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@ Uniformly chosen proper 3-coloring (Given boundary conditions)
@ High dimension 79, and ’]I‘ﬂ.
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Additional Motivation

Mathematical
Physics

Physics Combinatorics

it

Antiferromagnetism

g-states antiferromagnetic q-colorings of the
Potts model discrete torus

o

[ @ Generalizes the celebrated Ising model. |

@ Each point takes one of g values.

@ Neighbors dislike getting the same color.

@ 3-coloring is the “zero temperature” version.
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Properties of Interest

In a typical coloring:

@ What is the typical relative frequency of the colors?
Is it (1/3,1/3,1/3)?

@ Does a typical coloring follow some pattern?

@ Is there long range correlation?

@ Does it look roughly like this?

Conjecture:
d =2 No.
d > 2 Yes.
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high dimension.
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In a typical 3-coloring with 0-boundary conditions nearly all the
even vertices take the color 0.
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Previous Results - Rigidity for 0-boundary

The conjecture has been established for 0-boundary conditions in
high dimension.
0-boundary rigidity (Peled 2010)

In a typical 3-coloring with 0-boundary conditions nearly all the
even vertices take the color 0.

Formally: Let d be large enough, a uniformly chosen 3-coloring
with 0-BC, has:

E|{v e vee . g(v) # 0} cd
|Veven| < &xp _Ingd .

@ Does not work for periodic BC.

@ Open in low dimensions.
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Previous Results - Rigidity for the hypercube

The conjecture has also been supported on bounded tori.

Periodic boundary on the even hypercube (Galvin & Engbers 2011)

For every fixed n, for high enough dimension (depndeing on n), a
typical 3-coloring with periodic boundary conditions is nearly
constant on either the even or the odd sublattice.
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Previous Results - Rigidity for the hypercube

The conjecture has also been supported on bounded tori.

Periodic boundary on the even hypercube (Galvin & Engbers 2011)

For every fixed n, for high enough dimension (depndeing on n), a
typical 3-coloring with periodic boundary conditions is nearly
constant on either the even or the odd sublattice.

@ Works also for g-colorings (and even more general!)

@ Fixed n is less important for physicists.
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Previous Results - Some rigidity for the torus

Limited rigidity for periodic boundary (Galvin & Randall 2012,
Galvin, Kahn, Randall, Sorkin 2014)

For high enough dimension (depndeing on n), a typical 3-coloring
with periodic boundary conditions has at least 0.22n9 more zeroes
on one sublattice than on the other.
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Previous Results - Some rigidity for the torus

Limited rigidity for periodic boundary (Galvin & Randall 2012,
Galvin, Kahn, Randall, Sorkin 2014)

For high enough dimension (depndeing on n), a typical 3-coloring
with periodic boundary conditions has at least 0.22n9 more zeroes
on one sublattice than on the other.

@ s not enough to show that one sublattice tends to be nearly
monochromatic.

@ Does not allow analysis of sloped colorings.
@ Independent work and methods.
@ More robust, and may be useful for non-zero temperatures.
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Our Results - Rigidity on T
We establish a parallel phenomenon for periodic BC.

Theorem (F., Peled)

A typical 3-coloring with periodic boundary conditions is nearly
constant on either the even or the odd sublattice.
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Our Results - Rigidity on T

We establish a parallel phenomenon for periodic BC.

Theorem (F., Peled)

A typical 3-coloring with periodic boundary conditions is nearly
constant on either the even or the odd sublattice.

Formally: Let d be large enough, a uniformly chosen 3-coloring
with periodic BC has:

s .

o Hvevs: g #2)] CAY
ze{0,1,2}, |Vs|
s€{even,odd}

@ n must be even.

@ Introduces topological techniques to the problem.
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3-Coloring \7,/ = Quasi Periodic HHF on d
Quasi-periodic to periodic

Proof overview

Homomorphism Height Functions

h: G — Z satisfying |h(v) — h(u)| =1 if v ~ u.

0 0 0 1/0(1 1/0(1(0|1]|0
0[1]0|-1({0|1]0 1 1101 1101
0[1{0|1|0(1 110 1101 1
01 1 1 110 1 1 1 1101
01 1/0(-1(0 1 1/0(1]0]1]|0[1
01 1 11010 0|1]|0(1 1/0(1|0]|1
01 1/0(1 110 1101 1/0(1 1/0
0[f1{0|1|/0|-1{0|1]|0 0|1 1/0(-1|0 0|1
0[-1]0|1(0|-1]0 1/0(1]/0|-1|0(1
0 0 0 0[{1|/0[1[{0|-1{0|1(0|1
Zero boundary conditions Periodic boundary conditions

@ Discretized “topographical map”.
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riodic HHF on 77

Proof overview

Relation to 3-Colorings

=

Slo|la|lola|lo|=

=

Slo|lalola|lo|=

Pointed 3-Colorings Pointed HHFs

This bijection does not extend to T9.
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More is known about HHFs then about 3-colorings:

Rigidity of HHFs on T¢ (follows from Peled 2010)

A typical pointed HHF on a high dimensional torus is nearly
constant on either the even or the odd sublattice.
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3-Coll T¢ = Quasi Periodic HHF on 77
Quasi-periodic to periodic

Proof overview

Rigidity of HHFs

More is known about HHFs then about 3-colorings:

Rigidity of HHFs on T¢ (follows from Peled 2010)

A typical pointed HHF on a high dimensional torus is nearly
constant on either the even or the odd sublattice.

We wish to transfer this result to 3-colorings.
Main obstruction: No bijection between HHFs and colorings on T¢.
Here Topology enters.
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Proof overview

Introducing Quasi-Periodic HHFs

What are 3-colorings on T¢ in bijection with?



Homomorphism height functions

Periodic HHF on 79

Proof overview

Quasi periodic HHFs of Z¢

whose slopes are 0 mod 6

6

F

-

(o=

o=
alo|a|ol=a|o|=]o|=
~lo|~
=lo]=
=

alolalola|ol=

of=
=
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3-colorings
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Proof overview

3-colorings of T¢

0

Periodic 3-colorings of Z¢

0

Quasi-periodic HHFs on 74

1[04
oli]o[1
1101
)01
1201
ol1]o[1]2l1
o121 [o]4
o101 B4
o 12 1
01 1
o[t
olifof1
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Periodic HHF on 79

Proof overview

3-colorings of T¢

0

Periodic 3-colorings of Z¢

0

Quasi-periodic HHFs on 74

Periodic HHFs on Z¢

alof=|o
Ao~
=

=)

NENENENEE

o[=[o




Homomorphism height functions
3-Coloring ’]fg Q Periodic HHF on 79

Quasi-f to periodic

Proof overview

Pulling the HHFs result to 3-colorings

3-colorings of T¢

0

Periodic 3-colorings of Z¢

0

Quasi-periodic HHFs on 74

Periodic HHFs on Z¢

d 101
HHFs on T¢ ol
1/0(1

1/0(1

10201|0(1

0|1/0[1[2]1

01 1](0]1

0|1/0[1[2]1

01 1

o[ 1
1/0(1

0[1/0][1
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Periodic HHF on 79

Proof overview

3-colorings of T¢

0

Periodic 3-colorings of Z¢

0

Quasi-periodic HHFs on 74

Periodic HHFs on Z¢

HHFs on T? !
(which are known to be rigid) !

alof=|o
Ao~
=

=)

NENENENEE
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Proof overview

3-colorings of T¢

0

Periodic 3-colorings of Z¢

0

Quasi-periodic HHFs on 74

i
Periodic HHFs on Z¢

HHFs on T¢
(which are known to be rigid)

GOAL: Show that most

quasi-periodic HHFs are periodic.

Homomorphism height functions

Periodic HHF on 79

=)

o[=[o

alof=|o

NENENENEE

Ao~




Proof overview
Quasi-periodic to periodic

Proving Most Quasi-periodic are Periodic

We construct a “flattening” map VW from quasi-periodic HHFs into
periodic ones.

small

“sloped”
P subset

3-colorings




Proof overview

3-Coloring T¢ e
Quasi-periodic to periodic

Flattening the slope

Introducing the reflection W

Denote QP,, := {h € QP : m is the slope of h}
We construct V,,, : QP,, = QPg, a one-to-one mapping.

BNE BE

Slol=

=Y D P=Y [ P N =Y i

N P D = Y =Y

o|=~




Proof overview

Flattening the slope

Introducing the reflection W

@ Denote QP,, := {h € QP : m is the slope of h}
@ We construct V,,, : QP,, — QPg, a one-to-one mapping.
1(0/[1
0/1/0]1
1(0]1
1/0[1
f1) 1 f1) ? ; 1 ‘Um
01 1(0]1
o170 121 —
01 1
01 1
1[0
1

o|=~

@ Observe that the image contains a long level set.
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Quasi-periodic to periodic

Proof overview

Flattening the slope

Introducing the reflection W

Denote QP,, := {h € QP : m is the slope of h}
We construct V,,, : QP,, = QPg, a one-to-one mapping.

1o 0
ol1lol1 -
101 =] o
0|1 4
12101 0
o1 (o121 ‘Um ﬁ
of12l1[o]1 2
oo 1 Bl — 1
o[12]1 2]
o[ 1 1
101 [1]o
o[tlol1 =

@ Observe that the image contains a long level set.

@ Peled 2010: Long level sets are extremely uncommon.
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3-Colo Q dic HHF on 7
Quasi-periodic to periodic

Proof overview

Flattening the slope

Introducing the reflection W

Denote QP,, := {h € QP : m is the slope of h}
We construct V,,, : QP,, = QPg, a one-to-one mapping.

R
ol1lol1

701

QK

1 BI04

o1 o[BI ‘Um
o121 [o]1

o101 B —
o112l 1

o[ 1

RE

o[1]0]1

@ Observe that the image contains a long level set.
@ Peled 2010: Long level sets are extremely uncommon.

@ We deduce the image of W, is small.
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Flattening the slope
Ideas and Method From continuous topology to a discrete one

Application of the trichotomy

Flattening Intuition

@ One-dimensional intuition:
reflection.

@ Where to reflect?

my

- immediately after height

Problem: several m;-s. Can we
fix them all at once?
Answer:

Topology says -




Flattening the slope
From continuous topology to a discrete one

Ideas and Method Application of the trichotomy

Flattening multi-dimensional functions

Quasi-periodic functions are homotopy equivalent to linear ones.

SN
_J
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3 ¥ \
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Flattening multi-dimensional functions

Quasi-periodic functions are homotopy equivalent to linear ones.

N Q

0 3 1512 15 181518 21 24 27

@ Two types of level contours:
Trivial level contours.
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Flattening multi-dimensional functions

Quasi-periodic functions are homotopy equivalent to linear ones.

L
N
X

0 3 636 9 12 15 1512 15 181518 21 24 27

@ Two types of level contours:
Trivial level contours.
Non-Trivial level contours.
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Flattening multi-dimensional functions

Quasi-periodic functions are homotopy equivalent to linear ones.

N\

N
: \

]

0 3 636 9 12 15 15 12 15 181518 21 24 27

@ We pick particular non-trivial level contours.



Flattening the slope

to a discrete one

@ We pick particular non-trivial level contours.

@ We find the proper reflection “domain” on the torus.
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Flattening multi-dimensional functions

Quasi-periodic functions are homotopy equivalent to linear ones.

SINNNDIN
DR\

»

3\ &
QJO 3 030 -3 0 3 3 0 3 030-3 0

@ We pick particular non-trivial level contours.
@ We find the proper reflection “domain” on the torus.

@ We make the reflection.
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@ Define level sets properly.
@ Establish their structure.
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@ Prove the invertability of the reflection.
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How to discretize?

Challenges of the discrete setting:
@ Define level sets properly.
@ Establish their structure.
o ldentify trivial level sets.

@ Prove the invertability of the reflection.

We will focus on these in this presentation.
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Sublevel sets

Towards level sets

Sublevel set of v at height k

LCK(v) is the connected component of v in G\ {u € G | h(u) = k}




Ideas and Method Y pology to a discrete one
of the trichotomy

Sublevel Components

The fundament of level sets

Sublevel component from v to u at height k

LCK(v, u) is the complement of the connected component of u in

G\ LCx(v)

1 1

1/0(1

1

1
1 1 0
0|1]0]1 1
-1]0]1 1/0
01 1
1 1
0|1 1

LCK(v, u)
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G\ LCx(v)

LCh(v)



Flattening the slope
|deas and Method Eromfo_nr Elqusrtopglrorgyr to a discrete one
pplication of the trichotomy

Sublevel Components

The fundament of level sets

Sublevel component from v to u at height k

LCK(v, u) is the complement of the connected component of u in

G\ LCK(v)
1 1
1101
1
;
1 1 0
0[1/0]1 1
-1]0]1 1/0
01 1
1 1
110 01 1
v v,u
LCk LCk

The edge boundary of a sublevel component is called a level set.
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3 Types of Level Components

A trichotomy

For t € nZ9, and a set U C Z9 we call U + t a translate of U.
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3 Types of Level Components

A trichotomy

For t € nZ9, and a set U C Z9 we call U + t a translate of U.

3 types of level components

Let U = LCf(u, v) be a sublevel component with non-empty
boundary. One of the following holds:

@ (Trivial) All of U’s translates are disjoint.

@ (Trivial) All of U¢’s translates are disjoint.

@ (Non-trivial) The translates of U are totally ordered by
inclusion.
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Flattening the slope

Trichotomy - example

01 110 01 110
0 01 110 0 01 110
0|1 10 0]-1/0/1 10 0
01 1/0|-1 U@ 110
01 1]0]-1 -1/0 [1 10
0 01 1 1§0 -1 0|1 1 1
1(0]|1 1101 1(0]|1 1{0]|1
0 01 1 190 0|1 1 1
1/0[1 1 1) 1(0[1 1 1)
01 1 101 1 1
0|1 10 0 10
0 01 110 0 01 110
Trivial (Disjoint translates)
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Trichotomy - example

jo/1/2@ 282 1]/o/1]o[1/2 82 @l2 1|0
ol o1 2 W82 10 =10 [=1 0|1} 2802101
-1 o[ 128N 2] 1[0 [a(olt 0|1 }20882 1|0 1|0
21 0[1|2@l2(1]0 2|10/
-12]-1 o1 28] 2] 1 28210
01 0[1]2]1]|2 )82 1121882 1
1/o[1)2(1]o|1]|2}8 012842
o/-1|o|1]2]|1]2 82 11288 2] 1
11o0(102]1 |2 I=]8 2|84 38 2
o/1{2@ 21|28l 2 11288 2] 1
1001282 8] 2] 1 282 10
ol o1 208211 0 /=1]o =101} 282101

Trivial (Disjoint complement translates)
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Trichotomy - example

0
) =18 0 | 1 B2 1
Non-Trivial (Ordered

From continuous topology to a discrete one
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Trichotomy - example

01 0[]
o=l o102 \.ﬂuﬂun-\ ,\nu

Trivial sublevel components do not create slope.



ening the slope

to a discrete one
Application of the trichotomy

Ideas and Method

Formula for heights

Denote £ = {A cdur, up € 79 A= LC:(UZ)(U;[, U2)}

Formula for h(u) — h(v)
h(u)—h(v):|{A€£:v€A,u¢A}|—|{A€£: vegAue A}
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Formula for heights

Denote £ ={A:3uj, i, € Z9: A= LC:(UZ)(ul, up)}

Formula for h(u) — h(v)

h(u)—h(v)={AeL:veAugA}|—|{AcL:v¢AucA}

Specializing to v = u + t for t € nZ9 we write:

Formula for h(u) — h(v)

h(u)—h(v)={Ae L :veAug¢g A}|—-|[{Ac L :v¢Auc A}

where L is the set of non-trivial sublevel components in L.
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Application of the trichotomy

Formula for heights

Denote £ ={A:3uj, i, € Z9: A= LC:(UZ)(ul, up)}

Formula for h(u) — h(v)

h(u)—h(v)={AeL:veAugA}|—|{AcL:v¢AucA}

Specializing to v = u + t for t € nZ9 we write:

Formula for h(u) — h(v)

h(u)—h(v)={Ae L :veAug¢g A}|—-|[{Ac L :v¢Auc A}

where L is the set of non-trivial sublevel components in L.

@ Used, for example, to show the existence of non-trivial
sublevel components for sloped function.
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The Discrete Picture
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