`. We denote by {Wi}i∈[n] independent
Poisson(λ) random variables. Lemma 3.1 and the union bound argument yield

P
(

max
i∈[n]

Lf2,i([tn]) > (1 + ε)`, r ≤ r∗
)
≤ P

(
max
i∈[n]
|{s ≤ r∗ : Z2

s = i}| > (1 + ε)`

)
≤ 2P

(
max
i∈[n]

Wi > (1 + ε)`

)
≤ 2nP(W1 > (1 + ε)`). (4.6)

Apply Lemma 3.3 and the lower bound of I(x) in (3.4) to obtain

P(W1 > (1 + ε)`) ≤ e−λI((1+ε)`/λ) <

(
6e

(1 + ε)`

(
et

`

)`)(1+ε)`

<

(
et

`

)(1+ε)`2

. (4.7)

24

One can check that(
et

`

)(1+ε)`2

= exp

(
−(1 + ε) · 3

2

(
1− log(log log n− 2 log t) + 2− log 3

log log n− 2 log t

)
log n

)
.

Our assumption of t yields that log log n − 2 log t ≥ 18. This, together with the fact that
x−1 log x is decreasing for x > e, yields that

log(log log n− 2 log t) + 2− log 3

log log n− 2 log t
≤ log(18) + 2− log 3

18
<

1

3
.

Hence, we obtain (
et

`

)(1+ε)`2

≤ n−(1+ε).

This, combined with (4.6), (4.7), yields

P
(

max
i∈[n]

Lf2,i([tn]) > (1 + ε)`, r ≤ r∗
)
< 2n−ε. (4.8)

The desired statement (4.2) follows from (4.3), (4.4), (4.5) and (4.8).

Our next result complements the proof of the case t ≤ O(
√

log n). Moreover, it also
provides a tight upper bound for the maximum load for t = (log n)1/2+o(1).

Proposition 4.2. Assume that Li(0) = 0 for all i ∈ [n] and that Ω(log1/2 n) ≤ t ≤ o(log2 n).
We set ` = (ct log n)1/3, where c is an absolute constant such that ` ≤ t. For any ε > 0 and
sufficiently large n, the (t+ `)-threshold strategy f satisfies

P
(

MaxLoadf (tn) >

(
4(1 + ε)

c
+ 1

)
`

)
< 3n−ε. (4.9)

Proof. We slightly modify the proof of Proposition 4.1. Set r∗ = 6ne−tI(`/t)/ log(1 + `/t).
As before, we define independent random variables {Xi}i∈[n], {Yi}i∈[n] and {Wi}i∈[n] where
Xi ∼ Poisson(t), Yi = max{0, Xi − t − `} and Wi ∼ Poisson(λ) for λ = r∗/n. As before, we
set r := Rnt. Similar to (4.3), (4.4) and (4.6), we have

P
(

MaxLoadf (tn) >
(

4(1+ε)
c + 1

)
`
)
≤ P

(
max
i∈[n]

Lf2,i([tn]) >
4(1 + ε)`

c

)
≤ P

(
max
i∈[n]

Lf2,i([tn]) >
4(1 + ε)`

c
, r < r∗

)
+ P(r > r∗)

≤ 2P
(

max
i∈[n]

Wi >
4(1 + ε)`

c

)
+ P(r > r∗)

≤ 2nP
(
W1 >

4(1 + ε)`

c

)
+ P(r > r∗). (4.10)

Similar to (4.5), Lemmata 3.1 and 3.5 yield that

P(r > r∗) < 2 exp
(
−ne−tI(`/t)

)
< 2 exp

(
−n exp

(
−`

2

2t

))
< 2 exp

(
− ne−`

)
= exp

(
− n1−o(1)

)
, (4.11)

25

where the last two inequalities follow from the upper bound of I(x) in (3.3) and the fact that
` ≤ t. Using the lower bound of I(x) in (3.3) and log(1 + x) > x/2 for 0 < x < 1, one can

check that λ = r∗/n < 12t
` exp

(
− `2

4t

)
= o(1). This, together with Lemma 3.3 and inequality

I(x) > x log(x/e) for x > 4, yields

P
(
W1 >

4(1 + ε)`

c

)
≤ exp

(
−λI

(
3(1 + ε)`

cλ

))
≤
(

ceλ

3(1 + ε)`

) 3(1+ε)`
c

≤
(

4cet

(1 + ε)`2
exp

(
−`

2

3t

)) 3(1+ε)`
c

< exp

(
−(1 + ε)`3

ct

)
= n−(1+ε).

Combining this with (4.10) and (4.11), we can obtain (4.9).

4.2 Case 2: Ω(
√

log n) ≤ t ≤ O(log n)

For t = O
(
(log n)

1
2

+ 1√
log log logn

)
, Theorem 1 follows from Proposition 4.2. Thus, here we treat

Ω
(
(log n)

1
2

+ 1√
log log logn

)
≤ t ≤ O(log n).

In this subsection, we study the allocation problem in a more general setting. The initial
loads are not necessarily perfectly balanced (i.e., allowing Li(0) 6= 0). This will play an
important role in Sections 4.3 and 8.

Recall that k =
⌊ log logn

3 log log logn

⌋
. Set ` = blogβk nc, where βk is defined in Section 2.4. One

can check that ` =
⌊
(log n)

1
2

+(2− 1
2k+1)α+η−1/2

2k+1
⌋
. Then we have the following result.

Proposition 4.3. Let t > 0 and α = log t
log logn satisfying α ∈

[
1
2 + 1√

log log logn
, 1 +

√
log log logn
log logn

]
.

Suppose that for L0 ≥ 0 the following conditions hold:

1. MaxLoad(0) < ct for some constant 0 < c < 1,

2. |H0| ≤ 3n exp
(
− `2

4 logα+η n

)
, where H0 = {i ∈ [n] : Li(0) > L0} is the set of bins with

load greater than L0.

Then the multi-stage (t, L0, `)-threshold strategy f (as defined in Section 2.4), with the pa-
rameters above, satisfies that

P
(

MaxLoadf (tn) > L0 + 2k`
)
≤ n−e

√
log log logn

.

For ω(n
√

log n) ≤ m ≤ O(log n), Theorem 1 follows as an immediate consequence of the
following corollary.

Corollary 4.4. Let t > 0 and α as above, satisfying α ∈
[

1
2 + 1√

log log logn
, 1 +

√
log log logn
log logn

]
.

The multi-stage (t, 0, `)-threshold strategy f satisfies that

P
(

MaxLoadf (tn) > (log n)
1
2

+o(1)
)
≤ n−e

√
log log logn

.

26

Proof. Apply Proposition 4.3 with η = 0 and L(0) = L0 = 0 and observe that the two
conditions of Proposition 4.3 trivially hold. Hence the corollary follows from the fact that
` = (log n)

1
2

+o(1) and k = logo(1) n.

For 1 ≤ i ≤ k, we denote by ri be the number of retries in stage i of the multi-stage
(t, L0, `)-threshold strategy. Recall our notation Hi for the set of bins in (∪i−1

j=0Hj)
c whose

loads after the i-th stage are at least L0 + 2i`. To establish Proposition 4.3, we use the
following lemma, to inductively bound the number of retries in every stage and the size of
Hi, the set of heavily loaded bins.

Lemma 4.5. Under the assumptions of Proposition 4.3, for all 1 ≤ i ≤ k, we have

P(ri > r∗i) ≤ exp
(
−n1/2−o(1)

)
, (4.12)

where

r∗i :=
20n logβi−1 n

`
exp

(
− `2

5 logβi−1n

)
. (4.13)

In addition, for 1 ≤ i ≤ k − 1, we have

P
(
|Hi| >

4nλ`i
`!

)
≤ exp

(
−n1/2−o(1)

)
, (4.14)

where λi := r∗i /n.

Before presenting the proof, we first make some technical observations. Using ` = blogβknc
and βk = β − k(2β−1−ε)

2k+1 , it is easy to check that

` · log ` ≤ (log n)
k(1+ε)+β

2k+1 · k(1 + ε) + β

2k + 1
log log n = (log n)

1
2

+o(1). (4.15)

For n large enough, we have

`2

logβn
=

`2

log2βkn
· (log n)2βk−β >

1

2
(log n)

2k(1+ε)−(2k−1)β
2k+1

>
1

2
(log n)

1−(2k−1)(β−1)
2k+1 ≥ (log log n)

9
8
−o(1), (4.16)

where the last equality follows from that β − 1 < 1/4+o(1)
2k−1 and our choice of k. We also have

`3

logβn
≤ (log n)2β− 3k(2β−1−ε)

2k+1 = (log n)1− 2k−2
2k+1

(
β− 1

2

)
+ 3kε

2k+1

< (log n)1− 2k−2
2k+1

(
β− 1

2

)
+ 3

2k+1

(
β− 1

2

)
= (log n)1−

(
β− 1

2

)
= o(log n), (4.17)

where the last equality uses β ≥ α > 1
2 + 1√

log log logn
. For 1 ≤ i ≤ k and n large enough, we

have
0 < λi < 1 (4.18)

27

To see this, notice that {βi}ki=0 is a decreasing arithmetic progression, hence, {λi}ki=1 is a
decreasing sequence and it suffices to show that 0 < λ1 < 1. Observe that

λ1 =
20 logβn

`
exp

(
− `2

5 logβn

)
= exp

(
− `2

5 logβn
+ log

20 logβn

`

)
,

and

log
logβn

`
< β log logn < 2 log log n.

This, together with (4.16), yields that 0 < λ1 < 1 and hence (4.18).

Proof. We prove (4.12) and (4.14) inductively by establishing the i-th case of (4.12) on
condition that (4.14) holds for all j < i, and by establishing the i-th case of (4.14) on
condition that (4.12) holds for the same i. The case i = 1 is treated separately.

Bounding P(ri > r∗i) assuming that |Hj | ≤ 4nλ`j/`! for j < i. We denote by ri,1 the
number of balls in the i-th stage whose primary allocations are bins that, at the time of the
allocation, already accepted ti− ti−1 + ` primary allocations during stage i. We write r1,2 for
the number balls in the first stage whose primary allocations are bins from H0, and write ri,2
for i ≥ 2, for the number of balls in the i-th stage whose primary allocations are bins from
∪i−1
j=1Hj . By the definition of the strategy, we thus have ri ≤ ri,1 + ri,2.

Estimating ri,1. Recall that ti = bt − logβinc for 1 ≤ i ≤ k − 1, tk = t, ` = blogβknc,
where βi = β − (2β−1−ε)i

2k+1 , and observe that ` < ti − ti−1 for 1 ≤ i ≤ k. Also, recall that I(x)
defined in Lemma 3.3 is the rate function of the large deviation bound of a Poisson random
variable. We have

3

5
r∗i >

12n(ti − ti−1)

`
exp

(
− `2

4(ti − ti−1)

)
≥ 6ne−(ti−ti−1)I(`/(ti−ti−1))

log(1 + `/(ti − ti−1))
=: r∗, (4.19)

where the first inequality follows from the definition of r∗i in (4.13), and the second inequality
follows from the lower bound of I(x) in (3.3) and that log(1 + x) ≥ x/2 for 0 < x < 1

(indeed `/(ti − ti−1) < 1). Define Y
(i)
j = max

{
0, X

(i)
j − (ti − ti−1 + `)

}
, where

{
X

(i)
j

}
j∈[n]

is a collection of independent Poisson(ti − ti−1) random variables, and write Y =
∑n

j=1 Y
(i)
j .

By Lemmata 3.1, 3.5 and inequality (4.19), we have

P
(
ri,1 >

3

5
r∗i

)
≤ 2P

(
Y >

3

5
r∗i

)
≤ 2P (Y > r∗)

≤ 2 exp

(
−n exp

(
−(ti − ti−1)I

(
`

ti − ti−1

)))
≤ 2 exp

(
−n exp

(
− `2

2(ti − ti−1)

))
≤ 2 exp

(
− ne−`

)
= exp

(
− n1−o(1)

)
, (4.20)

where the last two inequalities follow from the upper bound of I(x) in (3.3) and the fact that

`/(ti − ti−1) < 1. The last identity follows from the fact that ` = (log n)
1
2

+o(1).
Estimating r1,2. Here we estimate the number of balls in the first stage whose primary

allocations are bins from H0. Using the assumption |H0| ≤ 3n exp
(
− `2

4 logβn

)
, we have for n

large enough

2(t1 − t0)|H0| ≤ 6n(t1 − t0) exp

(
− `2

4 logβn

)
≤ 6n logβn

`
exp

(
− `2

5 logβn

)
<

2

5
r∗1, (4.21)

28

where r∗1 is given in (4.13), and the second inequality follows from t1 − t0 < logβn and

the observation that ` = o
(

exp
(

`2

logβn

))
by (4.16). We denote by

{
X

(i)
j

}
j∈[n]

independent

Poisson(ti − ti−1) random variables, and write Z for a Poisson random variable with the

parameter 3n(t1 − t0) exp
(
− `2

4 logβn

)
. Lemmata 3.1, 3.3 and inequality (4.21) yield

P
(
r1,2 >

2

5
r∗1

)
≤ 2P

∑
j∈H0

X
(1)
j >

2

5
r∗1

 ≤ 2P
(
Z >

2

5
r∗1

)

≤ 2P
(
Z > 6n(t1 − t0) exp

(
− `2

4 logβn

))
≤ 2 exp

(
−n(t1 − t0) exp

(
− `2

4 logβn

))
≤ 2 exp

(
−n(t1 − t0)e−`

)
= exp

(
− n1−o(1)

)
. (4.22)

This, together with the i = 1 case of (4.20), implies the base case of (4.12), i.e., i = 1.

Estimating ri,2 for i ≥ 2, assuming that |Hj | ≤
4nλ`j
`! for 1 ≤ j ≤ i−1. Recall that ri,2

is the number of balls in stage i whose primary allocations are bins from ∪i−1
j=1Hj . Again, write{

X
(i)
j

}
j∈[n]

for independent Poisson(ti − ti−1) random variables, and write Z for a Poisson

random variable with parameter 4n(ti−ti−1)
`!

∑i−1
j=1 λ

`
j . Define E =

{
|Hj | ≤

4nλ`j
`! , 1 ≤ j ≤ i−1

}
.

Lemmata 3.1 and 3.3 imply that

P

ri,2 > 8n(ti − ti−1)

`!

i−1∑
j=1

λ`j , E

 ≤ 2P

 ∑
m∈∪i−1

j=1Hj

X(i)
m >

8n(ti − ti−1)

`!

i−1∑
j=1

λ`j , E


≤ 2P

Z >
8n(ti − ti−1)

`!

i−1∑
j=1

λ`j


≤ exp

−n(ti − ti−1)

`!

i−1∑
j=1

λ`j

 ≤ exp

(
−nλ

`
1

`!

)

≤ exp

(
− exp

(
log n− `3

logβn
− ` log `

))
= exp

(
−n1−o(1)

)
, (4.23)

where the penultimate transition uses the fact that λ1 = r∗1/n > exp
(
− `2

4 logβn

)
, where r∗1 is

given in (4.13), and the bound `! < ``, and the last transition uses (4.15) and (4.17). Using
the fact that 0 < λi < 1 and that k < `, we have

8n(ti − ti−1)

`!

i−1∑
j=1

λ`j <
8kn logβi−1n

`!
<

8n logβi−1n

(`− 1)!
<

8n logβi−1n

`
exp

(
−` log `

2

)

≤ 8n logβi−1 n

`
exp

(
− `2

5 logβi−1n

)
=

2

5
r∗i , (4.24)

29

where the penultimate inequality uses Stirling’s approximation and the last inequality follows
the fact that ` < logβi−1 n. Combining (4.23) and (4.24), we have

P
(
ri,2 >

2

5
r∗i , E

)
= exp

(
−n1−o(1)

)
.

This, together with (4.14) for 1 ≤ j ≤ i− 1, implies that for 2 ≤ i ≤ k,

P
(
ri,2 >

2

5
r∗i

)
≤ P

(
ri,2 >

2

5
r∗i , E

)
+

i−1∑
j=1

P

(
|Hj | >

4nλ`j
`!

)
= exp

(
−n1/2−o(1)

)
.

This, combined with (4.20) and (4.22), yields

P(ri > r∗i) ≤ P
(
ri,1 >

3

5
r∗i

)
+ P

(
ri,2 >

2

5
r∗i

)
= exp

(
−n1/2−o(1)

)
.

This concludes the proof of the i-th case of (4.13) condition on that (4.14) holds for j < i.
Bounding P(|Hi| > 2pin) assuming that ri ≤ r∗i for i ≥ 1. Recall that

Hi =
{
j ∈ [n] : Lfj (tin) ≥ L0 + 2i`

}
\
⋃
i′<i

Hc
i′ .

Let j ∈ Hi. We have Lfj (ti−1n) < L0 + 2(i− 1)` (otherwise we would have j ∈ Hi−1). Let us
show that j must have received at least ` secondary allocations in the i-th stage. During the
i-th stage, if bin j accepted less than ti − ti−1 + ` primary allocations, it clearly must have
received at least ` secondary allocations in order to belong to Hi. Otherwise, once j accepted
more than ti− ti−1 + ` primary allocations (in the i-th stage), it rejects all further allocations
unless its load is at most − log n. Hence its load after accepting the last primary allocation
must have been at most − log n, so that in order to belong to Hi it must have received at
least L0 + 2i`+ log n secondary allocations.

Let
{
X

(i)
j

}
j∈[n]

be independent Poisson(λi) random variables. Let Y
(i)
j be the indicator

function of the event that X
(i)
j ≥ `. Then,

{
Y

(i)
j

}
j∈[n]

are independent Bernoulli(pi) random

variables, where pi = P
(
X

(i)
1 ≥ `

)
. Let Y =

∑n
j=1 Y

(i)
j . By Lemma 3.1 and Hoeffding’s

inequality,
P(|Hi| > 2pin, ri ≤ r∗i) ≤ 2P (Y > 2pin) ≤ 2e−2np2i . (4.25)

Using the fact that 0 < λi < 1, we have

λ`i
e`!

< pi = e−λi
∞∑
j=`

λji
j!
<

2λ`i
`!
.

This, together with (4.25), yields that, for 1 ≤ i ≤ k − 1,

P
(
|Hi| >

4nλ`i
`!

, ri ≤ r∗i
)
< 2 exp

(
−2n

e2

(
λ`i
`!

)2
)
. (4.26)

Since {λi}ki=1 is a decreasing sequence, we will upper bound the RHS of (4.26) for i = k− 1.
Using the fact that `! ≤ e

√
`(`/e)`, by Stirling’s approximation, we obtain

2n

e2

(
λ`k−1

`!

)2

≥ 2n

e4`

(
eλk−1

`

)2`

=
2

e4
exp

(
log n− log `+ 2` log

eλk−1

`

)
. (4.27)

30

Using ` = blogβknc < logβk−1n, (4.13) and (4.14), we have λk−1 > exp
(
− `2

5 logβk−2 n

)
, and

` log λk−1 >
−`3

5 logβk−2n
= − `3

5 log3βkn
· (log n)4βk−βk−2

> −1

4
(log n)1+

2(k+1)ε−(2β−1)
2k+1 = − log n

4
, (4.28)

where the second equality follows from that `3/ log3βk n = 1 − o(1) and βi = β − (2β−1−ε)i
2k+1 ,

and the last equality uses ε = 2β−1
2(k+1) . Combining (4.26), (4.27), (4.28) and (4.15), we have

P
(
|Hi| >

4nλ`i
`!

, ri ≤ r∗i
)
≤ exp

(
−n1/2−o(1)

)
.

This, together with (4.12), implies that

P
(
|Hi| >

4nλ`i
`!

)
≤ P

(
|Hi| >

4nλ`i
`!

, ri ≤ r∗i
)

+ P(ri > r∗i) ≤ exp
(
−n1/2−o(1)

)
.

This concludes the proof of the i-th case of (4.14) given that the i-th case of (4.12) holds.
This establishes the induction and thus the lemma.

In the next lemma, we keep our notation ri for the number of retries in the i-th stage,
which proceeds from ti−1 to ti and set tk+1 := tk + `.

Lemma 4.6. For 1 ≤ i ≤ k we have

P
(
∃j∈[n]L

f
2,j((ti−1, ti]) > ti+1 − ti

)
≤ 2n−e

2
√
log log logn

. (4.29)

Proof. Denote E =
{
∃j∈[n]L

f
2,j((ti−1, ti] > ti+1 − ti

}
. Recall that r∗i is defined in (4.13).

Using the law of total probability, we have

P (E) ≤ P (E | ri ≤ r∗i) + P(ri > r∗i). (4.30)

We have already showed in Lemma 4.5 that

P(ri > r∗i) ≤ exp
(
−n1/2−o(1)

)
. (4.31)

Next, we estimate the first term on the RHS of (4.30). Denote by {X(i)
j }j∈[n] independent

Poisson(λi) random variables, where λi is given in (4.14). By Lemma 3.1, we have

P (E | ri ≤ r∗i) ≤ 2P
(
∃j∈[n]X

(i)
j > ti+1 − ti

)
. (4.32)

Using the face that 0 < λi < 1 in (4.18), we have

P
(
X

(i)
1 ≥ ti+1 − ti

)
<

2λ
ti+1−ti
i

(ti+1 − ti)!
≤
(

eλi
ti+1 − ti

)ti+1−ti

≤ exp

(
−`

2(ti+1 − ti)
4 logβi−1n

)
≤ exp

(
− `2 logβin

5 logβi−1n

)

≤ exp

(
−(log n)2βk+βi

6 logβi−1n

)
= exp

(
−1

6
log1+ε n

)
.

31

The second inequality follows from Stirling’s approximation n! ≥
√

2πn(n/e)n for n ∈ Z+.
The transition to the second line uses the definition of λi given in (4.14). In the penultimate

inequality, we use ti = bt− logβinc, where βi = β − (2β−1−ε)i
2k+1 , and that logβi+1n = o(logβin).

The last inequality uses the fact that ` = blogβknc. Taking into account of ε = 2β−1
2(k+1) ,

k =
⌊ log logn

3 log log logn

⌋
and β > 1

2 + 1√
log log logn

, we have logε n ≥ e3
√

log log logn. Taking the union

bound, we have for n large enough,

P
(

max
j∈[n]

X
(i)
j > ti+1 − ti

)
≤ n exp

(
−1

6
log1+ε n

)
≤ n−e2

√
log log logn

. (4.33)

The desired statement (4.29) follows from (4.30)–(4.33).

Now we are ready to prove Proposition 4.3.

Proof of Proposition 4.3. We will estimate the maximum loads after i stages for all 1 ≤ i ≤ k.
By the definition of Hi, we have

MaxLoadf
(∪ij=0Hj)

c(tin) ≤ L0 + 2i`. (4.34)

Next, we estimate the maximum load over ∪ij=1Hj after i stages. For 1 ≤ j ≤ i ≤ k, we

denote by Eji =
{

MaxLoadfHj (tin) > ti+1− ti +L0 + (2j− 1)`
}

, where tk+1 = tk + `. We will
show that

P
(
Eji
)
≤ (i− j + 1) · 2n−e2

√
log log logn

. (4.35)

We denote by ri the number of retries in the i-th stage. In the i-th stage, for a bin in Hi to
accept more than ti − ti−1 + ` primary allocations, it is necessary that the load of this bin
before accepting its last primary allocation is at most − log n. Hence, we have

MaxLoadfHi(tin) ≤ max
{

MaxLoadfHi(ti−1n) + `,− log n
}

+ max
p∈Hi

Lf2,p((ti−1, ti])

≤ L0 + (2i− 1)`+ max
p∈Hi

Lf2,p((ti−1, ti]),

where the second inequality uses the fact that Hi ⊆ (∪i−1
j=0Hj)

c and the i− 1 case of (4.34).
Using the inequalities above and Lemma 4.6, we obtain

P
(
Eii
)
≤ P

(
max
p∈Hi

Lf2,p((ti−1, ti]) > ti+1 − ti
)
≤ 2n−e

2
√
log log logn

. (4.36)

For 1 ≤ j ≤ i − 1 and i ≥ 2, the strategy guarantees that in the i-th stage, each bin of Hj

either accepts no primary allocations, or has a load at most − log n before accepting its last
primary allocation. Hence, we have

MaxLoadfHj (tin) ≤ max
{

MaxLoadfHj (ti−1n)− (ti − ti−1),− log n
}

+ max
p∈Hj

Lf2,p((ti−1, ti]).

Hence, event Eji occurs only if one of the two conditions holds: maxp∈Hj L
f
2,p(ri) > ti+1 − ti

or max
{

MaxLoadfHj (ti−1n) − (ti − ti−1),− log n
}
> L0 + (2j − 1)`. The latter condition is

equivalent to event Eji−1. This and Lemma 4.6 imply that

P
(
Eji
)
≤ P

(
Eji−1

)
+ P

(
max
p∈Hi

Lf2,p((ti−1, ti]) > ti+1 − ti
)
≤ P

(
Eji−1

)
+ 2n−e

2
√
log log logn

.

32

Iterating this argument to obtain

P
(
Eji
)
≤ P

(
Ejj
)

+ (i− j) · n−e2
√
log log logn ≤ (i− j + 1) · 2n−e2

√
log log logn

,

where the second inequality follows from (4.36). This concludes the proof of (4.35).
Now, we estimate the maximum load over H0. In the first stage, each bin in H0 either

accepts no primary allocations or has a load at most − log n before accepting its last primary
allocation. Hence, we have

MaxLoadfH0
(t1n) ≤ max

{
MaxLoadfH0

(t0n)− (t1 − t0),− log n
}

+ max
p∈H0

Lf2,p((t0, t1]). (4.37)

In general, in the i-th stage for 2 ≤ i ≤ k, for bin of H0 to accept more than ti − ti−1 + `
primary allocations, the load of this bin before accepting its last primary is at most − log n.
Hence, we obtain

MaxLoadfH0
(tin) ≤ max

{
MaxLoadfH0

(ti−1n) + `,− log n
}

+ max
p∈H0

Lf2,p((ti−1, ti]). (4.38)

Iteration of (4.38), together with (4.37), yields

MaxLoadfH0
(tin) ≤ max

{
MaxLoadfH0

(t1n) + `,− log n
}

+ (i− 2)`+
i∑

j=2

max
p∈H0

Lf2,p((tj−1, tj])

≤ max
{

MaxLoadfH0
(t0n)− (t1 − t0),− log n

}
+ (i− 1)`+

i∑
j=1

max
p∈H0

Lf2,p((tj−1, tj])

≤
i∑

j=1

max
p∈H0

Lf2,p((tj−1, tj]) + (i− 1)`−min
{

(1− c− o(1))(t− t0)), log n
}
,

(4.39)

where the last inequality follows from the fact that MaxLoadfH0
(t0n) ≤ c(t − t0) for some

constant 0 < c < 1, and that t1 − t0 = (1− o(1))(t− t0). Observe that ti+1 − t1 = o(t− t0),
ti+1 − t1 < log n and (i− 1)` = o(t− t0), (i− 1)` < log n. Hence, we have

(ti+1 − ti) + (i− 1)` < min
{

(1− c− o(1))(t− t0)), log n
}
.

This, together with (4.39), implies that

P
(

MaxLoadfH0
(tin) > 0

)
≤ P

 i∑
j=1

max
p∈H0

Lf2,p((tj−1, tj]) > ti+1 − t1


≤

i∑
j=1

P
(

max
p∈H0

Lf2,p((tj−1, tj]) > tj+1 − tj
)

≤ i · 2n−e2
√

log log logn
, (4.40)

where the last inequality follows from Lemma 4.6. Combine inequalities (4.34), (4.35), (4.40)
to obtain

P
(

MaxLoadf (tn) > L0 + 2k`
)
≤ k · 2n−e2

√
log log logn

< n−e
√
log log logn

.

This concludes the proof.

33

4.3 Case : t ≥ ω(log n)

Proposition 4.7. Denote by f the
(

1
5 , t−

7
θ log n, 7

θ log n, `, `
)
-drift-threshold strategy with k

and ` as in Proposition 4.3. Then, for n large enough, f has

P
(

MaxLoadf (tn) > (2k + 1)`
)
< n−1/7.

Proof. We employ the aforementioned concatenated strategy described in Section 2.4. In-
equality (3.26) in Lemma 3.9 yield

P
(

MaxLoadf (t0n) >
6

θ
log n

)
< n−1/6.

Employing once again the notation

H0 =
{
i ∈ [n] : Lfi (t0n) > `

}
,

we apply Lemma 3.10 to obtain

P
(
|H0| >

160

θ2
ne−

θ`
3

)
≤ 2 exp

(
−2n

(
80

θ2

)2

e−
2θ`
3

)
= exp

(
−n1−o(1)

)
.

The inequalities above imply that, with probability at least 1 − Θ(n−1/6), the conditions in
Proposition 4.3 hold with η = 0 (observe that α there, satisfies α = 1 + log 7−log θ

log logn . Hence,
with high probability, we can apply the multi-stage (t, `, `)-threshold strategy in Section 4.2
from time t0 to time t. Then we can apply Proposition 4.3 to conclude the proof.

5 Single-time load discrepancy: lower bound

In this section, we show that no two-thinning strategy can achieve a maximum load better
than that in Theorem 1. Due to inequality (4.1), we can again assume that m = tn for t ∈ N.
The lower bound in Theorem 1 is an immediate consequence of the following statement

applied on the process starting from time max
{⌊
t−

√
logn
50

⌋
, 0
}

.

Proposition 5.1. Given t ≤
√

logn
50 , we set ` =

√
logn

12(log logn−2 log t) . Then any two-thinning

strategy f with any initial load vector {Li(0)}i∈[n] ∈ Zn satisfies

P
(

MaxLoadf (tn) < `
)
< 3e−

√
n. (5.1)

Proof. If MaxLoadf (0) ≥ t+ `, we will have MaxLoadf (tn) ≥ ` and inequality (5.1) trivially
holds. Hence, we will assume that MaxLoadf (0) < t+`. We denote S =

{
i ∈ [n] : Li(0) ≥ 0

}
and Sc = [n] \ S. We first show that

|S| ≥ n

t+ `+ 1
. (5.2)

To see this, observe that

0 =
∑
i∈[n]

Li(0) =
∑
i∈S

Li(0) +
∑
i∈Sc

Li(0).

34

This, together with our assumptions that {Li(0)}i∈[n] ∈ Zn and MaxLoadf (0) < t+ `, yields

|Sc| ≤
∑
i∈Sc
|Li(0)| =

∑
i∈S

Li(0) ≤ |S| · (t+ `).

Then inequality (5.2) readily follows from the inequality above and |Sc| = n− |S|.
Next, we set r∗ = b|S|e−2tI(`/t)/2c, where I(x) is given in Lemma 3.3. We denote by r

the number of retries up to time tn. By the law of total probability, we have

P
(

MaxLoadf (tn) < `
)
≤ P

(
MaxLoadfS(tn) < `

)
= P

(
MaxLoadfS(tn) < `, r < r∗

)
(5.3)

+ P
(

MaxLoadfS(tn) < `, r ≥ r∗
)
. (5.4)

We first estimate the probability in (5.3). Recall that ψt+`S (tn) defined in (2.5) represents the
number of bins in S that are suggested as primary allocations at least t+ ` times up to time
tn. Observe that if we retry fewer than ψt+`S (tn) balls, the maximum load will be at least `.
Hence, we have

P
(

MaxLoadfS(tn) < `, r < r∗
)
≤ P

(
ψt+`S (tn) < r∗

)
. (5.5)

We denote by {Xi}i∈[n] independent Poisson(t) random variables. Let Wi be the indicator
function of the event {Xi ≥ t + `}. Hence, {Wi}i∈[n] are independent Bernoulli random
variables such that

p := P(Wi = 1) = P(Xi ≥ t+ `) ≥ e−2tI(`/t) ≥ 2r∗

|S|
, (5.6)

where the first inequality follows from Lemma 3.3. We then apply Lemma 3.1, inequality
(5.6) and Hoeffding’s inequality to obtain

P
(
ψt+`S (tn) < r∗

)
≤ 2P

(∑
i∈S

Wi < r∗

)
≤ 2P

(∑
i∈S

Wi <
|S|p

2

)

≤ 2 exp

(
−|S|p

2

2

)
≤ 2 exp

(
−|S|

2
e−4tI(`/t)

)
≤ 2 exp

(
− n

2(t+ `+ 1)

(
et

`

)12`
)

= exp
(
−n1−o(1)

)
, (5.7)

where the penultimate transition follows from the upper bound of I(x) in (3.4) and the fact

that ` > 4t for t ≤
√

logn
50 .

Next we estimate the probability in (5.4). Recall that L2,i([tn]) defined in (2.3) represents
the number of balls that bin i receives from secondary allocations. Then we have

P
(

MaxLoadfS(tn) < `, r ≥ r∗
)
≤ P

(
max
i∈S

Lf2,i([tn]) < t+ `, r ≥ r∗
)
. (5.8)

35

Apply Lemma 3.2 to obtain

P
(

max
i∈S

Lf2,i([tn]) < t+ `, r ≥ r∗
)
≤ 2 exp

(
−|S|(r

∗/n)t+`

e(t+ `)!

)
. (5.9)

Using the upper bound of I(x) in (3.4) and the fact that ` > 4t for t ≤
√

logn
50 , we obtain

r∗ > |S|
2

(
et
`

)6`
. This, together with Stirling’s approximation k! ≤ e

√
k(k/e)k, yields that for

n large enough

(r∗/n)t+`

e(t+ `)!
≥ 1

e2
√
t+ `

(
e

2(t+ `)(t+ `+ 1)

)t+`(et
`

)6`(t+`)

>

(
t

`

)12`2

.

This, together with (5.8) and (5.9), yields

P
(

MaxLoadf (tn) < `, r ≥ r∗
)
≤ 2 exp

(
− n

(t+ `+ 1)

(
t

`

)12`2
)
≤ 2e−

√
n, (5.10)

where the second inequality follows from the fact that

12`2 log
`

t
=

log n

2

(
1− log(log log n− 2 log t) + log 12

log log n− 2 log t

)
<

log n

2
.

Then we can obtain (5.1) by combining (5.3), (5.4), (5.5), (5.7) and (5.10).

6 All-time load discrepancy: upper bound

In the previous sections, we studied different thinning strategies which yield a good control
of MaxLoadf (m), the maximum load at the end of the process. Here we are interested in
thinning strategies that can control MaxLoadf ([m]), the maximum load throughout the entire
process.

As before, we assume that m = tn for t ∈ N. Clearly, MaxLoadf ([m]) ≥ MaxLoadf (m)
and that MaxLoadf ([m]) is monotone non-decreasing function of m. On the other hand, we
also have MaxLoadf ([m]) ≤ MaxLoadf (m) + t, where the RHS is the maximum number of
balls in a single bin at the end of the process. Hence, for t = O(

√
log n), we can apply the

(t + `)-threshold strategy as per the analysis in Section 4.1 and obtain an optimal all-time
maximum load (up to some multiplicative constants). In the following couple of sections, we
prove the upper bound in Theorem 2 for t = ω(

√
log n).

6.1 Case: ω(
√

log n) ≤ t ≤ O(log2 n/(log log n)3)

Proposition 6.1. Suppose that ω(
√

log n) ≤ t ≤ log2 n
(24 log logn)3

. Set ` = (t log n)1/3. We also

assume that for all i ∈ [n] the initial load satisfies Li(0) ≤ L0 for some L0 > 0. Then for
any c > 0 and sufficiently large n, the `-relative threshold strategy f satisfies

P
(

MaxLoadf ([tn]) > L0 + (12c+ 9)`
)
≤ n−c. (6.1)

Proof. Observe that for any s ∈ [t] and any (s− 1)n < k ≤ sn,

MaxLoadf ((s− 1)n)− 1 ≤ MaxLoadf (k) ≤ MaxLoadf (sn) + 1.

36

Hence, it suffice to show that

P
(

max
s∈[t]

MaxLoadf (sn) > L0 + (12c+ 8)`

)
< n−c. (6.2)

For s ∈ [t], we denote by rs the number of retries in the s-th stage, i.e., in the time interval
(n(s− 1), ns]. On the one hand, if a bin i ∈ [n] accepts more than s+ ` primary allocations
in the first s stages, the load of this bin before accepting the last primary allocation has to
be at most − log n. For such a bin i ∈ [n], we have

Lfi (sn) ≤ Lf2,i ([sn])− log n+ 1,

where the function Lf2,i given in (2.3) is the number of balls bin i receive from secondary
allocations. On the other hand, if a bin i accepts at most s + ` primary allocations in the
first s stages, we have

Lfi (sn) ≤ Li(0) + `+ Lf2,i ([sn]) ≤ Lf2,i ([sn]) + L0 + `.

Write Es = {rk ≤ r∗k for all 1 ≤ k ≤ s}, where r∗k = 6ne−kI(`/k)/ log(1 + `/k) and I(x) is
given in Lemma 3.3. The inequalities above and the law of total probability imply that

P
(

MaxLoadf (sn) > L0 + (12c+ 8)`
)
≤ P

(
max
i∈[n]

Lf2,i ([sn]) > (12c+ 7)`

)
≤ P

(
max
i∈[n]

Lf2,i ([sn]) > (12c+ 7)`, Es

)
+ P

(
Ecs
)
.

(6.3)

We first estimate P
(
Ecs
)
. The definition of our `-relative threshold strategy given in

Section 2.3 guarantees that if a retry occurs in the k-th stage, then it is necessary that the
suggested bin has accepted at least k− 1 + ` primary allocations. Hence, for a single bin, the
number of retries in the k-th stage is either 0 or the difference between the number of times
this bin was suggested as a primary allocation up to stage k and k − 1 + ` provided that
the difference is positive. We write {Xk

i }i∈[n] for independent Poisson(k) random variables.

Define Y k
i = max

{
0, Xk

i − k − `+ 1
}

and Y k =
∑n

i=1 Y
k
i . Lemmata 3.1 & 3.5 yield

P(rk > r∗k) ≤ 2P
(
Y k > r∗k

)
≤ 2 exp

(
−ne−kI(`/k)

)
.

One can check that I(x)/x is an increasing function. Then it is not hard to see that for any
fixed ` > 0, the function e−kI(`/k) is increasing with respect to k. Hence, for all k ∈ [t], we
have

P(rk > r∗k) ≤ 2 exp
(
−ne−I(`)

)
≤ 2 exp

(
−n
(e
`

)3`
)
,

where the last inequality follows from the upper bound of I(x) in (3.4). Our assumption of
t and the choice of ` yield ` ≤ logn

24 log logn and hence

n
(e
`

)3`
= exp

(
log n− 3` log

`

e

)
>
√
n.

Take the union bound to obtain (for n large enough),

P
(
Ecs
)
≤

s∑
k=1

P(rk > r∗k) ≤ 2se−
√
n = e−(1−o(1))

√
n. (6.4)

37

Now, we estimate the first term of (6.3). Recall that r∗k = 6ne−kI(`/k)/ log(1 + `/k).
We again use the fact that I(x)/x is increasing to deduce that r∗k is an increasing function.
Hence, when Es occurs, the total number of retries is no more than tr∗t . We denote by
{Zi}i∈[n] independent Poisson(λ) random variables, where

λ =
tr∗t
n

=
6te−tI(`/t)

log(1 + `/t)
<

12t2

`
exp

(
−`

2

4t

)
, (6.5)

where the inequality follows from the lower bound of I(x) in (3.3) and log(1 + x) ≥ x/2 for
0 < x < 1 and the fact that ` ≤ t. Using Lemma 3.1, we obtain

P
(

max
i∈[n]

Lf2,i ([sn]) > (12c+ 7)`, Es

)
≤ 2P

(
max
i∈[n]

Zi > (12c+ 7)`

)
. (6.6)

Apply Lemma 3.3 to obtain

P(Z1 > (12c+ 7)`) ≤ P(Z1 > λ+ (12c+ 6)`) ≤ e−λI((12c+6)`/λ) <

(
eλ

(12c+ 6)`

)(12c+6)`

< exp

(
−(12c+ 6)`3

4t
+ (12c+ 6)` log

2et2

(2c+ 1)`2

)
,

where the first inequality follows from that λ < `, the third inequality follows from the lower
bound of I(x) in (3.4), and in the last inequality we use the upper bound on λ in (6.5). Our
choice of ` and the assumption on t guarantees that `2 > 12t log t, which yields

` log
2et2

(2c+ 1)`2
< ` log t <

`3

12t
.

Combine the two inequalities above to obtain

P(Z1 > (12c+ 7)`) ≤ exp

(
−(2c+ 1)`3

t

)
= n−(2c+1).

This, together with (6.6), yields that

P
(

max
i∈[n]

Lf2,i ([sn]) > (12c+ 7)`, Es

)
≤ 2nP(Z1 > (12c+ 7)`) ≤ 2n−2c.

Combining the inequality above with (6.3), (6.4), we obtain that for any s ∈ [t] and n large
enough,

P
(

MaxLoadf (sn) > L0 + (12c+ 8)`
)
≤ e−(1−o(1))

√
n + 2n−2c ≤ 3n−2c.

Taking a union bound, we can obtain for n large enough,

P
(

max
s∈[t]

MaxLoadf (sn) > L0 + (12c+ 8)`

)
≤ 3tn−2c ≤ n−c.

This proves (6.2), and hence (6.1).

38

6.2 Case: ω(log2 n/(log log n)3)) ≤ t ≤ nO(1)

In this case, we utilize the varying drift strategy to control the all-time maximum load. We
set Zk = i if the k-th point of X(t) is a point of the process Xi(t) define in Section 2.3. We
will show that, with high probability, the random process {Zk}k∈N can be realized by some
two-thinning strategy f and that it achieves the desired bound.

Proposition 6.2. Let m,n ∈ N sufficiently large and denote d = logm
logn . Let ` = 2 logn

log logn . The
`-varying drift strategy f defined above satisfies

P
(

MaxLoadf ([m]) > (d+ 4)`
)
≤ 2 log3 n

n
. (6.7)

Next, we provide an estimate of the probability that the realizability criterion (2.13) holds
for a period of time, which implies that, with high probability, the process {Zk}k∈N can be
realized by some two-thinning strategy f for quasi-exponential time.

Lemma 6.3. For any T > 0 and sufficiently large n, we have

P
(
∃t ∈ [0, T] :

∣∣∣{i ∈ [n] : Xi(t)− t > `
}∣∣∣ > n√

log n

)
≤ T exp

(
− n

2 log n

)
. (6.8)

Proof. We first estimate the probability P(sups∈[t,t+1](Xi(s) − s) > `) for all 0 ≤ t ≤ T − 1.
We denote by E = {Xi(t) ≤ t+ `/2}. By the law of total probability,

P

(
sup

s∈[t,t+1]
(Xi(s)− s) > `

)
≤ P

(
sup

s∈[t,t+1]
(Xi(s)− s) > `, E

)
+ P(Ec). (6.9)

SinceXi(t), given in (2.12), is 1√
logn

-standardizing, we can apply inequality (3.22) in Corollary

3.8 and Markov’s inequality to obtain

P(Ec) ≤ P
(
|Xi(t)− t| ≥

`

2

)
≤ 80 log n · exp

(
−
√

log n

2 log log n

)
<

1

4
√

log n
. (6.10)

Next we bound P
(

sups∈[t,t+1](Xi(s)− s) > `, E
)

. Let Y be a Poisson(1 + θ1) variable.

Observe that, by (2.12), Xi(t+ 1)−Xi(t) is stochastically dominated by Y . Hence, we have

P

(
sup

s∈[t,t+1]
(Xi(s)− s) > `, E

)
≤ P

(
Y >

`

2

)
≤ exp

(
−(1 + θ1)I

(
`

2(1 + θ1)

))
≤ exp

(
− `

3
log

`

3e

)
= n−

2
3

+o(1), (6.11)

where in the second inequality, the function I, appearing in Lemma 3.3, is the rate function
of the deviation bound of Poisson random variables, and the last inequality follows from the
fact that I(x) > x log(x/e) for x > 4. Combine (6.9), (6.10) and (6.11) to obtain

P

(
sup

s∈[t,t+1]
(Xi(s)− s) > `

)
≤ 1

4
√

log n
+ n−

2
3

+o(1) ≤ 1

2
√

log n
.

39

We denote by S(t) = {i ∈ [n] : sups∈[t,t+1](Xi(s)− s) > `}. Let Wi be the indicator function
of the event {sups∈[t,t+1](Xi(s)−s) > `}. Hence, {Wi}i∈[n] are independent Bernoulli random
variables such that

P(Wi = 1) = P

(
sup

s∈[t,t+1]
(Xi(s)− s) > `

)
≤ 1

2
√

log n
.

By Hoeffding’s inequality,

P
(
|S(t)| > n√

log n

)
= P

(
n∑
i=1

Wi ≥
n√

log n

)
≤ exp

(
− n

2 log n

)
.

The desired statement (6.8) follows by taking a union bound.

We are now ready to establish Proposition 6.2.

Proof of Proposition 6.2. Set T = m/n+ ∆, where ∆ = 1 + 2
√

log n log(80 log n). Let E be
the event that {Zi}i∈N can be realized by some two-thinning strategy f . Lemma 6.3 yields

P(Ec) ≤ T exp

(
− n

2 log n

)
. (6.12)

For each fixed 1 ≤ k ≤ m, we set t∗ = k/n+ ∆. We write F = {X(t∗) ≥ k}. The law of total
probability yields

P
(
Lfi (k) > (d+ 4)`

)
≤ P

(
Lfi (k) > (d+ 4)`, E ∩ F

)
+ P(Ec) + P(F c). (6.13)

Since Xi(t) given in (2.12) is 1√
logn

-standarizing, we can apply the second inequality of (3.23)

in Corollary 3.8 and Markov’s inequality to obtain

P(F c) = P (X(t∗) < nt∗ − n∆) ≤ (80 log n)n exp

(
− n∆

2
√

log n

)
= exp

(
− n

2
√

log n

)
, (6.14)

where the last equality follows from our choice of ∆. The definition of Xi(t) in (2.12) implies
that Xi(t) − ` is upper (1 − 12√

logn
)-standardizing. One can check that the condition of

inequality (3.18) in Corollary 3.7 holds for 2θ = 1 − 12√
logn

, λ = log logn
2 . Hence, we apply

inequality (3.18) to obtain

E exp

(
log log n

2
(Xi(t)− t− `)

)
< 1 +

2e2λ

1− e−λ/2
< log3 n. (6.15)

Whenever the event E ∩ F occurs, we have Lfi (k) + k/n ≤ Xi(t
∗). Inequality (6.15) and

Markov’s inequality yield

P
(
Lfi (k) > (d+ 4)`, E ∩ F

)
≤ P

(
Xi(t

∗) >
k

n
+ (d+ 4)`

)
= P (Xi(t

∗)− t∗ − ` > (d+ 3)`−∆)

≤ P (Xi(t
∗)− t∗ − ` > (d+ 2)`)

≤ (log n)3 · n−(d+2).

40

This, together with (6.12), (6.13), (6.14), yields that, for sufficiently large n,

P
(
Lfi (k) > (d+ 4)`

)
≤ 2(log n)3 · n−(d+2).

Taking union bound over m and n, we obtain

P
(

MaxLoadf ([m]) > (d+ 4)`
)
≤ 2(log n)3mn−(d+1).

Then, inequality (6.7) follows from the fact that m = nd

7 All-time load discrepancy: lower bound

Here we prove the lower bounds in Theorem 2. We again assume that m is divisible by n
and write m = tn for some t ∈ Z. Observe that the lower bound of the single-time maximum
load in Theorem 1 implies that of the all-time maximum load up to t = O(

√
log n). Our next

result covers the regime of
√

log n < t < log2 n/(24 log log n)3. This, together with the fact
that the all-time maximum load is non-decreasing with respect to t, implies the lower bound
of Θ

(logn
log logn

)
for t ≥ log2 n/(24 log log n)3. This completes the proof of the lower bounds in

Theorem 2.

Proposition 7.1. Suppose that
√

log n < t < log2 n
(24 log logn)3

. Set ` = b(t log n)1/3c. Any

two-thinning strategy f satisfies that for n large enough,

P
(

MaxLoadf ([tn]) < `
)
≤ exp

(
−n1/5

)
. (7.1)

Proof. We denote by r the total number of retries and set r∗ = n
2 e
−`2/t. Then we have

P
(

MaxLoadf ([tn]) < `
)

= P
(

MaxLoadf ([tn]) < `, r < r∗
)

(7.2)

+ P
(

MaxLoadf ([tn]) < `, r ≥ r∗
)
. (7.3)

We estimate (7.2). Recall that ψt+`(tn) defined in (2.5) represents the number of bins that
are suggested as primary allocations at least t+ ` times after allocating tn balls. If we retry
less than ψt+`(tn) balls, then we will have MaxLoadf (tn) ≥ `. Hence we obtain

P
(

MaxLoadf ([tn]) < `, r < r∗
)
≤ P

(
MaxLoadf (tn) < `, r < r∗

)
≤ P

(
ψt+`(tn) < r∗

)
. (7.4)

We denote by {Xi}i∈[n] independent Poisson(t) random variables. Write Yi for the indicator
function of the event {Xi > t + `}. Hence, {Yi}i∈[n] are independent Bernoulli(p) random
variables with

p = P(X1 > t+ `) ≥ e−2tI(`/t) ≥ e−`2/t,

where the first inequality follows from Lemma 3.3 and the second inequality uses the upper
bound of I(x) in (3.3) and the fact that ` < t. Apply Lemma 3.1 and Hoeffding’s inequality

41

to obtain

P
(
ψt+`(tn) < r∗

)
≤ P

(
ψt+`(tn) <

pn

2

)
≤ 2P

(
n∑
i=1

Yi <
pn

2

)

≤ 2 exp

(
−p

2n

2

)
< exp

(
−n

2
e−2`2/t

)
= exp

(
−n1−o(1)

)
. (7.5)

Next we estimate (7.3). Recall that Rk given in (2.1) is the number of retries after
allocating k balls. Define s0 = inf

{
s ∈ [t] : Rsn − R(s−1)n ≥ r∗/t

}
. Whenever the event

{r ≥ r∗} occurs, we have s0 <∞. Write S =
{
i ∈ [n] : Lfi ((s0 − 1)n) ≥ 0

}
. As per (5.2), we

show that whenever the event
{

MaxLoadf ((s0 − 1)n) < `
}

occurs, we have

|S| ≥ n

`+ 1
. (7.6)

To see this, observe that

0 =
∑
i∈[n]

Lfi ((s0 − 1)n) =
∑
i∈S

Lfi ((s0 − 1)n) +
∑
i∈Sc

Lfi ((s0 − 1)n).

This, together the fact that
{
Lfi ((s0 − 1)n)

}
i∈[n]

∈ Zn and MaxLoadf ((s0 − 1)n) < `, yields

|Sc| ≤
∑
i∈Sc
|Lfi ((s0 − 1)n)| =

∑
i∈S

Lfi ((s0 − 1)n) ≤ |S| · (`+ 1).

Then we can obtain (7.6) using |Sc| = n− |S|.
Apply Lemma 3.2 to obtain

P
(

MaxLoadf ([tn]) < `, r ≥ r∗
)
≤ P

(
s0 <∞, MaxLoadf (s0n) < `

)
≤ P

(
s0 <∞, max

i∈S
Lf2,i

(
((s0 − 1)n, s0n]

)
< `

)
≤ 2 exp

(
−|S|
e`!

(
r∗

tn

)`)
. (7.7)

Recall that r∗ = n
2 e
−`2/t, ` = b(t log n)1/3c and |S| ≥ n/(`+ 1). One can check that

|S|
e`!

(
r∗

tn

)`
≥

√
n

e(`+ 1)!

(
1

2t

)`
>

√
nt−`

(`+ 1)`+3/2
>

√
n

t3`
> n1/4, (7.8)

where the second inequality uses Stirling’s approximation (`+ 1)! ≤ e
√
`+ 1(`+1

e)`+1; in the
third inequality, we use the fact that ` < t and the last inequality follows from our choice of
` and the assumption on t. Combine (7.7) and (7.8) to obtain

P
(

MaxLoadf ([tn]) < `, r ≥ r∗
)
≤ 2 exp

(
−n1/4

)
.

This, together with (7.3), (7.4), (7.5), yields

P
(

MaxLoadf ([tn]) < `
)
≤ exp

(
−n1−o(1)

)
+ 2 exp

(
−n1/4

)
< exp

(
−n1/5

)
.

This concludes the proof of (7.1).

42

8 Typical load discrepancy

In this section, we investigate two-thinning strategies for controlling the ε-typical maximum
load MaxLoadfε ([m]). The main technical statement in this section is the following Proposi-
tion, which implies Theorem 3.

Proposition 8.1. Fix d ≥ 1. Set ` = (log n)
1
2

+ 1√
log log logn and ε = e−

1
2

√
log log logn. For

sufficiently large n ∈ N and m ≤ nd, there exists a set S ⊂ [m] with |S| ≥ (1− ε)m such that
the d-multi-scaled long-term combined strategy f satisfies

P
(

MaxLoadf (S) > `
)
≤ 1

n
. (8.1)

For d ≥ 2 and general values of m, the d-multi-scaled long-term combined strategy f satisfies

P
(

MaxLoadfε ([m]) > `
)
≤ 1

n
. (8.2)

The proof of this result requires the following four propositions, each of which tells us
certain property of the process after a phase of an iteration. The proofs of these propositions
are given in the following subsections. Throughout this section we use the notations in (2.17),
(2.18) and (2.19).

Proposition 8.2. Fix d ≥ 1. Let n ∈ N be sufficiently large. Suppose that the initial
load vector {Li(0)}i∈[n] satisfies that |{i ∈ [n] : Li(0) > L0}| ≤ 4000ne−L0/15 and that
|Li(0)| ≤ 100d log n for all i ∈ [n]. Then the multi-stage (m0/n, L0, L0)-threshold strategy f
satisfies that

P
(
Lfi (m0) < −300d log n or Lfi (m0) > L for some i ∈ [n]

)
≤ n−e

√
log log logn

.

Proposition 8.3. Fix c > 0. Let m,n ∈ N be sufficiently large. We write α = log(m/n)
log logn and

assume that α ∈
[

1
2 + 3√

log log logn
, 1+ 1

30
√

log log logn

]
. Further, we denote by ε = e−

2
3

√
log log logn

and ` = (log n)
1
2

+ 1√
log log logn . Suppose that the initial load vector {Li(0)}i∈[n] satisfies that

Li(0) ≤ (log n)
1
2

+ 1
2
√
log log logn for all i ∈ [n]. Then, there exists Am ⊂ [m] with |Am| ≥ (1−ε)m

such that the 0-multi-scale strategy f satisfies that

P
(

MaxLoadf (Am) > `
)
≤ n−c. (8.3)

Proposition 8.4. Fix d ≥ 1. Let n ∈ N be sufficiently large. Suppose that the initial load
vector {Li(0)}i∈[n] satisfies that −300d log n ≤ Li(0) ≤ Q for all i ∈ [n]. Then the Q-multi-
scale strategy f satisfies that

P
(

max
i∈[n]
|Lfi (m1)| > A

)
≤ n−3d. (8.4)

Proposition 8.5. Fix d ≥ 1. Let n ∈ N be sufficiently large. Suppose that the initial load
vector {Li(0)}i∈[n] satisfies that |Li(0)| ≤ A for all i ∈ [n]. Then the 1/5-drift strategy f
satisfies that

P
(

max
i∈[n]
|Lfi (m2)| > 100d log n or

∣∣∣{i ∈ [n] : Lfi (m2) > L0

}∣∣∣ > 4000ne−L0/15

)
≤ 2n−3d.

43

Proof of Proposition 8.1. Observe that Lemma 3.11 guarantees that the third phase of each
iteration eventually terminates so that there are almost surely infinitely many iterations. Set
M1,0 = M1,1 = 0, M1,2 = m1, M1,3 = m1 +m2,1. For j ≥ 2 and k ∈ {0, 1, 2, 3}, we define

Mj,0 = Mj−1,3, Mj,1 = Mj,0 +m0, Mj,2 = Mj,1 +m1, Mj,3 = Mj,2 +m2,j .

Hence, for k ∈ {0, 1, 2}, Mj,k is the starting time of the (k+ 1)-th phase in the j-th iteration.
For j ∈ N, we define events

Ej =
{
−300d log n ≤ Lfi (Mj,1) ≤ L for all i ∈ [n]

}
,

Fj =

{
max
i∈[n]

∣∣Lfi (Mj,2)
∣∣ ≤ A} ,

Gj = {m2,j = m2}.

Our strategy guarantees that the load vector
{
Lfi (Mj,0)

}
i∈[n]

at the beginning of the j-th

iteration satisfies that

max
i∈[n]

∣∣Lfi (Mj,0)
∣∣ ≤ 100d log n and

∣∣∣{i ∈ [n] : Lfi (Mj,0) > L0

}∣∣∣ ≤ 4000ne−L0/15.

Hence, we apply Proposition 8.2 to obtain for all j > 1 that

P(Ecj) ≤ n−e
√
log log logn

. (8.5)

This inequality trivially holds for Ec1. By Proposition 8.3, we have for all j ≥ 1 that

P
(

MaxLoadf (Am1 +Mj,1) > ` | Ej
)
≤ n−3d. (8.6)

By Proposition 8.4, we have for all j ≥ 1 that

P
(
F cj | Ej

)
≤ n−3d. (8.7)

By Proposition 8.5, we have for all j ≥ 1 that

P
(
Gcj | Fj

)
≤ 2n−3d. (8.8)

Set M = m0 +m1 +m2. On the event
⋂
j∈[κ]Gj , we have

κ⋃
j=1

(Am1 +Mj,1) =

κ−1⋃
j=0

(Am1 + jM).

Set S =
⋃κ−1
j=0 (Am1 + jM). Putting together (8.5), (8.6), (8.7),(8.8) and taking the union

bound, we now get

P
(

MaxLoadf (S) > `
)
≤ 5κn−3d.

For m ≤ nd, we take κ = bm/Mc ≤ nd, so that the probability above is less than 1/n.
Next, we complete the proof of (8.1) by showing that |S| ≥ (1− ε/4)m. Notice that S is

a disjoint union of copies of Am1 shifted by multiples of M . Hence, it suffices to show that

44

|Am1 | > (1− ε/4)M . Indeed, we have shown in Proposition 8.3 that |Am1 | > (1− ε′)m1 with

ε′ = e−
2
3

√
log log logn. By the definitions of m0,m1,m2 in (2.18), we have

m1

M
= 1− m0 +m2

M
= 1−O

(
(log n)

1−αimax+1
2

)
> 1−O

(
(log n)

− 1
60
√
log log logn

)
, (8.9)

where the equality follows from (8.21). These, together with ε� ε′, yield that for sufficiently
large n we have |Am1 | > (1− 2ε′)M > (1− ε/4)M and hence that |S| ≥ (1− ε/4)m.

We now prove (8.2). We say that the j-th iteration is bad if either Ecj , F
c
j , Gcj happened

or MaxLoadf (Am1 +Mj,1) > `; otherwise we say that it is good. We denote by J the set
of bad iterations among the first κ iterations. By definition, each good iteration has length
at most M = m0 + m1 + m2 and the maximum load over ∪j∈[κ]\J (Mj,1 +Am1) is bounded
above by `. Hence, we have∣∣∣{m′ < m : MaxLoadf (m′) > `

}∣∣∣ ≤∑
j∈J

(m0 +m1 +m2,j) + (κ− |J |)(M − |Am1 |)

≤
∑
j∈J

(m0 +m1 +m2,j) +
εm

2
, (8.10)

where the second inequality follows from κ ≤ m/M , |Am1 | > (1− ε/4)M and (8.9).
We now estimate the first term of (8.10). As we have just seen, the probability of an

iteration being bad is bounded above by 5n−3d and hence E|J | ≤ 5κn−3d. Then we apply
Markov’s inequality to obtain

P
(
|J | > 5κn−2d

)
≤ n−d. (8.11)

This, together with m0 < m1 and κ < m/m1, yields

P
(

(m0 +m1)|J | > 10mn−2d
)
≤ n−d. (8.12)

We now estimate
∑

j∈J m2,j . Note that the load vector at the beginning of the third
phase of each iteration satisfies

max
i∈[n]

∣∣Lfi (Mj,2)
∣∣ ≤ 100d log n+m0 +m1 = o(n2).

We apply Lemma 3.11 to obtain E(m2,j) ≤ n3 and hence

E

∑
j∈J

m2,j

 = E

∑
j∈[κ]

m2,j1j∈J

 ≤ 5κn3−3d.

Then we apply Markov’s inequality to obtain

P

∑
j∈J

m2,j > 5mn3−2d

 ≤ κ

mnd
≤ n−d. (8.13)

For d ≥ 2 and sufficiently large n, we combine (8.10), (8.12) and (8.13) to obtain

P
(∣∣{m′ < m : MaxLoadf (m′) > `

}∣∣ > εm
)
<

1

n
.

This concludes the proof of (8.2).

45

8.1 Proof of Proposition 8.3

We first make some technical observations on the parameters used in the Q-multi-scale

strategy given in Section 2.4. Recall that α1 = 1
2 + 2

b
√

log log lognc+1/4
, L = (log n)

1+α1
3 ,

k =
⌊ log logn

3 log log logn

⌋
, Ni = d L

3k`i
e and Qi,j = (2k + 1)(j − 1)`i. We first have for i ∈ N, j ∈ [Ni]

that
Qi,j < L. (8.14)

Observing from (2.16) that {αi}i∈N is a non-decreasing sequence, we have for i ≥ 1 and
sufficiently large n that

(log n)α
′
i−αi = (log n)−

1
5
· 2αi−1−εi

2k+1 = (log n)
−(1

5
−o(1))αi−1/2

k+1/2

≤ (log n)
−(1

5
−o(1))α1−1/2

k+1/2 ≤ (log n)
− 2/5−o(1)√

log log logn
· 1
k+1/2

= (log n)
−(6

5
−o(1))

√
log log logn
log logn

< e−
√

log log logn. (8.15)

Recall that imax = max{i ∈ N : αi ≤ 1}. Using (2.16), we have for all i ≤ imax that

Ni =
⌈ L

3k`i

⌉
=

(1 + o(1))L

3k`i
=

(1 + o(1))

3k
(log n)

2α1−1
6
−αi−1/2+kεi

2k+1 = (log n)
2α1−1

6
−O(1

k).

(8.16)

Using (2.16) and (8.15) we observe that Ni = (1 − o(1))(log n)αi+1−αi . This, together with
(8.16), yields the iteration formula

αi+1 = αi +
2α1 − 1

6
−O

(
1

k

)
. (8.17)

This, along with the definition of imax, implies that

imax ≤ (1 + o(1))
6(1− α1)

2α1 − 1
=

3 + o(1)

2α1 − 1
<
√

log log log n. (8.18)

In addition, we have

(log n)αi−α
′
i+1 = (log n)αi−αi+1+ 1

5
· 2αi+1−1−εi+1

2k+1 = (log n)−
2α1−1

6
+Θ(1

k) = o(1). (8.19)

The main technical instrument for establishing Proposition 8.3 is the following lemma,
the proof of which is provided in the next subsection.

Lemma 8.6. Consider the Q-multi-scale strategy with the initial load vector {Lp(0)}p∈[n]

satisfying Lp(0) ≤ Q ≤ L for all p ∈ [n]. Fix c > 0. Set ` = (log n)
1
2

+ 1√
log log logn . For any

s =
∑imax

i=1 jin(blogαinc+ blogα
′
inc) with 0 ≤ ji ≤ Ni − 1, we have

P
(

MaxLoadf ([s, s+ nblogα1nc]) > `
)
< n−c. (8.20)

Proof of Proposition 8.3. We will show that the Q-multi-scale strategy with Q ≤ L satisfies
the statement in Proposition 8.3. Recall that imax = max{i ∈ N :αi ≤ 1}. We first show for
sufficiently large n that

αimax+1 ≥ 1 +
1

30
√

log log log n
. (8.21)

46

To this end, we iterate equation (8.17) to obtain

αimax+1 = α1 + imax

(
2α1 − 1

6
−O

(
1

k

))
=

1

2
+ (imax + 3) · 2α1 − 1

6
−O

(
imax

k

)
. (8.22)

The monotonicity of {αi}i∈N and the definition of imax implies that αimax+1 > 1. This
inequality, equation (8.22) and the fact that imax is an integer yield that

imax + 3 ≥
⌈

6

2α1 − 1

(
1

2
+O

(
imax

k

))⌉
. (8.23)

Recall that α1 = 1
2 + 2

b
√

log log lognc+1/4
, k =

⌊ log logn
3 log log logn

⌋
and the bound imax <

√
log log log n

given in (8.18). Then, for sufficiently large n, we can further write inequality (8.23) as

imax + 3 ≥
⌈

3b
√

log log log nc+ 3/4 + o(1)

4

⌉
≥ 3b

√
log log log nc+ 1

4
.

Plugging this into (8.22), we obtain

αimax+1 ≥ 1 +
1

24b
√

log log log nc+ 6
−O

(
imax

k

)
≥ 1 +

1

30
√

log log log n
.

This proves (8.21).
We next prove the main statement (8.3). For m ∈ N, we define the set

Am = ∪s∈Jm
{
m′ ∈ N : s ≤ m′ ≤ max

{
m, s+ nblogα1nc

}}
,

where Jm is defined as

Jm =

{
s =

∑
i∈N

jin(blogαinc+ blogα
′
inc) : 0 ≤ ji ≤ Ni − 1, s < m

}
.

Observe that by the condition of Proposition 8.3, we have

α =
log(m/n)

log log n
≤ 1 + 1

30
√

log log logn
≤ αimax+1,

and hence

m

n
= logα n ≤ (log n)αimax+1 = Nimax(b(log n)αimax c+ b(log n)α

′
imax c).

Together with (8.21) we thus have

Jm =

{
s =

imax∑
i=1

jin(blogαinc+ blogα
′
inc) : 0 ≤ ji ≤ Ni − 1, s < m

}
.

For any fixed constant c > 0, we apply Lemma 8.6 and the union bound argument to obtain

P
(

MaxLoadf (Am) ≥ `
)
≤
∑
s∈Jm

P
(

MaxLoadf ([s, s+ nblogα1nc]) ≥ `
)

≤ |Jm| · n−2c < n−c, (8.24)

47

where the last equality follows from that |Jm| ≤ m/n < log2 n.
We next show that |Am|/m ≥ 1 − ε. We define i∗ = max{i ∈ N : n logαi n < m}. It is

clear from the condition of Proposition 8.3 and (8.21) that i∗ ≤ imax. We further denote

ξ = min
{
ξ′ ∈ N : ξ′n(blogαi∗ nc+ blogα

′
i∗ nc) ≥ m

}
,

mξ = ξn(blogαi∗ nc+ blogα
′
i∗ nc).

Observe from the definition of i∗ that ξ ≤ Ni∗ . This, along with (8.15), implies that mξ < 2m.
Hence it suffices to show that

|Amξ |
mξ

≥ 1− ε

2
. (8.25)

For 1 ≤ i ≤ i∗, we define

J∗i =

{
i∗∑
i′=i

ji′n(blogαi′nc+ blogα
′
i′nc) : 0 ≤ ji′ ≤ Ni′ − 1

}
,

Bi =

Ni−1⋃
j=0

(
jn(blogαinc+ blogα

′
inc) + Ci

)
, where

Ci = (0, nblogαi nc] .

Observe that Bi+(J∗i+1∩ [mξ]) = Ci+(J∗i ∩ [mξ]) consists of a disjoint union of shifted copies
of Bi and that Ci+1 + (J∗i+1 ∩ [mξ]) consists of a disjoint union of shifted copies of Ci+1. We
thus obtain

|Ci + (J∗i ∩ [mξ])|
|Ci+1 + (J∗i+1 ∩ [mξ])|

=
|Bi + (J∗i+1 ∩ [mξ])|
|Ci+1 + (J∗i+1 ∩ [mξ])|

=
|Bi|
|Ci+1|

.

By (2.16) and (8.15), we obtain

|Bi|
|Ci+1|

=
blogαinc

blogαinc+ blogα
′
inc

= 1− blogα
′
inc

blogαinc+ blogα
′
inc

> 1− (log n)α
′
i−αi > 1− δ,

where δ = e−
√

log log logn. Moreover, we have

|Ci∗ + (J∗i∗ ∩ [mξ])|
mξ

=
blogαi∗ nc

blogαi∗ nc+ blogα
′
i∗ nc

> 1− δ.

Iterating these observations we obtain

|Amξ |
mξ

=
|C1 + (J∗1 ∩ [mξ])|

mξ
=
|Ci∗ + (J∗i∗ ∩ [mξ])|

mξ
·
|C1 + (J∗1 ∩ [mξ])|
|Ci∗ + (J∗i∗ ∩ [mξ])|

=
|Ci∗ + (J∗i∗ ∩ [mξ])|

mξ
·
i∗−1∏
i=1

|Ci + (J∗i ∩ [mξ])|
|Ci+1 + (J∗i+1 ∩ [mξ])|

≥ (1− δ)imax > 1−
√

log log log n e−
√

log log logn,

where the inequalities follow from the fact that i∗ ≤ imax <
√

log log log n. This completes
the proof of (8.25).

48

8.1.1 Proof of Lemma 8.6

For i ∈ N, j ∈ [Ni], we write sji = (j − 1)n(blogαinc + blogα
′
inc) and tji = sji + nblogαinc.

Hence, (sji , t
j
i] and (tji , s

j+1
i] are discrete time intervals in the (i+ 1)-th scale where we apply

the j-th iteration of the i-th scale strategy and the j-th iteration of the regulating multi-
stage threshold strategy, respectively. Fix c > 0. We set α0 = 1+α1

3 + log(12c+9)
log logn so that

logα0 n = (12c + 9)L. One can check that α0 < α1 for n large enough. We introduce the
following events

E i,j
Q =

{
MaxLoadf ([sji , t

j
i]) ≤ logαi−1 n+Qi,j +Q

}
,

F i,j
Q =

{
MaxLoadf

(
sj+1
i

)
≤ Qi,j+1 +Q

}
,

G j,i
Q =

{
|H i,j

Q | ≤ 3n exp
(
− `2i

4 logαi n

)}
, where

H i,j
Q =

{
p ∈ [n] : Lp(t

j
i) ≥ Q

i,j + `i +Q
}
.

(8.26)

In this subsection, in order to simplify the notations, we denote by E the complement of
the event E. The following result plays a key role in establishing Lemma 8.6.

Lemma 8.7. Consider the Q-multi-scale strategy with the initial load vector {Lp(0)}p∈[n]

satisfying Lp(0) ≤ Q ≤ 2L
√

log log log n for all p ∈ [n]. Fix c > 0. For sufficiently large n
and all i ∈ N such that αi ≤ 1, we have

P

 ⋃
j∈[Ni]

E i,j
Q ∩ F

i,j
Q ∩G

i,j
Q

 ≤ n−c. (8.27)

Proof of Lemma 8.6. Recall the notation Qi,j = (2k + 1)(j − 1)`i. The statement (8.20) is a
consequence of the following stronger statement

P

MaxLoadf ([s, s+ nblogα1nc]) > Q+ logα0n+
∑

i∈[imax]

Qi,ji+1

 < n−c+o(1). (8.28)

Recall that L = (log n)
1
2

+ 2
3(b
√
log log lognc+1/4) , Q ≤ L and logα0n = (12c+ 9)L. These, together

with (8.18) and (8.14), yield

Q+ logα0n+
∑

i∈[imax]

Qi,ji+1 ≤ Q+ (12c+ 9)L+ imaxL < 2L
√

log log log n < `.

For 0 ≤ i ≤ imax, we write

si =

imax∑
h=i+1

jhn(blogαhnc+ blogα
′
hnc)

so that s0 = s and simax = 0. We further denote Qi = Q+
∑imax

h=i+1Q
h,jh+1 so that Qimax = Q

and define Ki =
{

MaxLoadf (si) ≤ Qi
}

. Keeping the notations PQ′(·) as in the proof of
Lemma 8.7, we have

P
(

MaxLoadf ([s, s+ nblogα1nc]) > Q0 + logα0n |K1

)
< PQ1

(
E 1,j1+1
Q1

)
. (8.29)

49

Since Q1 < 2L
√

log log log n, we may apply Lemma 8.7 to obtain

PQ1

(
E 1,j1+1
Q1

)
< n−2c. (8.30)

Next, we estimate P(K1). As mentioned in the proof of Lemma 8.7, the j-th iteration of the
i-th scale of the Q-multi-scale strategy is identical to the first iteration of the i-th scale of
the (Q+Qi,j)-multi-scale strategy. This self-similar property implies that

P
(
Ki ∩Ki+1

)
< PQi+1

(
F
i+1,ji+1

Qi+1

)
.

Using this inequality and the fact Kimax =
{

MaxLoadf (0) ≤ Q
}

which is trivially satisfied
by the starting conditions, we obtain

P
(
K1

)
= P

(
imax−1⋃
i=1

(Ki ∩Ki+1)

)
≤

imax−1∑
i=1

PQi+1

(
F
i+1,ji+1

Qi+1

)
< (imax − 1) · n−2c, (8.31)

where the last inequality uses Lemma 8.7, which is applicable since Qi < 2L
√

log log log n.
Combining (8.29), (8.30), (8.31) and the fact that imax <

√
log log log n, we have for suffi-

ciently large n that

P
(

MaxLoadf ([s, s+ nblogα1nc]) > Q+ logα0n
)
< imax · n−2c < n−c.

This concludes the proof of (8.28), and hence (8.20).

We now present a couple of auxiliary lemmata that are used in our proof of Lemma 8.7.
The first lemma provides an upper bound on the number of bins with loads above certain
level.

Lemma 8.8. Let t > ` > 0, h, r∗ > 0 and p ∈ [0, 1]. Let {Li(0)}i∈[n] be an initial load vector
such that Li(0) ≤ L0 for all i ∈ [n]. Let f be any two-thinning strategy, which satisfies that
P
(
MaxLoadf ([tn]) ≤ h

)
≥ 1− p. Define H =

{
i ∈ [n] : Li(tn) ≥ L0 + `

}
. Then we have

P
(
|H| > 2n exp

(
−`

2

4t

)
+ r∗

)
≤ 2 exp

(
−2n exp

(
−`

2

2t

))
+ 4 exp

(
−n(r∗/tn)h

e(h+ 1)!

)
+ p.

Given an event E and Q ≥ 0, we write PQ(E) for the maximum probability of E under
the Q-multi-scale strategy with the initial maximum load bounded above by Q. Then the
second lemma is as follows.

Lemma 8.9. Consider the Q-multi-scale strategy with the initial load vector {Lp(0)}p∈[n]

satisfying Lp(0) ≤ Q ≤ 3L
√

log log log n for all p ∈ [n]. Fix c > 0. For sufficiently large n
and all i ∈ N such that αi ≤ 1 and all j ∈ [Ni], we have

PQ

(
E 1,1
Q

)
< n−c, (8.32)

PQ

(
F i,j
Q , E i,j

Q , G i,j
Q

)
< n−e

√
log log logn

, (8.33)

PQ

(
G i,j
Q , E i,j

Q , F i,j−1
Q

)
< 2 exp

(
−n1/2−o(1)

)
. (8.34)

With these two lemmata at hand, we now prove Lemma 8.7.

50

Proof of Lemma 8.7. For i ∈ N, j ∈ [Ni], we write

U i,j
Q =

⋃
j′≤j

E i,j′

Q ∩ F i,j′

Q ∩G i,j′

Q

with U i,0
Q = ∅. Observe that for i ∈ N, j ∈ [Ni] we have

U i,j
Q =

(
F i,j
Q ∩ E

i,j
Q ∩G

i,j
Q

)
∪
(
G i,j
Q ∩ E

i,j
Q ∩ F

i,j−1
Q

)
∪
(
E i,j
Q ∩ F

i,j−1
Q

)
∪ U i,j−1

Q .

Notice that this indeed holds for j = 1 since the initial load condition implies that F i,0
Q = Ω.

This, along with (8.33), (8.34) from Lemma 8.9, yields

PQ

(
U i,j
Q

)
≤ PQ

(
F i,j
Q , E i,j

Q , G i,j
Q

)
+ PQ

(
G i,j
Q , E i,j

Q , F i,j−1
Q

)
+ PQ

(
E i,j
Q , F i,j−1

Q

)
+ PQ

(
U i,j−1
Q

)
≤ PQ

(
E i,j
Q , F i,j−1

Q

)
+PQ

(
U i,j−1
Q

)
+n−e

√
log log logn

+2 exp
(
−n1/2−o(1)

)
. (8.35)

Observe that the j-th iteration of the i-th scale of the Q-multi-scale strategy is identical to
the first iteration of the i-th scale of the (Q+Qi,j)-multi-scale strategy. Recall that the event
F i,j−1
Q asserts that the load at time sji is at most Q+Qi,j . Hence we have

PQ

(
E i,j
Q , F i,j−1

Q

)
≤ PQ+Qi,j

(
E i,1
Q+Qi,j

)
. (8.36)

Iteration of (8.35) and the above inequality yield

PQ

(
U i,j
Q

)
≤
∑
j′≤j

PQ+Qi,j′

(
E i,1

Q+Qi,j′

)
+ n−ω(1). (8.37)

In order to iterate this inequality, we now show that for all Q′ > 0 and i ≥ 2 the following
inclusion inequality holds

E i,1
Q′ ⊂ U

i−1,Ni−1

Q′ . (8.38)

To see this, we define the event

Ê i,j
Q =

{
MaxLoadf

(
(sji , s

j+1
i]

)
≤ logα

′
i n+Qi,j+1 +Q

}
.

The statement (8.38) follows from the monotonicity of U i,j
Q′ and the following inclusion rela-

tions

E i,1
Q′ ⊂

(
∪j∈[Ni−1]Ê

i−1,j
Q′

)
, (8.39)

Ê i,j
Q′ ⊂

(
E i,j
Q′ ∪ F

i,j
Q′

)
⊂ U i,j

Q′ . (8.40)

To see (8.39), observe that E i,1
Q′ asserts that over (0, t1i] = ∪j∈[Ni−1](s

j
i−1, s

j+1
i−1], the maximum

load is greater than logαi−1 n+Q′, while Ê i−1,j
Q′ asserts that over (sji−1, s

j+1
i−1], the maximum

load is greater than logα
′
i−1 n+Qi−1,j+1 +Q′. Using (8.15), we have logα

′
i−1 n = o(logαi−1 n)

and by (8.14) we have Qi−1,j+1 < L = o(logαi−1 n). These observations yield (8.39). To see
(8.40), observe that

MaxLoadf (sj+1
i) ≥ MaxLoadf

(
(tji , s

j+1
i]

)
− |(tji , s

j+1
i]| = MaxLoadf

(
(tji , s

j+1
i]

)
− logα

′
i n.

51

Hence, whenever F i,j
Q′ occurs, we have MaxLoadf

(
(tji , s

j+1
i]

)
≤ logα

′
i n + Qi,j+1 + Q′. This,

along with E i,j
Q′ , implies that

(
E i,j
Q′ ∩ F

i,j
Q′
)
⊂ Ê i,j

Q′ , which is equivalent to the first inclusion
inequality in (8.40). The second inclusion inequality in (8.40) is trivial.

Then we can use (8.38) to iterate (8.37) and obtain

PQ

(
U i,j
Q

)
≤
∑
ji≤j

∑
ji−1≤Ni−1

· · ·
∑
j1≤N1

PQ+Qi,ji+···+Q1,j1

(
E 1,1

Q+Qi,ji+···+Q1,j1

)
+ n−ω(1).

One can use (8.18) and (8.14) to check that

Q+Qi,ji + · · ·+Q1,j1 ≤ Q+ iL ≤ Q+ imaxL ≤ 3L
√

log log log n.

Then we apply (8.32) from Lemma 8.9, (8.16) and (8.18) to obtain for sufficiently large n
that

PQ

(
U i,j
Q

)
≤

(
i∏

i′=1

Ni′

)
n−2c + n−ω(1) ≤ (log n)imax· 2α1−1

6 n−2c + n−ω(1)

= (log n)O(1) · n−2c + n−ω(1) ≤ n−c.

This concludes the proof.

8.1.2 Proofs of Lemmata 8.8 and 8.9

Proof of Lemma 8.8. We denote by r the total number of retries up to time tn and by H ′

the set of bins which are suggested as primary allocations at least t + ` times by time tn.
Then, we have

|H| ≤ |H ′|+ r.

Hence, we have

P
(
|H| > 2n exp

(
−`

2

4t

)
+ r∗

)
≤ P

(
|H ′| > 2n exp

(
−`

2

4t

))
+ P(r > r∗). (8.41)

We now estimate the first term. We denote by {Xi}i∈[n] independent Poisson(t) random
variables. Write Yi for the indicator function of the event {Xi ≥ t+ `} and Y =

∑n
i=1 Yi. By

Lemma 3.3, we have

P(Yi = 1) = P(Xi ≥ t+ `) ≤ e−tI(`/t) ≤ exp

(
−`

2

4t

)
,

where the second inequality follows from the lower bound of I(x) in (3.3) and the assumption
that `/t < 1. Lemma 3.1 and Hoeffding’s inequality imply that

P
(
|H ′| > 2n exp

(
−`

2

4t

))
≤ 2P

(
Y > 2n exp

(
−`

2

4t

))
≤ 2 exp

(
−2n exp

(
−`

2

2t

))
.

(8.42)
Next, we estimate the second term. Set E = {MaxLoadf ([tn]) ≤ h}. By the law of total

probability,

P(E) = P(E, r ≥ r∗) + P(E, r < r∗) ≤ P(E, r ≥ r∗) + P(r < r∗)

= P(E, r ≥ r∗) + 1− P(r ≥ r∗). (8.43)

52

Recall that Rk given in (2.1) is the number of retries after allocating k balls. We denote
by s0 = inf

{
s ∈ [t] : Rsn − R(s−1)n ≥ r∗/t

}
. Whenever {r ≥ r∗} occurs, we have s0 < ∞.

Write S =
{
i ∈ [n] : Lfi ((s0−1)n) ≥ 0

}
. As per (5.2), we show that whenever E occurs, then

|S| ≥ n

h+ 1
. (8.44)

To see this, observe that

0 =
∑
i∈[n]

Lfi ((s0 − 1)n) =
∑
i∈S

Lfi ((s0 − 1)n) +
∑
i∈Sc

Lfi ((s0 − 1)n).

This, together with the fact that
{
Lfi ((s0 − 1)n)

}
i∈[n]

∈ Zn and MaxLoadf ((s0 − 1)n) < h,

yields

|Sc| ≤
∑
i∈Sc
|Lfi ((s0 − 1)n)| =

∑
i∈S

Lfi ((s0 − 1)n) ≤ |S| · (h+ 1).

Then we can obtain (8.44) using |Sc| = n− |S|.
Denote by {Zi}i∈[n] independent Poisson (r∗/tn) random variables. By Lemma 3.1 and

Lemma 3.2,

P(r > r∗, E) ≤ 2P
(

max
i∈S

Zi ≤ h
)
≤ 4 exp

(
−n(r∗/tn)h

e(h+ 1)!

)
. (8.45)

Inequalities (8.43), (8.45) and the fact that P(E) ≥ 1− p imply that

P(r > r∗) ≤ 4 exp

(
−n(r∗/tn)h

e(h+ 1)!

)
+ p.

We can conclude the proof by combining this with (8.41) and (8.42).

Proof of Lemma 8.9. Proof of (8.32). The statement readily follows from the application

of Proposition 6.1 with the parameters L0 := Q, t := blogα1nc, ` := L = (log n)
1+α1

3 and our
definition of α0 such that logα0 n = (12c+ 9)L.

Proof of (8.33). The statement follows from the application of Proposition 4.3 with the
parameters t0 := tji , t := sj+1

i , α := α′i, η := αi − α′i, L0 := Qi,j + `i +Q. Hence it suffice to
show that the conditions of Proposition 4.3 are satisfied.

We first verity the technical requirement η ≤ α−1/2
4k−2 , which is assumed in our definition

of the multi-stage threshold strategy in Section 2.4. Using η = αi−α′i, α = α′i and (2.15), we
can rewrite this requirement as

αi − 1/2− εi/2
5k + 5/2

≤ αi − 1/2

4k − 1
,

which clearly holds.
We next show that both assumptions in Proposition 4.3 hold when E i,j

Q and G i,j
Q oc-

cur. Given the event G i,j
Q , the second assumption trivially holds. We now verify the first

assumption that MaxLoadf (tji) = o(t− t0). Assuming the event E i,j
Q , we have

MaxLoadf (tji) ≤ logαi−1 n+Qi,j +Q ≤ logαi−1 n+ L+Q,

53

where the last inequality follows from (8.14). Recall α1 = 1
2 + 2

b
√

log log lognc+1/4
, L =

(log n)
1+α1

3 , Q ≤ 3L
√

log log log n and k =
⌊ log logn

3 log log logn

⌋
. We have

L+Q < 4L
√

log log log n = (log n)
1
2

+ 2
3
√
log log logn

+O(log log log logn
log logn

)
,

while

t− t0 = logα
′
i n = (log n)αi−O(1

k
) > (log n)α1−O(1

k
) = (log n)

1
2

+ 2√
log log logn+1/4

−O(1
k

)
.

These, together with (8.19), verify the first assumption of Proposition 4.3. Hence, we can
apply Proposition 4.3 to obtain (8.33).

Proof of (8.34). Recall our definition G i,j
Q =

{
|H i,j

Q | ≤ 3n exp
(
− `2i

4 logαin

)}
. We introduce

G̃ i,j
Q =

{
|H i,j

Q | ≤ 2n exp

(
− `2i

4 logαin

)
+ n exp

(
− log n

2(logαi−1n+ L+Q)

)}
.

We will show that G̃ i,j
Q ⊂ G

i,j
Q and that

P
(
G̃ i,j
Q , E i,j

Q , F i,j−1
Q

)
≤ 2 exp

(
−n1/2−o(1)

)
, (8.46)

which implies (8.34).

To see G̃ i,j
Q ⊂ G i,j

Q , it suffice to show that
`2i

logαin = o
(

logn
logαi−1n+L+Q

)
. We recall that

α0 = 1+α1
3 + Θ(1

log logn), α1 = 1
2 + Θ(1√

log log logn
), `i = (log n)

1
2

+O(1
k

) and k =
⌊ log logn

3 log log logn

⌋
.

Hence, using again logα0n = (12c+ 9)L, we have

`21
logα1n

/ log n

logα0n+ L+Q
=

logα0n+ L+Q

logα0n
· `21/ logα1n

log n/ logα0n

=
(12c+ 10)L+Q

(12c+ 9)L
· (log n)−

2α1−1
3

+O(1
k

)

< O
(√

log log log n
)
· (log n)−

2α1−1
3

+O(1
k) = o(1),

where the inequality follows from that Q ≤ 3L
√

log log log n. For i ≥ 2, we use the fact that
logαi−1n+ L+Q < 2 logαi−1n to obtain

`2i
logαin

/ log n

logαi−1n+ L+Q
<

2`2i
(log n)1+αi−αi−1

= 2(log n)−(αi−αi−1)+O(1
k

)

= (log n)−
2α1−1

6
+O(1

k) = o(1),

where the second identity follows from (8.17).
Towards showing inequality (8.46), we observe that given E i,j

Q and F i,j−1
Q , we can apply

Lemma 8.8 to the process started at time sji with L0 = Qi,j +Q, t = blogαinc, ` = `i, p = 0,

h = logαi−1n+Qi,j +Q and r∗ = n exp
(
− logn

2(logαi−1n+L+Q)

)
to obtain

P

({
|Hj

i | > 2n exp

(
− `2i

4 logαin

)
+ n exp

(
− log n

2(logαi−1n+ L+Q)

)}
∩ E i,j

Q ∩ F
i,j−1
Q

)
≤ 2 exp

(
−2n exp

(
− `2i

2blogαinc

))
+ 4 exp

(
−
√
n(log n)−αi(logαi−1 n+L+Q)

edlogαi−1 n+ L+Qe!

)
, (8.47)

54

where, in the second term of (8.47), we use the fact that h < logαi−1 n+L+Q. For the first
term of (8.47), we have

2 exp

(
−2n exp

(
− `2i

2blogαinc

))
= exp

(
−n1−o(1)

)
. (8.48)

The second term of (8.47) is increasing with respect to αi−1, which, in turn, is increasing
with respect to i. Hence, we can assume that i ≥ 2 and use logαi−1n+L+Q < 2 logαi−1n to
obtain

4 exp

(
−
√
n(log n)−αi(logαi−1n+L+Q)

edlogαi−1 n+ L+Qe!

)
≤ 4 exp

(
−
√
n(log n)−2αi(logn)αi−1

(2 logαi−1n)2(logn)αi−1

)

≤ 4 exp

(
−

√
n

(2 log n)2(αi+αi−1)(logn)αi−1

)
≤ 4 exp

(
−

√
n

exp(5 log log n · logαi−1n)

)
= exp

(
−n1/2−o(1)

)
, (8.49)

where the first inequality follows from Stirling’s approximation n! ≤ e
√
n(n/e)n, and the last

inequality – from the observation that αi−1 < 1 − 1
4
√

log log logn
, which, in turn, follows from

the fact that αi ≤ 1 and (8.17). Plugging and (8.48), (8.49) into (8.47), inequality (8.46),
and hence (8.34), follows.

8.2 Proof of Proposition 8.4

Proof of Proposition 8.4. To establish equality (8.4), it would clearly suffice to show the
following estimates

P
(

MaxLoadf (m1) > A
)
≤ n−4d, (8.50)

P
(

min
i∈[n]

Lfi (m1) < −A
)
≤ n−4d. (8.51)

We first show that inequality (8.50) follows from Lemma 8.7. Our choice of m1 in (2.18)
guarantees that the allocation of m1 balls using the Q-multi-scale strategy ends up with
Nimax complete iterations of the imax-th scale strategy followed by the regulating multi-stage
threshold strategy. Recall the definition of F i,j

Q given in (8.26) and apply Lemma 8.7 to
obtain

P
(

MaxLoadf (m1) > Q+Qimax,Nimax+1
)

= P
(
F
imax,Nimax
Q

)
≤ n−4d.

Using (8.14), we have Q + Qimax,Nimax+1 < Q + L < A. The two inequalities above yield
(8.50).

Next, we estimate P(Lfi (m1) < −A), which, together with the union bound argument,
implies inequality (8.51). For each i ∈ [n], we denote

ki = sup{k ∈ [1,m1] : Li(k) ≥ −300d log n}

and write Fi for the event {−∞ < ki < m1− log n}. Observe that, given our assumptions on

Li(0), on F ci we have Lfi (m1) ≥ −A almost surely. We denote by Fk the filtration generated

55

by
{
Lfi (p) : 1 ≤ p ≤ k, i ∈ [n]

}
. By Chernoff’s argument, we thus have that for any λ > 0,

P
(
Lfi (m1) < −A |Fi,Fki

)
≤ e−λA · E

[
e−λL

f
i (m1) |Fi,Fki

]
. (8.52)

We write pk,Fk−1
= P

(
Lfi (k)−Lfi (k− 1) = 1− 1/n | Fk−1

)
, i.e., the probability that the k-th

ball has been allocated to the i-th bin conditioned on the load vector in time k − 1. Our
strategy never retries a ball if its primary allocation is a bin with load below − log n. This
and the definition of ki imply that pk,Fk−1

≥ 1/n for all ki < k ≤ m1. We now compute

E
[
e−λL

f
i (m1) |Fi,Fki

]
= E

[
e−λL

f
i (m1−1) · E

[
e−λ(Lfi (m1)−Lfi (m1−1)) | Fm1−1

]
|Fi,Fki

]
≤ E

[
e−λL

f
i (m1−1) ·

(
pm1,Fm1−1e

−λ(1−1/n) + (1− pm1,Fm1−1)eλ/n
)
|Fi,Fki

]
= E

[
e−λL

f
i (m1−1) · eλ/n ·

(
1− (1− e−λ)pm1,Fm1−1

)
|Fi,Fki

]
≤ E

[
e−λL

f
i (m1−1) |Fi,Fki

]
· eλ/n ·

(
1− 1− e−λ

n

)
,

Iterate this inequality to obtain

E
[
e−λL

f
i (m1) |Fi,Fki

]
≤ E

[
e−λL

f
i (ki) |F,Fki

]
·
(
eλ/n ·

(
1− 1− e−λ

n

))m1−ki

= e−λL
f
i (ki) ·

(
eλ/n ·

(
1− 1− e−λ

n

))m1−ki

≤ e300λd logn ·
(
eλ/n ·

(
1− 1− e−λ

n

))m1

, (8.53)

where the second inequality follows from that Lfi (ki) ≥ −300d log n and that eλ/n
(

1− 1−e−λ
n

)
is increasing for λ > 0. Combining (8.52) and (8.53), we obtain

P
(
Lfi (m1) < −A |Fi,Fki

)
≤ e−λA · e300λd logn · eλm1/n ·

(
1− 1− e−λ

n

)m1

= exp

(
−λA+ 300λd log n+

λm1

n
+m1 log

(
1− 1− e−λ

n

))
≤ exp

(
−λA+ 300λd log n+

λm1

n
−m1 ·

1− e−λ

n

)
= exp

(
−λ(A− 300d log n) +

m1

n
(λ− 1 + e−λ)

)
≤ exp

(
−λ(A− 300d log n) +

λ2m1

2n

)
,

where the second inequality uses log(1 − x) ≤ −x for 0 ≤ x ≤ 1, and the last inequality

follows from that e−x < 1 − x + x2/2 for x > 0. We plug λ = n(A−300d logn)
m1

into the above
inequality to obtain

P
(
Lfi (m1) < −A |Fi,Fki

)
≤ exp

(
−n(A− 300d log n)2

2m1

)
= exp

(
−(1− o(1))A2

2 logαn

)
< n−5d.

We recall that P
(
Lfi (m1) < −A

)
= P(Lfi (m1) < −A,F) ≤ P(Lfi (m1) < −A |F). Hence

inequality (8.51) follows from taking a union bound of the above inequality over i ∈ [n].

56

8.3 Proofs of Propositions 8.2 and 8.5

Proof of Proposition 8.2. The statement follows as easy consequence of Proposition 4.3 with
the parameters t = m0/n, α = log(m0/n)

log logn , η = 0. We first show that Proposition 4.3 is appli-
cable with the aforementioned parameters. Recall that m0 = b200dn log nc. This, together
with the assumption that |Li(0)| ≤ 100d log n for all i ∈ [n], implies that MaxLoadf (0) ≤ t/2.
Hence, the first condition of Proposition 4.3 is satisfied. Notice that α ≥ 1 and that
L0 = (log n)

1
2

+Θ(1
k

), where k =
⌊ log logn

3 log log logn

⌋
. We thus have L0 � (L0)2/ logα n. This,

along with the assumption that |{i ∈ [n] : Li(0) > L0}| ≤ 4000ne−L0/15, guarantees the
validity of the second condition of Proposition 4.3. Thus we can apply Proposition 4.3 to
obtain that

P
(

MaxLoadf (m0) > (2k + 2)L0

)
≤ n−e

√
log log logn

.

Observe that (2k+2)L0 = (log n)
1
2

+O
(

log log logn
log logn

)
and that L = (log n)

1
2

+Θ
(

1√
log log logn

)
. Hence,

we obtain
P
(

MaxLoadf (m0) > L
)
≤ n−e

√
log log logn

. (8.54)

Notice that the load of each bin can decrease by at mostm0/n ≤ 200d log n after the allocation

of m0 balls. Since maxi∈[n] |L
f
i (0)| ≤ 100d log n, we have

min
i∈[n]

Lfi (m0) ≥ −300d log n.

This, together with (8.54), concludes the proof of Proposition 8.2.

Proof of Proposition 8.5. We apply Lemma 3.9 and Lemma 3.10 to obtain for sufficiently
large n that

P
(

max
i∈[n]
|Lfi (m2)| > 100d log n

)
≤ n−3d,

P
(∣∣{i ∈ [n] : Lfi (m2) > L0

}∣∣ > 4000ne−L0/15
)
≤ exp

(
−n1−o(1)

)
.

Then we can conclude the proof by taking the union bound.

References

[1] N. Alon, O. Gurel-Gurevich and E. Lubetzky. “Choice-memory tradeoff in allocations”,
Ann. Appl. Probab., 20(4): 1470-1511, 2010.

[2] Y. Azar, A. Broder, A. Karlin and E. Upfal. “Balanced allocations”, SIAM J. Comput.,
29(1): 180-200, 1999.

[3] M. Adler, S. Chakrabarti, M. Mitzenmacher and L. Rasmussen. “Parallel randomized
load balancing”, In Proceedings of the 27th Annual ACM Symposium on Theory of Com-
puting (STOC’95), pages 238-247, May 1995.

[4] P. Berenbrink, A. Brinkmann, T. Friedetzky and L. Nagel. “Balls into non-uniform bins”,
J. Parallel Distributed Comput., 74(2): 2065-2076, 2014.

[5] P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking. “Balanced allocations: The heav-
ily loaded case”, SIAM J. Comput., 35(6): 1350-1385, 2006.

57

[6] I. Benjamini and Y. Makarychev. “Balanced allocation: Memory performance tradeoffs”,
Ann. Appl. Probab., 22(4): 1642-1649, 2012.

[7] R. Dwivedi, O. N. Feldheim, O. Gurel-Gurevich and A. Ramdas, “The power of thinning
in reducing discrepancy”, Probab. Theory Related Fields., 174(1-2), 103–131, 2019.

[8] D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes, Volume
I: Elementary theory and methods, 2nd ed., Springer-Verlag, New York, 2003.

[9] D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes, Volume
II: General theory and structure, 2nd ed., Springer-Verlag, New York, 2008.

[10] A. Dembo and O. Zeitouni, Large deviations techniques and applications, 2nd ed.,
Springer-Verlag, Berlin, 2010.

[11] O. N. Feldheim and O. Gurel-Gurevich. “The power of thinning in balanced allocation”,
Electron. Commun. Probab. 26, 1-8, 2021.

[12] O. N. Feldheim and J. Li, “Load balancing under d-thinning”, Electron. Commun.
Probab. 25(1): 1-13, 2020.

[13] B. Godfrey. “Balls and bins with structure: balanced allocations on hypergraphs”,
In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithm
(SODA’08), pages 511-517, January 2008.

[14] R. M. Karp, M. Luby and F. Meyer auf der Heide. “Efficient PRAM simulation on a
distributed memory machine”, In Proceedings of the 24th Annual ACM Symposium on
Theory of Computing (STOC’92), pages 318–325, May 1992.

[15] K. Kenthapadi and R. Panigrahy. “Balanced allocation on graphs”, In Proceedings of the
17th Annual ACM-SIAM Symposium on Discrete Algorithm (SODA’06), pages 434-443,
January 2006.

[16] D. Los and T. Sauerwaldy. “Balanced allocations with incomplete information: The
power of two queries”, Available at : https://arxiv.org/abs/2107.03916

[17] M. Mitzenmacher, B. Prabhakar and D. Shah. “Load balancing with memory”, In Pro-
ceedings of the 43rd Symposium on Foundations of Computer Science (FOCS’02), pages
799-808, November 2002.

[18] M. Mitzenmacher, A. W. Richa and R. Sitaraman. “The power of two random choices:
A survey of techniques and results”, In: Pardalos, P., Rajasekaran, S., Rolim, J., (eds)
Handbook of Randomized Computing, Kluwer Academic Press, 2001.

[19] M. Mitzenmacher and E. Upfal. Probability and computing: Randomized algorithms and
probabilistic analysis, 2nd ed. Cambridge University Press, 2005.

[20] Y. Peres, K. Talwar and U. Wieder, Graphical balanced allocations and the (1+β)-choice
process, Random Struct. Algor., 47(4): 760-775, 2015.

[21] M. Raab and A. Steger. “Balls into bins–a simple and tight analysis”, In Proceedings
of the 2nd International Workshop on Randomization and Approximation Techniques in
Computer Science (RANDOM’98), pages 159-170, October 1998.

58

[22] P. Sanders, S. Egner and J. Korst. “Fast concurrent access to parallel disks”, Algorith-
mica, 35, pp. 21–55, 2003.

[23] V. Stemann. “Parallel balanced allocations”, In Proceedings of the 8th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA’96), pages 261–269, June
1996.

[24] K. Talwar and U. Wieder. “Balanced allocations: the weighted case”, In Proceedings of
the 39th ACM Symposium on Theory of Computing (STOC’07), pages 256-265, June
2007.

[25] K. Talwar and U. Wieder. “Balanced allocations: A simple proof for the heavily loaded
case.” In: Esparza J., Fraigniaud P., Husfeldt T., Koutsoupias E. (eds) Automata, Lan-
guages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572.
Springer, Berlin, Heidelberg.

59

	Introduction
	Main results
	Discussion
	Upper bound strategies and lower bound techniques
	Outline

	Strategies for taming the maximum loads
	Two-thinning strategy
	A realizability criterion
	The basic strategies
	Combinations of the basic strategies
	Optimal strategies

	Preliminaries
	Poisson approximation
	Poisson tail estimate
	Concentration bounds for the drift strategy

	Single-time load discrepancy: upper bound
	Case 1: t O((log n))
	Case 2: ((log n))tO(log n)
	Case : t(log n)

	Single-time load discrepancy: lower bound
	All-time load discrepancy: upper bound
	Case: ((log n))t O((log n)/(log log n))
	Case: ((log n)/(log log n))t nÔ(1)

	All-time load discrepancy: lower bound
	Typical load discrepancy
	Proof of Proposition 8.3
	Proof of Lemma 8.6
	Proofs of Lemmata 8.8 and 8.9

	Proof of Proposition 8.4
	Proofs of Propositions 8.2 and 8.5

