3-Coloring the Discrete Torus

or

Rigidity of zero temperature 3-states anti-ferromagnetic Potts model

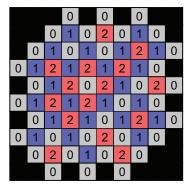
Ohad N. Feldheim

Joint work with Ron Peled

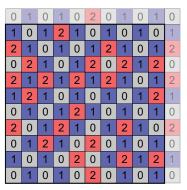
Institute for Mathematics and its Application

IMA PostDoc Seminar, October, 2014

3-Colorings of the Grid/Torus

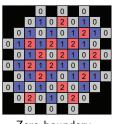


Zero boundary conditions



Periodic boundary conditions

Random 3-Colorings

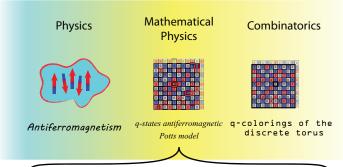


Zero boundary conditions

Periodic boundary conditions

- Uniformly chosen proper 3-coloring (Given boundary conditions)
- High dimension \mathbb{Z}^d , and \mathbb{T}_n^d .

Additional Motivation



- Generalizes the celebrated Ising model.
 - Each point takes one of q values.
 - Neighbors dislike getting the same color.
 - 3-coloring is the "zero temperature" version.

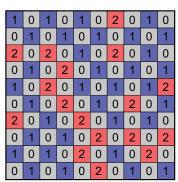
In a typical coloring:

• What is the typical relative frequency of the colors? Is it (1/3, 1/3, 1/3)?

- What is the typical relative frequency of the colors?
 Is it (1/3, 1/3, 1/3)?
- Does a typical coloring follow some pattern?

- What is the typical relative frequency of the colors? Is it (1/3, 1/3, 1/3)?
- Does a typical coloring follow some pattern?
- Is there long range correlation?

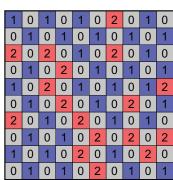
- What is the typical relative frequency of the colors? Is it (1/3, 1/3, 1/3)?
- Does a typical coloring follow some pattern?
- Is there long range correlation?
- Does it look roughly like this?



In a typical coloring:

- What is the typical relative frequency of the colors?
 Is it (1/3, 1/3, 1/3)?
- Does a typical coloring follow some pattern?
- Is there long range correlation?
- Does it look roughly like this?

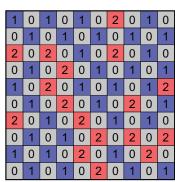
Conjecture:



In a typical coloring:

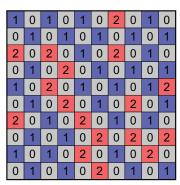
- What is the typical relative frequency of the colors? Is it (1/3, 1/3, 1/3)?
- Does a typical coloring follow some pattern?
- Is there long range correlation?
- Does it look roughly like this?

Conjecture: d = 2 No.



- What is the typical relative frequency of the colors? Is it (1/3, 1/3, 1/3)?
- Does a typical coloring follow some pattern?
- Is there long range correlation?
- Does it look roughly like this?

Conjecture:
$$d = 2$$
 No. $d > 2$ Yes



The conjecture has been established for 0-boundary conditions in high dimension.

0-boundary rigidity (Peled 2010)

In a typical 3-coloring with 0-boundary conditions nearly all the even vertices take the color 0.

The conjecture has been established for 0-boundary conditions in high dimension.

0-boundary rigidity (Peled 2010)

In a typical 3-coloring with 0-boundary conditions nearly all the even vertices take the color 0.

Formally: Let d be large enough, a uniformly chosen 3-coloring with **0-BC**, has:

$$\frac{\mathbb{E}\left|\left\{v \in V^{\text{even}} : g(v) \neq 0\right\}\right|}{|V^{\text{even}}|} < \exp\left(-\frac{cd}{\log^2 d}\right).$$

The conjecture has been established for 0-boundary conditions in high dimension.

0-boundary rigidity (Peled 2010)

In a typical 3-coloring with 0-boundary conditions nearly all the even vertices take the color 0.

Formally: Let d be large enough, a uniformly chosen 3-coloring with **0-BC**, has:

$$\frac{\mathbb{E}\left|\left\{v\in V^{\text{even}}:\ g(v)\neq 0\right\}\right|}{|V^{\text{even}}|}<\exp\left(-\frac{cd}{\log^2 d}\right).$$

• Does not work for periodic BC.

The conjecture has been established for 0-boundary conditions in high dimension.

0-boundary rigidity (Peled 2010)

In a typical 3-coloring with 0-boundary conditions nearly all the even vertices take the color 0.

Formally: Let d be large enough, a uniformly chosen 3-coloring with **0-BC**, has:

$$\frac{\mathbb{E}\left|\left\{v \in V^{\text{even}} : g(v) \neq 0\right\}\right|}{|V^{\text{even}}|} < \exp\left(-\frac{cd}{\log^2 d}\right).$$

- Does not work for periodic BC.
- Open in low dimensions.

Previous Results - Rigidity for the hypercube

The conjecture has also been supported on bounded tori.

Periodic boundary on the even hypercube (Galvin & Engbers 2011)

For every fixed n, for high enough dimension (depndeing on n), a typical 3-coloring with periodic boundary conditions is nearly constant on either the even or the odd sublattice.

Previous Results - Rigidity for the hypercube

The conjecture has also been supported on bounded tori.

Periodic boundary on the even hypercube (Galvin & Engbers 2011)

For every fixed n, for high enough dimension (depndeing on n), a typical 3-coloring with periodic boundary conditions is nearly constant on either the even or the odd sublattice.

- Works also for q-colorings (and even more general!)
- Fixed *n* is less important for physicists.

Previous Results - Some rigidity for the torus

Limited rigidity for periodic boundary (Galvin & Randall 2012, Galvin, Kahn, Randall, Sorkin 2014)

For high enough dimension (depndeing on n), a typical 3-coloring with periodic boundary conditions has at least $0.22n^d$ more zeroes on one sublattice than on the other.

Previous Results - Some rigidity for the torus

Limited rigidity for periodic boundary (Galvin & Randall 2012, Galvin, Kahn, Randall, Sorkin 2014)

For high enough dimension (depndeing on n), a typical 3-coloring with periodic boundary conditions has at least $0.22n^d$ more zeroes on one sublattice than on the other.

- Is not enough to show that one sublattice tends to be nearly monochromatic.
- Does not allow analysis of sloped colorings.
- Independent work and methods.
- More robust, and may be useful for non-zero temperatures.

We establish a parallel phenomenon for periodic BC.

Theorem (F., Peled)

A typical 3-coloring with periodic boundary conditions is nearly constant on either the even or the odd sublattice.

We establish a parallel phenomenon for periodic BC.

Theorem (F., Peled)

A typical 3-coloring with periodic boundary conditions is nearly constant on either the even or the odd sublattice.

Formally: Let d be large enough, a uniformly chosen 3-coloring with **periodic BC** has:

$$\mathbb{E}\left(\min_{\substack{z\in\{0,1,2\},\\s\in\{\text{even,odd}\}}}\frac{|\{v\in V^s: g(v)\neq z\}|}{|V^s|}\right)<\exp\left(-\frac{cd}{\log^2 d}\right).$$

We establish a parallel phenomenon for periodic BC.

Theorem (F., Peled)

A typical 3-coloring with periodic boundary conditions is nearly constant on either the even or the odd sublattice.

Formally: Let d be large enough, a uniformly chosen 3-coloring with **periodic BC** has:

$$\mathbb{E}\left(\min_{\substack{z\in\{0,1,2\},\\s\in\{\text{even,odd}\}}}\frac{|\{v\in V^s: g(v)\neq z\}|}{|V^s|}\right)<\exp\left(-\frac{cd}{\log^2 d}\right).$$

n must be even.

We establish a parallel phenomenon for periodic BC.

Theorem (F., Peled)

A typical 3-coloring with periodic boundary conditions is nearly constant on either the even or the odd sublattice.

Formally: Let d be large enough, a uniformly chosen 3-coloring with **periodic BC** has:

$$\mathbb{E}\left(\min_{\substack{z\in\{0,1,2\},\\s\in\{\text{even,odd}\}}}\frac{|\{v\in V^s\ :\ g(v)\neq z\}|}{|V^s|}\right)<\exp\left(-\frac{cd}{\log^2 d}\right).$$

- *n* must be even.
- Introduces topological techniques to the problem.

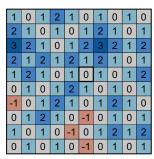
Proof Overview

Homomorphism Height Functions

$$h: G \to \mathbb{Z}$$
 satisfying $|h(v) - h(u)| = 1$ if $v \sim u$.

			0		0		0		
		0	1	0	-1	0	1	0	
	0	1	0	1	0	1	2	1	0
0	1	2	1	2	1	2	1	0	
	0	1	2	3	2	1	0	-1	0
0	1	2	1	2	1	0	1	0	
	0	1	2	1	0	1	2	1	0
0	1	0	1	0	-1	0	1	0	
	0	-1	0	1	0	-1	0		
		0		0		0			

Zero boundary conditions

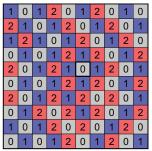


Periodic boundary conditions

• Discretized "topographical map".

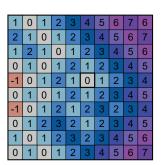
Relation to 3-Colorings

On \mathbb{Z}^d there is a natural bijection.



Pointed 3-Colorings

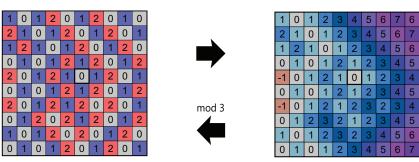
mod 3



Pointed HHFs

Relation to 3-Colorings

On \mathbb{Z}^d there is a natural bijection.



Pointed 3-Colorings

Pointed HHFs

This bijection does not extend to \mathbb{T}_n^d .

More is known about HHFs then about 3-colorings:

Rigidity of HHFs on \mathbb{T}_n^d (follows from Peled 2010)

A typical pointed HHF on a high dimensional torus is nearly constant on either the even or the odd sublattice.

More is known about HHFs then about 3-colorings:

Rigidity of HHFs on \mathbb{T}_n^d (follows from Peled 2010)

A typical pointed HHF on a high dimensional torus is nearly constant on either the even or the odd sublattice.

We wish to transfer this result to 3-colorings.

More is known about HHFs then about 3-colorings:

Rigidity of HHFs on \mathbb{T}_n^d (follows from Peled 2010)

A typical pointed HHF on a high dimensional torus is nearly constant on either the even or the odd sublattice.

We wish to transfer this result to 3-colorings.

Main obstruction: No bijection between HHFs and colorings on \mathbb{T}_n^d .

More is known about HHFs then about 3-colorings:

Rigidity of HHFs on \mathbb{T}_n^d (follows from Peled 2010)

A typical pointed HHF on a high dimensional torus is nearly constant on either the even or the odd sublattice.

We wish to transfer this result to 3-colorings.

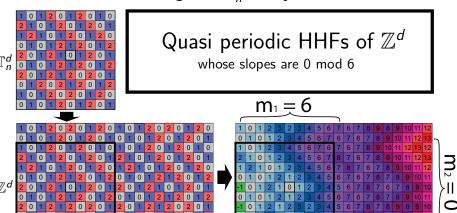
Main obstruction: No bijection between HHFs and colorings on \mathbb{T}_n^d . Here Topology enters.

Introducing Quasi-Periodic HHFs

What are 3-colorings on \mathbb{T}_n^d in bijection with?

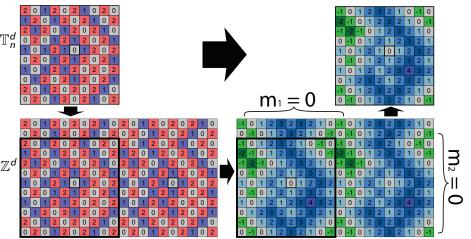
Introducing Quasi-Periodic HHFs

What are 3-colorings on \mathbb{T}_n^d in bijection with?



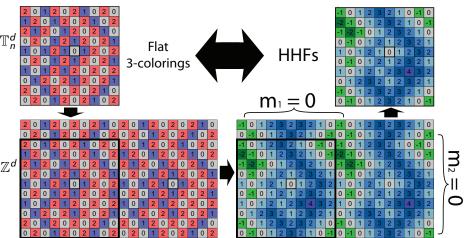
Flat Slope HHFs \leftrightarrow HHFs on \mathbb{T}_n^d

If all slopes are 0 ("flat" coloring) we get an HHF on \mathbb{T}_n^d .



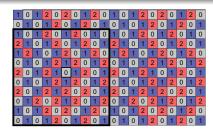
Flat Slope HHFs \leftrightarrow HHFs on \mathbb{T}_n^d

Iff all slopes are 0 ("flat" coloring) we get an HHF on \mathbb{T}_n^d .

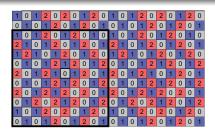


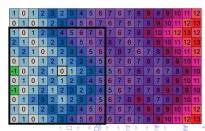
Pulling the HHFs result to 3-colorings

3-colorings of \mathbb{T}_n^d \updownarrow Periodic 3-colorings of \mathbb{Z}^d



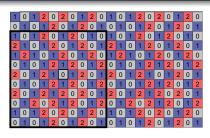
3-colorings of \mathbb{T}_n^d \updownarrow Periodic 3-colorings of \mathbb{Z}^d \updownarrow Quasi-periodic HHFs on \mathbb{Z}^d

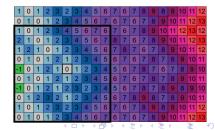




3-colorings of \mathbb{T}_n^d \updownarrow Periodic 3-colorings of \mathbb{Z}^d \updownarrow Quasi-periodic HHFs on \mathbb{Z}^d

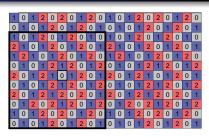
Periodic HHFs on \mathbb{Z}^d

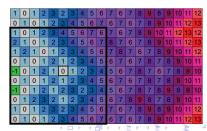




3-colorings of \mathbb{T}_n^d \updownarrow Periodic 3-colorings of \mathbb{Z}^d \updownarrow Quasi-periodic HHFs on \mathbb{Z}^d

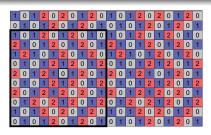
Periodic HHFs on \mathbb{Z}^d \uparrow HHFs on \mathbb{T}_n^d

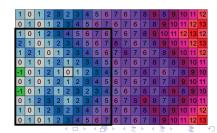




3-colorings of \mathbb{T}_n^d \updownarrow Periodic 3-colorings of \mathbb{Z}^d \updownarrow Quasi-periodic HHFs on \mathbb{Z}^d

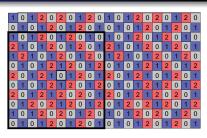
Periodic HHFs on \mathbb{Z}^d \uparrow HHFs on \mathbb{T}_n^d (which are known to be rigid)

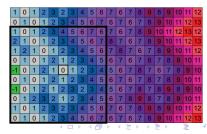




3-colorings of \mathbb{T}_n^d Periodic 3-colorings of \mathbb{Z}^d Quasi-periodic HHFs on \mathbb{Z}^d Periodic HHFs on \mathbb{Z}^d HHFs on \mathbb{T}_n^d (which are known to be rigid)

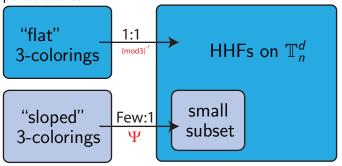
GOAL: Show that most quasi-periodic HHFs are periodic.





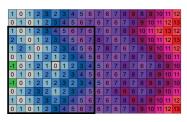
Proving Most Quasi-periodic are Periodic

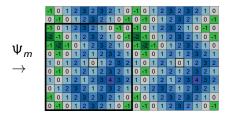
We construct a "flattening" map Ψ from quasi-periodic HHFs into periodic ones.



Flattening the slope Introducing the reflection Ψ

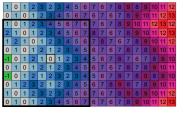
- Denote $QP_m := \{h \in QP : m \text{ is the slope of } h\}$
- We construct $\Psi_m : \mathsf{QP}_m \to \mathsf{QP}_0$, a one-to-one mapping.





Flattening the slope Introducing the reflection Ψ

- Denote $QP_m := \{h \in QP : m \text{ is the slope of } h\}$
- We construct $\Psi_m : \operatorname{QP}_m \to \operatorname{QP}_0$, a one-to-one mapping.



• Observe that the image contains a long level set.

Flattening the slope Introducing the reflection Ψ

- Denote $QP_m := \{h \in QP : m \text{ is the slope of } h\}$
- We construct $\Psi_m : \operatorname{QP}_m \to \operatorname{QP}_0$, a one-to-one mapping.



- Observe that the image contains a long level set.
- Peled 2010: Long level sets are extremely uncommon.

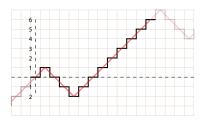
Flattening the slope Introducing the reflection Ψ

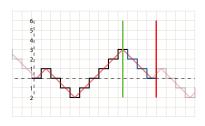
- Denote $QP_m := \{h \in QP : m \text{ is the slope of } h\}$
- We construct $\Psi_m: \operatorname{QP}_m \to \operatorname{QP}_0$, a one-to-one mapping.

- Observe that the image contains a long level set.
- Peled 2010: Long level sets are extremely uncommon.
- We deduce the image of Ψ_m is small.

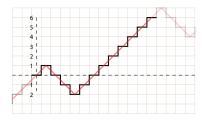
Ideas and Method

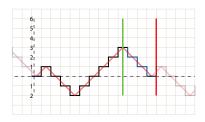
 One-dimensional intuition: reflection.



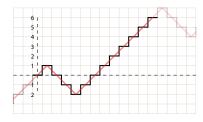


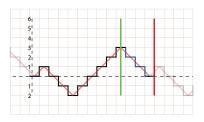
- One-dimensional intuition: reflection.
- Where to reflect?





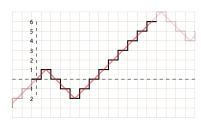
- One-dimensional intuition: reflection.
- Where to reflect?
- immediately after height $\frac{m_1}{2}$

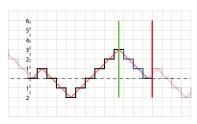




- One-dimensional intuition: reflection.
- Where to reflect?
- immediately after height $\frac{m_1}{2}$

Problem: several m_i -s. Can we fix them all at once?

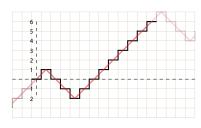


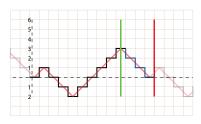


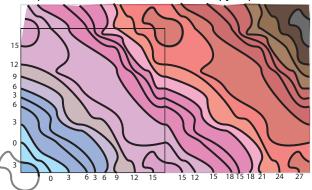
- One-dimensional intuition: reflection.
- Where to reflect?
- immediately after height $\frac{m_1}{2}$

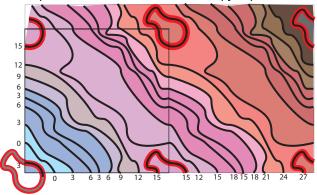
Problem: several m_i -s. Can we fix them all at once? Answer:

Topology says - Yes.

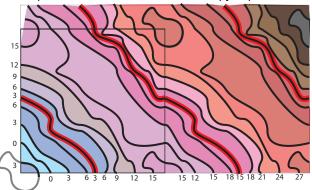






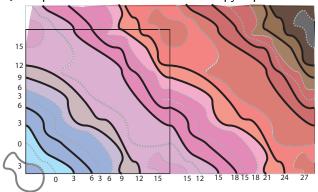


- Two types of level contours:
 - Trivial level contours.

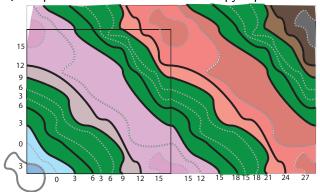


- Two types of level contours:
 - Trivial level contours.
 - Non-Trivial level contours.

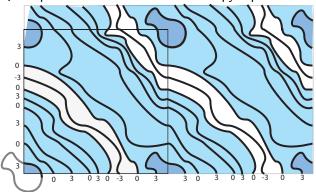
Quasi-periodic functions are homotopy equivalent to linear ones.



• We pick particular non-trivial level contours.



- We pick particular non-trivial level contours.
- We find the proper reflection "domain" on the torus.



- We pick particular non-trivial level contours.
- We find the proper reflection "domain" on the torus.
- We make the reflection.



How to discretize?

Challenges of the discrete setting:

- Define level sets properly.
- Establish their structure.
- Identify trivial level sets.
- Prove the invertability of the reflection.

How to discretize?

Challenges of the discrete setting:

- Define level sets properly.
- Establish their structure.
- Identify trivial level sets.
- Prove the invertability of the reflection.

We will focus on these in this presentation.

Sublevel sets Towards level sets

Sublevel set of v at height k

 $LC_h^k(v)$ is the connected component of v in $G \setminus \{u \in G \mid h(u) = k\}$

Sublevel Components

The fundament of level sets

Sublevel component from v to u at height k

 $LC_h^k(v, u)$ is the complement of the connected component of u in $G \setminus LC_h^k(v)$

1	2	1	2	1	0	1	2	1	2
2	1	0	1	2	1	2	1	0	1
3	2	1	2	1	2	3	2	1	2
2	1	2	1	0	1	2	1	0	1
1	2	1	2	1	0	1	0	1	2
0	1	0	1	2	1	0	1	2	1
-1	0	1	2	1	0	1	2	1	0
0	1	2	1	0	-1	0	1	2	1
1	2	1	0	-1		1	2	1	2
0	1	2	1	0	-1	0	1	2	1

$$LC_h^k(v)$$

$$LC_h^k(v,u)$$

Sublevel Components

The fundament of level sets

Sublevel component from v to u at height k

 $LC_h^k(v, u)$ is the complement of the connected component of u in $G \setminus LC_h^k(v)$

1	2	1	2	1	0	1	2	1	2
2	1	0	1	2	1	2	1	0	1
	2	1	2	1	2	3	2	1	2
2	1	2	1	0	1	2	1	0	1
1	2	1	2	1	0	1	0	1	2
0	1	0	1	2	1	0	1	2	1
-1	0	1	2	1	0	1	2	1	0
0	1	2	1	0	-1	0	1	2	1
1	2	1	0	-1		1	2	1	2
0	1	2	1	0	-1	0	1	2	1
				- 1					

$$LC_h^k(v)$$

$$LC_h^k(v,u)$$

Sublevel Components

The fundament of level sets

Sublevel component from v to u at height k

 $LC_h^k(v,u)$ is the complement of the connected component of u in $G \setminus LC_h^k(v)$

1	2	1	2	1	0	1	2	1	2
2	1	0	1	2	1	2	1	0	1
	2	1	2	1	2	3	2	1	2
2	1	2	1	0	1	2	1	0	1
1	2	1	2	1	0	1	0	1	2
0	1	0	1	2	1	0	1	2	1
-1	0	1	2	1	0	1	2	1	0
0	1	2	1	0	-1	0	1	2	1
1	2	1	0	-1		1	2	1	2
0	1	2	1	0	-1	0	1	2	1
			1.4	ck	۲,	ر,			

$$LC_h^k(v)$$

1	2	1	2	1	0	1	2	1	2
2	1	0	1	2	1		1		1
3	2	1	2	1	2			1	2
2	1	2	1	0	1		1	0	1
1	2	1	2	1	0	1	0	1	2
0	1	0	1	2	1	0	1	2	1
-1	0	1	2	1		1	2	1	0
0	1	2	1	0	-1		1	2	1
1	2	1	0	-1		1	2	1	2
0	1	2	1	0	-1	0	1	2	1

$$LC_h^k(v,u)$$

The edge boundary of a sublevel component is called a level set.

3 Types of Level Components A trichotomy

For $t \in n\mathbb{Z}^d$, and a set $U \subset \mathbb{Z}^d$ we call U + t a translate of U.

3 Types of Level Components A trichotomy

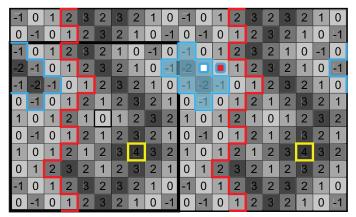
For $t \in n\mathbb{Z}^d$, and a set $U \subset \mathbb{Z}^d$ we call U + t a translate of U.

3 types of level components

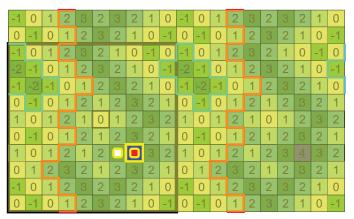
Let $U = LC_h^k(u, v)$ be a sublevel component with non-empty boundary. One of the following holds:

- (Trivial) All of U's translates are disjoint.
- (Trivial) All of U^c 's translates are disjoint.
- (Non-trivial) The translates of U are totally ordered by inclusion.

_										_		_							
-1	0	1	2	В	2	3	2	1	0	-1	0	1	2	3	2	3	2	1	0
0	-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1
-1	0	1	2	В	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1	0
-2	-1	0	1	2	3	2	1	0	-1	-2	<u>-1</u>	0	1	2	3	2	1	0	-1
-1	-2	-1	0	1	2	3	2	1	0	-1	F2	-1	0	1	2	3	2	1	0
0	-1	0	1	2	1	2	3	2	1	0	-1	0	1	2	1	2	В	2	1
1	0	1	2	1	0	1	2	3	2	1	0	1	2	1	0	1	2	3	2
0	-1	0	1	2	1	2	3	2	1	0	-1	0	1	2	1	2	В	2	1
1	0	1	2	1	2	3	4	3	2	1	0	1	2	1	2	3	4	3	2
0	1	2	3	2	1	2	3	2	1	0	1	2	3	2	1	2	В	2	1
-1	0	1	2	В	2	3	2	1	0	-1	0	1	2	3	2	3	2	1	0
0	-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1



Trivial (Disjoint translates)



Trivial (Disjoint complement translates)

-1	0	1	2		2		2	1	0	-1	0	1	2	3	2	3	2	1	0
0	-1	0	1	2		2	1	0	-1	0	⊦1	0	1	2	3	2	1	0	-1
-1	0	1	2		2	1	0	-1	0	-1	0	1	2	В	2	1	0	-1	0
-2	-1	0	1	2		2	1	0	-1	-2	<u>-1</u>	0	0		3	2	1	0	-1
-1	-2	-1	0	1	2		2	1	0	-1	 -2	-1	0	1	2	3	2	1	0
0	-1	0	1	2	1	2	3	2	1	0	F1	0	1	2	1	2	В	2	1
1	0	1	2	1	0	1	2		2	1	0	1	2	1	0	1	2	3	2
0	-1	0	1	2	1	2	3	2	1	0	-1	0	1	2	1	2	В	2	1
1	0	1	2	1	2	3	4	3	2	1	0	1	2	1	2	3	4	3	2
0	1	2		2	1	2	3	2	1	0	1	2	3	2	1	2	В	2	1
-1	0	1	2		2		2	1	0	-1	0	1	2	В	2	3	2	1	0
0	-1	0	1	2		2	1	0	-1	0	<u>-1</u>	0	1	2	3	2	1	0	-1

Non-Trivial (Ordered)

-1	0	1	2	З	2	3	2	1	0	-1	0	1	2	3	2	3	2	1	0
0	-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1
-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1	0
-2	-1	0	1	2	3	2	1	0	-1	-2	-1	0	1	2	3	2	1	0	-1
-1	-2	-1	0	1	2	3	2	1	0	-1	F2	-1	0	1	2	3	2	1	0
0	-1	0	1	2	1	2	3	2	1	0	-1	0	1	2	1	2	В	2	1
1	0	1	2	1	0	1	2	3	2	1	0	1	2	1	0	1	2	3	2
0	-1	0	1	2	1	2	3	2	1	0	-1	0	1	2	1	2	В	2	1
1	0	1	2	1	2	3	4	3	2	1	0	1	2	1	2	3	4	3	2
0	1	2	3	2	1	2	3	2	1	0	1	2	3	2	1	2	В	2	1
-1	0	1	2	В	2	3	2	1	0	-1	0	1	2	3	2	3	2	1	0
0	-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1

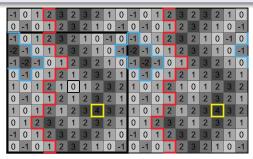
Trivial sublevel components do not create slope.

Formula for heights

Denote
$$\mathcal{L} = \{A : \exists u_1, u_2 \in \mathbb{Z}^d : A = LC_h^{h(u_2)}(u_1, u_2)\}$$

Formula for
$$h(u) - h(v)$$

$$\textit{h(u)} - \textit{h(v)} = |\{\textit{A} \in \mathcal{L} : \textit{v} \in \textit{A}, \textit{u} \notin \textit{A}\}| - |\{\textit{A} \in \mathcal{L} : \textit{v} \notin \textit{A}, \textit{u} \in \textit{A}\}|$$



Formula for heights

Denote
$$\mathcal{L} = \{A : \exists u_1, u_2 \in \mathbb{Z}^d : A = LC_h^{h(u_2)}(u_1, u_2)\}$$

Formula for
$$h(u) - h(v)$$

$$h(u)-h(v)=|\{A\in\mathcal{L}:v\in A,u\notin A\}|-|\{A\in\mathcal{L}:v\notin A,u\in A\}|$$

Specializing to v = u + t for $t \in n\mathbb{Z}^d$ we write:

Formula for
$$h(u) - h(v)$$

$$h(u) - h(v) = |\{A \in \mathcal{L}' : v \in A, u \notin A\}| - |\{A \in \mathcal{L}' : v \notin A, u \in A\}|$$

where \mathcal{L}' is the set of non-trivial sublevel components in \mathcal{L} .

Formula for heights

Denote
$$\mathcal{L} = \{A : \exists u_1, u_2 \in \mathbb{Z}^d : A = LC_h^{h(u_2)}(u_1, u_2)\}$$

Formula for
$$h(u) - h(v)$$

$$h(u) - h(v) = |\{A \in \mathcal{L} : v \in A, u \notin A\}| - |\{A \in \mathcal{L} : v \notin A, u \in A\}|$$

Specializing to v = u + t for $t \in n\mathbb{Z}^d$ we write:

Formula for
$$h(u) - h(v)$$

$$h(u)-h(v) = |\{A \in \mathcal{L}' : v \in A, u \notin A\}|-|\{A \in \mathcal{L}' : v \notin A, u \in A\}|$$

where \mathcal{L}' is the set of non-trivial sublevel components in \mathcal{L} .

 Used, for example, to show the existence of non-trivial sublevel components for sloped function.

The Discrete Picture

1	0	1	2	3	2	3	4	5	6	7	6	7	8	9	8	9	10	11	12
0	1	0	1	2	3	4	5	6	7	6	7	6	7	8	9	10	11	12	13
1	0	1	2	3	4	5	6	7	6	7	6	7	8	9	10	11	12	13	12
2	1	0	1	2	3	4	5	6	7	8	7	6	7	8	9	10	11	12	13
1	2	1	0	1	2	3	4	5	6	7	8	7	6	7	8	9	10	11	12
0	1	0	1	2	1	2	3	4	5	6	7	6	7	8	7	8	9	10	11
-1	0	1	2	1	0	1	2	3	4	5	6	7	8	7	6	7	8	9	10
0	1	0	1	2	1	2	3	4	5	6	7	6	7	8	7	8	9	10	11
-1	0	1	2	1	2	3	2	3	4	5	6	7	8	7	8	9	8	9	10
0	1	2	3	2	1	2	3	4	5	6	7	8	9	8	7	8	9	10	11
1	0	1	2	3	2	3	4	5	6	7	6	7	8	9	8	9	10	11	12
0	1	0	1	2	3	4	5	6	7	6	7	6	7	8	9	10	11	12	13

The Discrete Picture

-1	0	1	2	3	2	3	2	1	0	-1	0	1	2	3	2	3	2	1	0
0	-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1
-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1	0
-2	-1	0	1	2	3	2	1	0	-1	-2	-1	0	1	2	3	2	1	0	-1
-1	-2	-1	0	1	2	3	2	1	0	-1	-2	-1	0	1	2	3	2	1	0
0	-1	0	1	2	1	2	3	2	1	0	-1	0	1	2	1	2	3	2	1
1	0	1	2	1	0	1	2	3	2	1	0	1	2	1	0	1	2	3	2
0	-1	0	1	2	1	2	3	2	1	0	-1	0	1	2	1	2	3	2	1
1	0	1	2	1	2	3	4	3	2	1	0	1	2	1	2	3	4	3	2
0	1	2	3	2	1	2	3	2	1	0	1	2	3	2	1	2	3	2	1
-1	0	1	2	3	2	3	2	1	0	-1	0	1	2	3	2	3	2	1	0
0	-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1

The Discrete Picture

_1	Λ	1	2	2	2	3	2	1	n	_1	Λ	1	2	2	2	2	2	1	0
- 1	U			٥		J	_	1	U	-1	U	-	_	٥		J			U
0	-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1
-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1	0
-2	-1	0	1	2	3	2	1	0	-1	-2	-1	0	1	2	3	2	1	0	-1
-1	-2	-1	0	1	2	3	2	1	0	-1	-2	-1	0	1	2	3	2	1	0
0	-1	0	1	2	1	2	3	2	1	0	-1	0	1	2	1	2	3	2	1
1	0	1	2	1	0	1	2	3	2	1	0	1	2	1	0	1	2	3	2
0	-1	0	1	2	1	2	3	2	1	0	-1	0	1	2	1	2	3	2	1
1	0	1	2	1	2	3	4	3	2	1	0	1	2	1	2	3	4	3	2
0	1	2	3	2	1	2	3	2	1	0	1	2	3	2	1	2	3	2	1
-1	0	1	2	3	2	3	2	1	0	-1	0	1	2	3	2	3	2	1	0
0	-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1

Odd Tori.

- Odd Tori.
- 4-colors and more.

- Odd Tori.
- 4-colors and more.
- Non-zero temperature.

- Odd Tori.
- 4-colors and more.
- Non-zero temperature.
- Low dimension.

Thank you