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Abstract

We model situations in which a principal provides incentives to a group
of agents to participate in a project (such as a social event or a commercial
activity). Agents’ benefits from participation depend on the identity of other
participating agents. We assume bilateral externalities and characterize the
optimal incentive mechanism. Using a graph-theoretic approach we show that
the optimal mechanism provides a ranking of incentives for the agents, which
can be described as arising from a virtual popularity tournament among the
agents (similar to ones carried out by sport associations). Rather then simply
ranking agents according to their measure of popularity, the optimal mecha-
nism makes use of more refined two-way comparison between the agents. An
implication of our analysis is that higher levels of asymmetry of externalities
between the agents enable a reduction of the principal’s payment. In addi-
tion, contrary to intuition, an increase in the aggregate externalities, does not
necessarily decrease principal’s payment, nor does it change agents rewards.
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1 Introduction

The success of economic ventures often depends on the participation of a group of
agents. One example is the malls industry. An owner of a mall needs to convince
store owners to ”participate” and open stores in the mall. A second example is an
acquisition game. Consider a firm that makes acquisition offers to several owners of
target firms. A successful venture would be a gathering of sufficient market power
(through acquisitions) by the acquirer firm to maximize her profits, and participation
would be an agreement of the target firms to sell. A third example is a standard-
ization agency who succeeds in introducing a new technology standard if it manages
to convince a group of firms to adopt the new standard. Throwing a party or or-
ganizing a conference are yet other examples, the success of which depends on the
participation of the invited guests.

Multilateral contracting scenarios generate externalities which are rarely sym-
metric. In a mall, a small store subtantialy gains from the presence of an anchor
store (such as a national brand name), while the opposite externality, induced by the
small store has hardly any effect on the anchor store. The recruitment of a senior
star to an academic department can easily attract a young assistant professor to
apply to that department but not the other way around. The adoption of a new
standard proposed by a standardization agency induces substantial positive exter-
nalities among the adopting firms but the level of benefits for a given firm crucially
depends on the identity of the other firms who adopt the standard. In such environ-
ments, when an agent decides whether or not to participate she takes into account
not only how many other agents are expected to participate but, more importantly,
who is expected to participate. In this paper we focus on this type of type depen-
dent externalities and investigate the consequences of asymmetry between agents in
a multilateral contracting environment.

We explore ventures initiated by a certain party (henceforth a principal), in which
we refer to as multi-agent initiatives. The success of these initiatives depends on the
participation of other agents, and thus the principal provides incentive contracts to
induce them to participate (such as discounts, gifts or any other benefits) and has to
design these contracts optimally in view of the prevailing type dependent externalities
between the agents. Any set of participating agents generate some revenue for the
principal, and the principal will attempt to maximize his revenue net of the cost of
the optimal incentive scheme.

Multi-agent initiatives consist two stages: the selection stage, in which the prin-
cipal selects the target audience for the venture, and the participation stage, in which
the principal introduces a set of contracts in order to induce the participation of his



selected group. To work out the overall solution we will work backwards by first
characterizing the optimal mechanism inducing the participation of a given group
and this will enable to solve the selection part of the problem. Our analysis is com-
prehensive in two respects. First, we allow for all type of externalities starting with
purely positive externalities, continuing with the case of negative externalities and
concluding with the case of mixed externalities, where both positive and negative
externalities can coexist in the same problem. Second, we will derive the optimal
mechanism for both partial implementation, where the principal sustains agents’ par-
ticipation in some equilibrium, as well as full implementation, where participation
is sustained via a unique equilibrium. If the principal cannot coordinate the agents
to play her desired equilibrium she will have to pay a premium in terms of higher
payments to guarantee that participation is sustained as the unique equilibrium of
the underlying game. We will show that this premium varies with the structure of
externalities within the group of agents, and depends on level of asymmetry between
the agents in the group.

The type dependent externalities among agents are described in our model by a
matrix whose entry w;(j) represents the extent to which agent 7 is attracted to the
initiative when agent j participates. An optimal mechanism is a vector of rewards
(offered by the principal to the agents) that sustains full participation at minimal
total cost (or maximal total extraction) to the principal. In characterizing the optimal
mechanisms we will focus on three main questions: 1. What is the hierarchy of
incentives across agents as a function of the externalities; i.e., who should be getting
higher incentives and who should be rewarded less? 2. How does the structure of
externalities affect the principal’s cost of sustaining the group participation? 3. How
does a slight change in the externality that an agent induces on the others affect his
reward and the principal’s benefits?

Under positive externalities the optimal contracts are determined by a virtual
popularity tournament among the agents. In this tournament agent i beats agent j
if agent 7 is attracted ¢ more than agent ¢ is attracted to j. These relations between
the agents give rise to a network described by a graph. We use basic graph theory
arguments to characterize the optimal mechanism and show that agents who in-
duce relatively larger externalities (agents who gets more ”winnings”) receive higher
incentives.

The idea that agents who induce relatively stronger externalities receive higher
incentives is supported by an empirical paper by Gould et al (2005). This paper
demonstrates how externalities between stores in malls affect contracts offered by
the malls owners. As in our model, stores are heterogeneous in the externalities
they induce on each other. Anchor stores generate large positive externalities by



attracting most of the customer traffic to the mall, and therefore increase the sales
of non anchor stores. The most noticeable characteristic of mall contracts is that
most anchor stores either do not pay any rent or pay only a trivial amount. On
average, anchor stores occupy over 58% of the total leasable space in the mall and
yet pay only 10% of the total rent collected by the mall’s owner.

A key characteristic of the structure of externalities in a certain group of agents is
the level of asymmetry between the agents, which we show to decrease the principal’s
cost. Put differently, the principal gains whenever the attraction between any two
agents is distributed more asymmetrically (less mutually). Such greater asymmetry
allows the principal more leverage in exploiting the externalities to lower costs. This
observation has an important implication on the principal’s choice of group for the
initiative in the selection stage.

However, we show that an increase in the (positive) externalities among agents
does not necessarily entail that the principal will be strictly better off, nor does it
imply a change in agents’ payoff. Moreover, the structure of the optimal mechanism
has some implications for the way in which agents choose to affect the externalities
they induce on others. Slight change in the externality that an agent induces on
the others can result in a substantial change in the payment that this agent receives
from the principal.

When discussing multi-agent participation scenarios one possible and intuitive
solution might be to reward agents according to their measure of popularity such that
the most popular agents would be rewarded the most. This follows the argument
that once a popular agent agrees to participate it is easier to convince the others
to join. While the term “popularity” can be defined in many ways, they all come
down to the quality of being widely accepted by others . In our context agent i’s
popularity will be the sum of externalities it induces on the other agents in the group.
However, we show that agents’ rewards in the optimal mechanism are determined by
something more refined than this standard definition of popularity. Agent i’s reward
depends on the set of peers that value agent i’s participation more than i values
theirs. This two-way comparison may result in a different tournament than the one
imposed by a standard definition of popularity.

This work is part of an extensive literature on multi-agent contracting in which
externalities arise between the agents. The structure of our game, in which the
principal offers a set of contracts and the agents can either accept or reject the offer,
is akin to various applications introduced in the literature. These include vertical
contracting models (Katz and Shapiro 1986a; Kamien, Oren, and Tauman 1992) in
which the principal supplies an intermediate good, which is a fixed input (a license
to use the principal’s patent) to N identical downstream firms (agents), who then



produce substitute consumer goods; exclusive dealing models (Rasmusen, Ramseyer,
and Wiley 1991; Segal and Whinston 2000) in which the principal is an incumbent
monopolist who offers exclusive dealing contracts to N identical buyers (agents)
in order to deter entrance of a rival; acquisition for monopoly models (Lewis 1983;
Kamien and Zang 1990; Krishna 1993) in which the principal makes acquisition offers
to N capacity owners (agents), and these capacities are used to produce homogeneous
consumer goods and network externalities models (Katz and Shapiro 1986b).

Our main departure from the above-mentioned literature lies in the fact that we
focus on the case of heterogeneous agents with type dependent externalities. The
papers mentioned above, and indeed most of the literature, assume that externalities
depend on the volume of aggregate trade, and not on the identity of the agents.
Our emphasis on heterogeneous agents and type dependent externalities allows us to
capture a more realistic ingredient of the multilateral contracts, which are affected by
the more complex relationships between the agents. Identity-type externalities were
used in Jehiel and Moldovanu (1996) and Jehiel, Moldovanu, and Stachetti (1996),
which consider the sale of a single indivisible object by the principal to multiple
heterogeneous agents using auctions, when the utilities of the agents depend on
which agent ultimately receives the good.

Our general approach is closely related to the seminal papers by Segal (1999,
2003) on contracting with externalities. These papers present a generalized model
for the applications mentioned above as well as others. Our approach is also related to
the incentive schemes investigated by Winter (2004) in the context of organizations.
While we provide a solution for partial implementation, we follow Segal (2003) and
Winter (2004) in that we concentrate on situations in which the principal cannot
coordinate agents on his preferred equilibrium; that is we are mainly looking for
contracts which sustain full implementation. Indeed, recent experimental papers
(see, for example, Brandt and Cooper 2005) indicate that in an environment of
positive externalities players typically are trapped in the bad equilibrium of no-
participation. Finally, we point out that since our optimal mechanism is derived by
means of a virtual tournament our results surprsingly connect to the literture on
two quite distinct topics: 1. Creating a method for ranking sport teams based on
tournament results, which has been discussed in the operation research literature and
2. Creating a rule for ranking candidates based on the outcome of binary election.
It turns out that Condorcet’s (1785) solution to the second problem as well as the
method proposed by the OR literature to the first problem are closely related to our
solution for the optimal mechanism. We will expand on this later.

The rest of the paper is organized as follows. In Section 2 we provide a simple
two-agents example to illustrate some of the key results in the paper. We introduce



the general model in section 3 and section 4 provides the solution for participation
problem with positive externalities between the agents. In section 4 we examine
the influence of some characteristics of the externalities structure on the principal’s
cost of incentivizing agents. In section 5 we consider the solution of participation
problems with negative externalities and show that agents must be fully compensated
to sustain a full participation equilibrium. Section 6 provides a solution for the most
general case in which positive and negative externalities coexist. In section 7 we
demonstrate how this model can be used to solve selection problems. We conclude
in section 8. Proofs are presented in the appendix.

2 A Simple Two-Agent Example

The key ideas behind the paper’s results can be illustrated by using a simple two-
agent example. Suppose a principal would like to convince agents 1 and 2 to take
part in his initiative by offering agent ¢ a contract which pays v; to agent i if he
participates. Let’s assume the agents have identical outside options in case they
decline the principal’s offer of ¢ > 0. Furthermore, the decision to participate induce
an externality on the other agent. If agent 1 is participating, agent 2’s benefit (loss)
is wo(1). Equivalently, if agent 2 is participating agent 1’s benefit (loss) is w;(2). The
agents will choose to participate if the payoff from the principal and the benefit /loss
from other participating agents, taken together, is greater than the outside option.

Suppose first that the externalities wy(2) and wy(1) are stricly positive. A simple
mechanism that induces the participation of both agents as a Nash Equilibrium is
(v1,v9) = (¢ — w1(2),¢ — wy(1)), in which agent 1 is offered ¢ — w;(2) and agent
2 is offered ¢ — wy(1). However, this mechanism is not satisfactory as it includes
an additional equilibrium in which both agents are not participating. We refer to
such a mechanism as a partial implementation mechanism. In order to sustain the
participation of both agents in a unique equilibrium, it is necessary to provide at least
one agent, say agent 1, his entire outside option c. Now agent 1 will participate, even
if agent 2 will decline. Given agent 1’s participation, it is sufficient to offer agent 2
only ¢ —wy(1) to induce his participation. Hence the mechanism (¢, ¢ — wq(1)), while
the total payment under this mechanism is higher here than in the one of partial
implementation, it induces participation in a unique equilibrium. We refer to such
a mechansim as a full implementation mechanism, and consider full implementation
for the rest of the example.

Let’s assume further that externalities are symmetric, hence wq(2) = ws(1) > 0.
In this case, the decision of which agent will receive higher payoff is arbitrary, as the
cost of both mechanisms (¢, ¢ — ws(1)) and (¢ — w1(2), ¢) is identical. Suppose now
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that externalities are asymmetric, say, w}(2) = wi(2) + ¢ and wh(1) = wy(1) — &,
when £ > 0, so that w}(2) > w)(1). Note that the sum of externalities remained
unchanged. In this case, clearly, the principal would prefer to offer agent 2 a higher
payoff as the sum of incentives in mechanism (c—w/(2), ¢) is lower than the alternative
full implementation mechanism (¢, ¢ — w4 (1)). To get a cheaper full implementation
mechanism, the principal exploits the fact that agent 1 favors 2 more than agent 2
favors 1, and thus gives preferential treatment to agent 2 by providing him with a
higher incentive. We will later provide a general result, and demonstrate that the
set of contracts that minimize the principal’s cost in full implementation, is based
on these bilateral relationships between the agents.

This simple example also demonstrates that the principal benefits from higher
asymmetry between agents’ externalities (i.e., lower mutuality). Note that the prin-
cipal’s optimal cost in the full implementation is 2¢ — w/(2) = 2¢ — w;(2) — €. This
observation is extended later in the paper. Moreover, we show that the cost dif-
ference between the more expensive full implementation mechanism and the partial
implementation, is decreasing with the level of asymmetry. In this example, the dif-
ference between the two types of mechanisms is simply w9 (1) — €. Therefore, the level
of asymmetry between the agents becomes an important consideration at the stage
of participants selection and the choice of full or partial implementation mechanism.

To conclude this example, consider the case of negative externalities, i.e., w;(j) <
0 and w;(i) < 0. In this case, the principal has to compensate each agent for the
damage caused by the participation of the other. Therefore, the optimal mechanism is
simply v; = c¢+|w1(2)] and vy = ¢+ |wy(1)|. In the paper we provide a comprehensive
solution that includes both positive and negative externalities.

3 The Model

A participation problem is given by a triple (N, w,c) where N is a set of n agents.
The agents’ decision is binary, participate in the initiative or not. The structure of
externalities w is an n X n matrix specifying the bilateral externalities among the
agents. An entry w;(j) represents the extent to which agent 7 is attracted to the
initiative when agent j is participating. Agents gain no additional benefit from their
own participation, so w;(i) = 0. We assume that agents’ preferences are additively
separable, i.e., agent i’s utility from participating jointly with a group of agents M
is > jep wilj) for every M C N. We assume that the externality structure w is
fixed and exogenous. Finally, c is the vector of the outside options of the agents. For
simplicity and in a slight abuse of notation, we assume that c is constant over all
agents. Our results can be generalized easily to the case of heterogeneous costs.
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We assume that contracts offered by the principal are simple and descriptive
in the sense that the principal cannot provide payoffs that are contingent on the
participation behavior of other agents. Much of the examples discussed above seem to
share this feature. Evidently, in Gould et al (2005), rental contracts in malls include
fixed rental component and overage rent provision but exclude any contingencies on
participation of other stores. This set of contracts can be described as an incentive
mechanism v = (vy, vy, ...,v,) by which agent i receives a payoff of v; if he decides
to participate and zero otherwise. v; are not constrained in sign and the principal
can either pay or charge his agents but he cannot punish agents for not participating
(limited liability). Given a mechanism v agents face a normal form game G(v). Each
agent has two possible strategies in the game: participation or default. For a given
set M of participating agents, each agent ¢ € M earns » e w;(j) + v; and each
agent j ¢ M earns his outside option. We assume agents’ participation decisions are
taken simultaneously. We focus first on full implementation, i.e., mechanisms that
sustain full participation as a unique equilibrium in the game G(v). A mechanism
sustaining full participation as a unique equilibrium with minimal total cost for the
principal is said to be an optimal mechanism.

We view the participation problem as a reduced form of the global optimization
problem faced by the principal which involves both the selection of the optimal group
for the initiative and the design of incentives. Specifically, let U be a (finite) universe
of potential participants. For each N C U let v*(IN) be the total payment made in
an optimal mechanism that sustains the participation of the set of agents N. The
principal will maximize the level of net benefit she can guarantee herself which is given
by the following optimization problem: maxycy[u(N) — v*(NV)], where u(N) is the
principal’s gross benefit from the participation of the set N of agents and is assumed
to be strictly monotone with respect to inclusion, i.e., if 7" ¢ S, then u(T) < u(S).
Our full implementation framework assumes that the principal cannot coordinate
the agents to play anything better than the worse equilibrium is her respect, while
partial implementation assumes that players select the full participation equilibrium
in case of multiple equilibria. While most of our analysis will concern the structure
of incentives within the selected set N,our results will also shed light on the selection
problem.



4 Positive Externalities

Suppose that w;(j) > 0 for all 4, 7 € N, such that i # j. In this case, agents are more
attracted to the initiative the larger the set of participants. We demonstrate how an
agent’s payment is affected by the externalities that he induces on others as well as
by the externalities that others induce on him. We will also refer to how changes in
the structure of externalities affect the principal’s welfare.

In proposition 1 we show that the optimal mechanism is part of a general set of
mechanisms characterized by the divide and conquer' property. This set of mech-
anisms is constructed by ordering agents in an arbitrary fashion, and offering each
agent a reward that would induce him to participate in the initiative under the belief
that all the agents who are before him participate and all the agents who are after him
default. Due to positive externalities, “later” agents are induced (implicitly) by the
participations of others and thus can be offered smaller (explicit) incentives. More
formally, the divide and conquer (DAC) mechanisms have the following structure:

v = (¢, ¢ —wiy(ir), ¢ = wiy (ir) = wiy (iz), e = > w;, (ix))

where ¢ = (iy,19,...,1,) is an arbitrary order of agents. We refer to this order as
the ranking of the agents and say that v is a DAC mechanism with respect to the
ranking ¢. The reward for a certain agent i is increasing along with his position
in the ranking. More specifically, the higher agent i is located in the ranking, the
higher is the payment offered by the principal.

Note that given mechanism v, agent i; has a dominant strategy in the game G(v),
which is to participate? . Given the strategy of agent i;, agent i, has a dominant
strategy to participate as well. Agent i; has a dominant strategy to participate pro-
vided that agents i, to ¢;_; participate as well. Therefore, mechanism v sustains full
participation through an iterative elimination of dominated strategies. The following
proposition provides a necessary condition for the optimal mechanism.

Proposition 1 If v is an optimal mechanism then it is a divide and conquer
mechanism.
Proof. Let v = (v, v, ..., v;,) be an optimal mechanism of the participation prob-
lem (N,w,c). Hence, v generates full participation as a unique Nash equilibrium.

1See Segal (2003) and Winter (2004) for a similarly structured optimal incentive mechanism.
2Since rewards take continuous values we assume that if an agent is indifferent then he chooses
to participate.



Since no-participation is not an equilibrium, at least a single agent, henceforth i,
receives a reward weakly higher than his outside option ¢. Due to the optimality of
v his payoff would be exactly c. Agent i; chooses to participate under any profile
of other agents’ decisions. Given that agent ¢; participates and an equilibrium of
a single participation is not feasible, at least one other agent, henceforth i, must
receive a reward weakly higher than ¢ — w;,(i;). Since v is the optimal mechanism,
io’s reward cannot exceed ¢ — w, (1), and under any profile of decisions i, will par-
ticipate. Applying this argument iteratively on the first £ — 1 agents, at least one
other agent, henceforth iy, must be incentivized with a payoff weakly higher than
c— Zf;ll w;, (j), but again, since v is optimal, the payoff for agent k£ must be equal
to ¢ — Zf;ll w;, (j). Hence, the optimal mechanism v must satisfy the divide and
conquer property and therefore it is a DAC mechanism under a certain ranking ¢. B

4.1 Optimal Ranking

Our construction of the optimal mechanism for the participation problem (NV,w, c)
relies on proposition 1, which shows that the optimal mechanism is a DAC mecha-
nism. Therefore, we are left to characterize the optimal ranking which is the ranking
that yields the lowest payment DAC mechanism. We show that under positive exter-
nalities the optimal ranking is determined by a virtual popularity tournament among
the agents, in which each agent is challenged by all other agents. The results of these
matches between all pairs of agents are described by a directed graph G(N, A), when
N is the set of nodes and A is the set of arcs. Hence, N represents the agents, and
A C N x N is a binary relation on N that defines the set of arcs. The directed
graph are simple and complete®. We refer to such graphs as tournaments. Note
that we allow both (i,j) € A and (j,47) € A unless i = j. We define the set of arcs in
tournament G (N, A) as follows:
) wi) <) < (ij)eA
(2) wi(j) = wii) <> (i) € A and (j,i) € A

The interpretation of a directed arc (7, j) in the tournament G is that agent j val-
ues mutual participation with agent ¢ more than agent ¢ values mutual participation
with agent j. We also use the term agent i beats agent j whenever w;(j) < w;(i).
In case of a two sided arc, i.e., w;(j) = w;(i) we say that agent i is even with agent
J and the match ends with a tie.

In our solution analysis we distinguish between acyclic and cyclic graphs. We
say that a tournament is cyclic if there exists at least one node v for which there is

3A directed graph G(N, A) is simple if (i,i) ¢ A for every i € N and complete if for every
i,7 € N at least (i,7) € A or (j,1) € A.
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a directed path starting and ending at v, and acyclic if no such path exists for all
nodes.*

4.2 Optimal Ranking for Acyclic Tournaments

A ranking ¢ is said to be consistent with tournament G(N, A) if for every pair
1,7 € N if ¢ is ranked before j in ¢, then ¢ beats j in the tournament G. In other
words, if agent ¢ is ranked higher than agent j in a consistent ranking, then agent j
values agent ¢ more than agent ¢ values j. We start with the following lemma:

Lemma 1 If tournament G(N, A) is acyclic, then there exists a unique ranking
that is consistent with G(N, A).

We refer to the unique consistent ranking proposed in Lemma 1 as the tournament
ranking.” TFrom the consistency property, if agent i is ranked above agent j in
the tournament ranking, then ¢ beats j. Moreover, each agent’s location in the
tournament ranking is determined by the number of his winnings. Hence, the agent
ranked first is the agent who won all matches and the agent ranked last lost all
matches. As we demonstrate later, there may be multiple solutions when tournament
G(N, A) is cyclic. Proposition 2 provides a unique solution for participation problems
with acyclic tournaments:

Proposition 2 Let (N, w, c) be a participation problem for which the correspond-
ing tournament G(N, A) is acyclic. Let ¢ be the tournament ranking of G(N, A).
The optimal mechanism of (N, w,c) is given by the DAC mechanism with respect to

®.

The intuition behind Proposition 2 is based on the notion that if agents 7,7 € N
satisfy w;(j) < w;(4) then the principal should exploit the fact that j favors ¢ more
than i favors j by giving preferential treatment to ¢ (putting him higher in the
ranking) and using agent i’s participation to incentivize agent j. Thus, the principal
is able to reduce the cost of incentives by w,(i) rather then by only w;(j) if agent
j precedes agent i in the ranking. Applying this notion upon all pairs of agents
minimizes the principal total payment to the agents. One way to think on tournament
G(N, A) is as a set of constraints that the optimal mechanism has to satisfy which
eventually leads to a ranking.

By definition, if (i,7) € A and (j,4) € A, then the tournament is cyclic.
5The tournament ranking is actually the ordering of the vertices in the unique hamiltonian path
in tournament G(N, A).
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The optimal mechanism can be viewed as follows. First the principal pays the
outside option ¢ for each one of his agents. Then the agents participate in a tourna-
ment that matches each agent against all other agents. The winner of each match
is the agent who imposes a higher externality on his competitor. The loser of each
match pays the principal an amount equals to the benefit that he acquires from mu-
tually participating with his competitor. Note that if agent ¢ is ranked higher than
agent 7 in the tournament then it is not necessarily the case that j pays back more
than 7 in total. The total amount paid depends on the size of bilateral externalities
and not merely on the number of winning matches. However, the higher agent i is
located in the tournament, the lower is the total amount paid to the principal.

From the perspective of the agents, their reward is not a continuous increasing
function of the externalities they imposes on the others. However, a slight change
may increase rewards significantly, since a minor change in externalities may change
the optimal ranking and thus affect agents’ payoffs.

An intuitive solution for the participation problem might be to reward agents ac-
cording to their level of popularity in the group, such that the most popular agents
would be rewarded the most. One possible interpretation of popularity in our con-
text would be the sum of of externalities imposed on other by participation, i.e.,
>j— w;(i). However, as we have seen, agents’ rankings in the optimal mechanism
are determined by something more refined than this standard definition of popular-
ity. Agent i’s position in our ranking depends on the set of peers that value agent
1’s participation more than 7 values theirs. This two-way comparison may result in a
different ranking than the one imposed by a standard definition of popularity. This
can be illustrated in the following example in which agent 3 is ranked first in the
optimal mechanism despite of being less "popular" than agent 1.

Example 1 Consider a group of 4 agents with identical outside option ¢ = 20.
The externalities structure of the agents is given by matriz w as shown in Figure
1. The tournament G is acyclic and the tournament ranking is ¢ = (3,1,2,4).
Consequently, the optimal mechanism is v = (20,17,14,10), which is the divide and
conquer mechanism with respect to the tournament ranking. Note that agent 3 who
is ranked first is not the agent who has the maximal Z?Zl w; (7).

01 3 2 1 —>2
4 0 2 2

1|-'=2101 |::>T><l
3520 3—>4
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Figure 1

Note that while the principal’s cost of incentivizing full participation is weakly
decreasing with respect to the entries in the matrix of externalities it is not strictly
decreasing. Consider a two-agent example in which w;(j) > w; (7). If we increase w;(j)
by a small ¢ the total payment will decrease by €. However, if w;(7) is increased by
e, the total payment in the optimal mechanism will remain unchanged.® That is, the
principal does not exploit the externality j induces on ¢ since the reverse externality
is greater. In general, let V' be the optimal sum of payments of a participation
problem (N, w,c). If w;(j) > w;(i) then V is strictly decreasing with w;(j).

The total cost of incentives in the optimal mechanism can be simply expressed
in a formula without going through the combinatorial problem of identifying the
tournament ranking. Two terms play a role in this formula: The first measures
the aggregate level of externalities, i.e., Kogy = >, ; wi(j); the second measures the
bilateral asymmetry among the agents, i.e., Kogym = > ;i [wi(j) — w;(i)]. Kasym
stands for the extent to which agents induce mutual externalities on each other.
The smaller the value of K, the higher the degree of mutuality of the agents.
Proposition 3 shows that the cost of the optimal mechanism is additive and declining
in these two measures.

Proposition 3 Let (N, w,c) be a participation problem and V be the principal’s
optimal cost of inducing participation. If the corresponding tournament G(N, A) is
acyclic then V =n-c — % (Kagg + Kasym)

An interesting consequence of Proposition 3 is that for a given level of aggregate
externalities, the principal’s payment is decreasing with lower levels of mutuality
among the agents, as stated in Corollary 3.1. Hence, when the level of asymmetry
in the externalities among agents is increasing the principal’s payment is lower. The
intuition behind this result relates to the virtual tournament discussed above. In each
matching that takes place the principal extracts a “fine” from the losing agents. It is
clear that these fines are increasing with the level of asymmetry (assuming w;(j) +
w;(7) is kept constant). Hence, a higher level of asymmetry allows the principal
more leverage in exploiting the externalities. This observation may have important
implications for the principal’s selection stage.

Corollary 3.1 Let V' be the principal’s cost of the mechanism for the partici-
pation problem (N,w,c) in an acyclic tournament. For a given level of aggregate

6 As long as the inequality holds.
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externalities, V 1s strictly decreasing with the asymmetry level of the externalities
within the group of agents.

With partial implementation, i.e., with incentive mechanisms that sustain full
participation as an equilibrium, not necessarily unique, the cost for the principal in
the optimal mechanism is substantially lower. More specifically, in the least costly
mechanism that induce full participation, each agent i receives v; = ¢ — 3 w;(j).
However, this mechanism entails no-participation equilibrium as well, hence coor-
dination is required. The total cost of the partial implementation mechanism is
Viartial =1 -C— Y, Wi (7). In other words, under partial implementation the princi-
pal can extract the full revenue generated by the externalities. Our emphasis on full
implementation is motivated by the fact that under most circumstances the prin-
cipal cannot coordinate the agent to play his most-preferred equilibrium. Brandts
and Cooper (2005) report experimental results that speak to this effect. Agents’
skepticism about the prospects of the participation of others trap the group in the
worst possible equilibrium even when the group is small. Nevertheless, one might
be interested in evaluating the cost of moving from partial to full implementation.
The following corollary points out that for a given level of aggregate externalities, the
premium is decreasing with the level of asymmetry. Hence, the asymmetry level is an
important factor in choosing between partial and full implementation mechanisms.

Corollary 3.2 Let V' be the principal’s cost of the optimal full implementation
mechanism for the problem (N, w, c) with acyclic tournament and Viartia the equiva-
lent partial implementation mechanism. Then V — Vigrtia = % (Kagg — Kasym) . For
a given level of aggregate externalities, V. — Viutipie @5 strictly decreasing with the
level of asymmetry.

If the asymmetry level K,y = 0 (equivalently, when w;(j) = w;(i) for all
pairs), then the cost of moving from partial to full implementation is the most ex-
pensive. The other extreme case is when the externalities are always one-sided, i.e.,
for each pair of agents i, j € N satisfies that either w;(j) = 0 or w;(¢) = 07. In this
case, the additional cost is zero and full implementationis as expensive as partial
implementation.

"Since this section deals with positive externalities, assume that w;(j) = € or w;(i) = £ when
is very small.
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4.3 Optimal Ranking of Cyclic Tournaments

In the previous section we have shown that the optimal mechanism for the participa-
tion problem can be derived from a virtual tournament among the agents in which
agent ¢ beats agent j if w;(j) < w;(i). The discussion was based however, on the
tournament being acyclic. If the tournament is cyclic, the choice of the optimal DAC
mechanism (i.e., the optimal ranking) is more delicate since proposition 1 does not
hold anymore. Any ranking is prone to inconsistencies in the sense that there must
be a pair i, j such that i is ranked above j although j beats 7 in the tournament®.

The inconsistent ranking problem is similar to problems in sports tournaments,
which involve bilateral matches that may turn to yield cyclic outcomes. Various
sports organizations (such as the National Collegiate Athletic Association - NCAA)
nevertheless provide rankings of teams/players based on the cyclic tournament out-
come. Extensive literature in operations research suggests solution procedures for
determining the “minimum violation ranking” (Kendall 1955, Ali et al. 1986, Cook
and Kress 1990, Coleman 2005 are a few examples) that selects the ranking for which
the number of inconsistencies is minimized. It can be shown that this ranking can
be obtained as follows. Take the cyclic (directed) graph obtained by the tournament
and find the smallest set of arcs such that reversing the direction of these arcs results
in an acyclic graph. The desired ranking is taken to be the consistent ranking (per
Lemma 1) with respect to the resulting acyclic graph®.

The solution to our problem follows a very similar path. In our framework arcs are
not homogeneous and so they will be assigned weights determined by the difference
in the bilateral externalities. Instead of looking at the smallest set of arcs which
with their reversal the graph becomes acyclic, we will look for the set of arcs with
minimal total weight which with their reversal the graph is acyclic. This solution
follows the same logic of a different problem of how to rank multiple candidates in a
voting game, suggested by Condorcet (1785). In the voting game, the set of nodes is
the group of candidates, the arcs’ directions are the results of pairwise votings, and
the weights are the plurality in the votings. While Young (1988) characterized this
method axiomatically, our solution results from a completely different approach, i.e.
the design of optimal incentives.

Formaly, for a participation problem (N, w,c) and for each arc (i,j) € A we
define by t(i,j) = w;(i) — w;(j) the weight of the arc from i to j. Note that ¢(3, j)

8Consider, for example, a three-agent case where agent i beats j, agent j beats k, and agent k
beats 7. The tournament is cyclic and any ranking of these agents necessarily yields inconsistencies.
The ranking [i, j, k], for instance, yields an inconsistency involving the pair (k,%) since k beats 4
and ¢ is ranked above agent k.

9Note that there may be multiple rankings resulting from this method.
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is always non-negative because an arc (i, j) refers to a situation in which j favors i
more than i favors j.!° Hence (i, j) refers to the extent of the one-sidedness of the
externalities between the pairs of agents. If an inconsistency involves the arc (i, j),
i.e., j precedes i although 7 beats j, then the additional payment for the principal
relative to the consistent ordering of the pair is (i, j).!! For each subset of arcs
S = {(i1, 1), (42, J2), ., (i jx) } we define t(S) = 37, ;g t(d,j), which is the total
weight of the arcs in S. For each graph G and subset of arcs S we denote by G_g
the graph obtained from G by reversing the arcs in the subset S. Consider a cyclic
graph G and let S* be a subset of arcs that satisfies the following:

(1) G_gs- is acyclic

(2) t(S*) < t(9S) for all S such that G_g- is acyclic.

Then, G_g- is the acyclic graph obtained from G by reversing the set of arcs
with the minimal total weight, and S* is the set of pairs of agents that satisfy
inconsistencies in the tournament ranking of G_g«. Proposition 4 shows that the
optimal ranking of G is the tournament ranking of G_g« since the additional cost
from inconsistencies, t(S*), is the lowest.

Proposition 4 Let (N, w,c) be a participation problem with a cyclic tournament
G. Let ¢ be the tournament ranking of G_g«. Then, the optimal mechanism is the
DAC mechanism with respect to .

In the following example we demonstrate how the optimal mechanism is obtained
in the case of cyclic tournaments with positive externalities:

Example 2 Consider a group of 4 agents each having identical outside option ¢ =
20. The externality structure and the equivalent cyclic tournament are demon-
strated in Figure 2. The reversion of the arcs of both subsets ST = {(2,4)}, S5 =
{(1,2),(3,4)} provide acyclic graphs G _g: and G_g; with minimal weights. The cor-
responding tournament rankings are p; = (4,3,1,2) and v, = (3,2,4,1). Hence, the
optimal mechanisms are v; = (20,13,13,12) and vy = (20, 16, 10, 12).

10Tf the arc is two sided then ¢(i,j) = 0

" Consider an inconsistency that arises from a pair of agents (i, j), when i beats j. Since agent
J precedes i the payment for agent i is reduced by w;(j). However, in a consistent order of the
agents (in which i precedes j) the payment for agent j is reduced by w;(4). Since w;(j) < w;(i) the
principal is forced to pay an additional cost of w;(j) — w; (%) relative to the consistent ranking of
the pair, which is equivalent to the weight ¢(3, k).
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Figure 2

A participation problem is said to be symmetric if w;(j) = w;(i) for all pairs
1,7 € N. In the symmetric case, the principal cannot exploit the externalities among
the agents, and the total payment made by the principal is identical for all rankings.
This follows from Proposition 4 by noting that the tournament has two-way arcs
connecting all pairs of agents, and so t(i, j) = 0 for all 4, j and ¢(.S) is uniformly zero.

Corollary 4.1 When the externality structure w is symmetric then all DAC
mechanisms are optimal.

Now we can provide the analogue version of proposition 3 for the cyclic case. In
this case, the optimal ranking has an additional term K.y = t(S*) representing
the cost of making the tournament acyclic.

Proposition 5 Let (N, w,c) be a participation problem. Let V be the principal’s

optimal cost of inducing participation. Then V =mn-c — %(Kagg + Kosym) + Keyetic-

Corollary 3.1 still holds for pairs of agents that are not in S*. More specifically, if
we decrease the level of mutuality over pairs of agents that are outside S*, we reduce
the total expenses that the principal incurs in the optimal mechanism.

5 Negative Externalities

So far we have limited our discussion to environments in which an agent’s participa-
tion positively affects the willingness of other agents to participate; i.e., we assumed
that externalities are positive. We now turn to the case in which externalities are all
negative. Later in Section 5 we discuss the general case of mixed externalities.
Environments of negative externalities are those of congestions. Traffic, market
entry, and competition among applicants are all share the property that the more
agents that participate, the lower the utility of each participant is. The heterogenous
property in our framework seems quite descriptive in some of these examples. In the
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context of competition it is clear that a more competitive candidate/firm induces a
larger externality (in absolute value) than a less competitive one. It is also reasonable
to assume, at least for some of these environments, that the principal desires a large
number of participants in spite of the negative externalities that they induce on each
other.

We show that in order to sustain full participation as a unique Nash equilibrium
under negative externalities the principal has fully to compensate all agents for the
participation of the others. As we have seen, positive externalities allow the principal
to exploit the participation of some agents in order to incentivize others. With
negative externalities this is not the case since agents’ incentives to participate decline
with the participation of the others. Hence it remains for the principal simply to
reimburse the agents for the disutility arising from the participation of the others.

Proposition 6 Let (N,w,c) be a participation problem with negative externali-
ties. Then the unique optimal mechanism v is given by v; = ¢ + Zi# lw; (7)]

We can solve the negative externalities problem using the results of the previous
section. By providing each agent an initial compensation equals to the sum of neg-
ative externalities to which he is exposed, we receive a new participation problem
in which all externalities are zero (symmetric externalities structure). By Corollary
4.1, all rankings with respect to the DAC mechanism of the new problem are opti-
mal, and thus adding these incentives to the initial compensation yields the optimal
incentive scheme.

6 Mixed Externalities

The optimal mechanism for this case is a hybrid solution combining the structure of
the optimal mechanisms in the two special cases (positive and negative externalities).
Specifically, we show that the optimal mechanism for the mixed case can be derived
by decomposing the problem into two separate problems, one with positive exter-
nalities and the other with negative externalities. The optimal mechanism for the
original (mixed) problem will be obtained by adding agents’ compensation payoffs
to the solution of the positive participation problem. Formally:

Proposition 7 Let v be the optimal mechanism of a participation problem (N, w, c).
Let (N, q,c) be an amended participation problem such that q;(j) = w;(j) if w;(j) > 0
and ¢;(7) = 0 if w;(j) <0, and let u be the optimal mechanism of (N,q,c). Then,
Vi = Ui + ) iep, [wi(j)] where Di = {j [ wi(j) <0 s.t.i,j € N}
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Proposition 7 implies that the virtual tournament we discussed in earlier sections
plays a central role also in the mixed externalities case because it determines payoffs
for the positive component of the problem, which the principal can exploit to reduce
his costs. In this tournament i beats j whenever (1) w;(7) > 0, and (2) w; (i) > w;(j)
(where w;(j) can be either positive or negative). We use the following example to
demonstrate how the optimal mechanism is derived in the mixed externalities case.

Example 3 Consider a group of 4 agents each having identical outside option ¢ =
20. The externality structure of the agents is demonstrated by matriz w, as shown in
Figure 3. The positive externality component (N, q,c) of the decomposition yields the

optimal ranking ¢ = (4,3,2,1). The corresponding optimal mechanism of the posi-

tive component is u = (20, 16, 3, 15). Adding compensations for negative externalities
results in the optimal mechanism v = (20,20, 4,17). Note that S* = {(1,3)}.

0 2 -2 3 1€—2
10 8 9
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We conclude this section by deriving the analogous result to propositions 3 and
6 in the case of mixed externalities. Lets define Kyeq = > ; jycp [wi(j)| when D =
{(4,7) | wi(j) <0 s.t.i,j € N}.We show that the principal’s cost of incentivizing his
agents is decomposed in pretty much the same way as in the positive externalities
case, only that now the principal has to add the compensation for the negative
externalities. Specifically:

Proposition 8 Let (N,w,c) be a mized participation problem and V be the
payment of the optimal mechanism v. Let (N,q,c) be an amended participation
problem such that q;(j) = wi(j) if wi(j) > 0 and ¢(j) = 0 if w;(j) < 0. Let
Kogg, Kasym, and Keyaic be the characteristics of the amended participation problem
(N,q,¢), and K,., be the characteristic of the participation problem (N, q,c). Then,
V=n-c— Kagg - Kasym + Kcyclic + Kneg

Proposition 8 follows trivially from proposition 5, 6 and 7.
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7 Group Identity and Selection

In this section we demonstrate our model as a special case in which externalities
assume the values 0 and 1. We interpret it as an environment in which an agent
either benefits from the participation of his peer or gains no benefit. We provide
three examples of group identity in which the society is partitioned into two groups
and agents have hedonic preferences over members in these groups. We demonstrate
how the optimal mechanism proposed in previous sections may affect the selection
of the agents in the planning of the initiative.

(1) Segregation - agents benefit from participating with their own group’s mem-
bers and enjoy no benefit from participating with members from the other
group. More specifically, consider the two groups B; and B; such that for each
i,j € By , k=1,2, we have w;(j) = 1. Otherwise, w;(j) = 0.

(2) Desegregation'? - agents benefit from participating with the other group’s
members and enjoy no benefit from participating with members of their own
group. More specifically, consider the two groups B; and B; such that for each
i,j € By , k=1,2, we have w;(j) = 0. Otherwise, w;(j) = 1.

(3) Status - the society is partitioned into two status groups, high and low. Each
member of the society benefits from participating with each member of the high
status group and enjoys no benefit from participating with members of the low
status group. Formally, let B; be the high status group and set w;(j) = 1 if
and only if j € B; (otherwise w;(j) = 0).

Proposition 9 Let (N,w,c) be a participation problem. Let ny and ny be the
number of agents selected from groups By and By respectively such that nq, + no =
n. Denote by v(ny,ng) the principal cost of incentivizing agents under the optimal
mechanism given that the group composition is ny and ns. The following holds:

1) under Segregation v(ny,ns) is decreasing with | ny — na|.

2) under Desegregation v(ny,ng) is increasing with | ny — ng|.

3) under Status v(ny,ny) is decreasing with ny.

In a segregated environment the principal’s cost of incentives is increasing with the
level of mixture of groups, hence in the selection stage the principal would prefer to
give precedence to one group over the other. In the desegregation case the principal’s

12 An example could be a singles party.
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cost is declining with mixture, hence in the selection stage the principal would like
to balance between members of the groups. In the Status case the cost is declining
with the number of agents recruited from B;, which will be strongly preferred over
members from Bs.

8 Conclusion

In this paper we analyzed a model of multi-agent initiatives with exogenous exter-
nalities, i.e., i’s level of attraction of j, w;(j) is fixed. As we saw, the matrix of
bilateral externalities affects agents’ payoffs. This may suggest some preliminary
game in which agents invest effort to increase the positive externalities that they
induce on others. For example, agents can invest in their social skills to make them-
selves more attractive invitees to social events. A firm may invest to increase its
market share in order to improve its ranking position in an acquisition game. Under
certain circumstances such an investment may turn out to be quite attractive as we
have seen that a slight change in externalities may result in a substantial change
in rewards. The preliminary game on externalities can be thought of as a network
formation game similar to the ones discussed in the network formation literature
(see Jackson 2003 for a comprehensive survey). Specifically, consider a selection'® of
an optimal mechanism function that maps each matrix of externalities to a payoff
vector I' : w — 7 (payoffs for agents include both the transfer from the principal
as well as the intrinsic benefits from participation). One can think of the matrix of
externalities as a generalized network in the sense that it specifies the intensity'* of
arcs, in contrast to standard networks which only specify whether a link exists. If
we assume that agents can increase bilateral externalities according to a given cost
function then the externalities become endogenous in the model. The new game will
now have two stages. The first one is a network formation game (that determines
the externalities) and the second stage is the participation game. The analysis of
such a game is beyond the scope of this paper but seems to be a natural next step.

13We refer to selection because the optimal mechanism may not be unique.
14See Calvo, Lasaga, and van den Nouweland (1999), Calvo-Armengol and Jackson (2001, 2001b),
Goyal and Moraga (2001), and Page, Wooders, and Kamat (2001) for such models.
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9 Appendix

9.1 Non Additive Preferences

Here we present an extention of the model in which agents’ preferences are non
additive. A participation problem is described by a group of agents N, and an
outside options vector ¢ as noted previously. Here we assume a general externalities
structure, which is given by non additive preferences of the agents over all subsets
of agents in group N. More specifically, for each i, u; : 2V — R. Hence, u;(S) is
the benefit of agent ¢ from the participation of subset S C N in the initiative. Also,
we normalize u(()) = 0. We consider the positive externalities case, in which for each
i and S, u;(S) > 0.

Following the logic of proposition 1, it is clear that the optimal mechanism which
sustains full participation as a unique equilibrium is also a divide and conquer mech-
anism. Hence, to construct the optimal mechanism we need to construct the optimal
ranking of the agents.

Consider a 3 agents example, with the following order ¢ = {i1, i, i3}. The payoff
vector in a DAC mechanism with ranking ¢ is {c, ¢ — g, (1), ¢ — u;,(i1,42) }. Hence,
the optimal order would maximize u;,(i1) + us, (i1, i2).More generally, the principal
has to choose ¢ to solve the following optimization problem:

n
md&)LxE Uiy, (01, -0y 05-1)
i=2

We say that agent ¢ beats j if for all S C N such that i, j ¢ S we have u;(SJj)—
u;(S) < uj(SJ7) — u;(S)". Intuitively, i beats j if ¢’s marginal contribution to the
utility of j is greater than j’s marginal contribution to the utility of i, regardless of
subset S at which marginal contributions are being calculated. Assuming this binary
relation is complete (and not necessarily transitive) enables to construct a complete
directed graph G(INV, A) when N is the set of nodes (which represent the agents), and
A is the set of arcs which are defined in the following way: If agent i beats j then
(i,7) € A. The following result incorporates the same logic as in proposition 2:

Proposition 10 Let (N,c) be a participation problem with non additive prefer-
ences, for which the corresponding directed graph G(N,A) is complete and acyclic.
Let ¢ be the tournament ranking of G(N,A). The optimal mechanism of (N,c) is
giwen by the DAC mechanism with respect to .

5Note that with S = () we get the condition we had with the additively separarable preferences.
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The framework presented in this part is more general than the seperable additive
preferences in that the marginal contribution of player ¢ to the utility of player j is
not constant but depends on the set of other players who participate in the initiative.

9.2 Proofs

Proof of Lemma 1 Lets demonstrate that there is a single node with n—1 outgoing
arcs. Since the tournament is complete, directed, and acyclic graph there cannot
be two such nodes. If we assume such a node doesn’t exist, then all nodes in GG
have both incoming and outgoing arcs. Since the number of nodes is finite, we
get a contradiction for GG being acyclic. Let’s denote this node as 7; and place its
corresponding agent first in the ranking (hence this agent beats all other agents).
Now let’s consider a subgraph G(N?', A') which results from the removal of node
i1 and its corresponding arcs. Graph G(N', A!) is directed, acyclic, and complete
and, therefore, following the previous argument, has a single node that has exactly
n — 2 outgoing arcs. We denote this node as iy, and place its corresponding agent at
the second place in the ranking. Note that agent ¢; beats agent i, and therefore the
ranking is consistent so far. After the removal of node i, and its arcs we get subgraph
G(N?, A%) and consequentially node i3 is the single node that has n — 3 outgoing
arcs in subgraph G(N?%, A?). Following this construction, we can easily observe that
the ranking ¢ = (i1, 9, ..., 1,) is consistent among all pairs of agents and due to its
construction is unique. B

Proof of Proposition 2 Due to proposition 1 the optimal mechanism is a DAC
mechanism. Hence the optimal mechanism is derived from constructing the optimal
ranking and is equivalent to the following optimization problem:

min e+ [e—w, ()] + A o= ) w;, ()]

(J1:925-25n) k=1
- 1 2 n
= min |n-e— Y wi G+ Y wu(i) + et > w, )
(J15925+-+13n) 1 1 k=1

M1 2 n
= hax D wi () + > wi () + . +ijn(jk)]
Lk=1 k=1 k=1

Since no externalities are imposed on nonparticipants, the outside options of the
agents have no role in the determination of the optimal mechanism. We will next
show that the ranking that solves the maximization problem of the principal is the
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tournament ranking. Let’s assume, without loss of generality, that the tournament
ranking ¢ is the identity permutation, hence ¢(i) = i, and W, = S ;_, wi(k) +
S wa(k) 4 oo+ S0 wa(k). W, is the principal’s revenue extraction. By con-
tradiction let’s assume that there exists a different ranking denoted by ¢ such that
W, < W,. First, assume o is obtained from having two adjacent agents 7 and j in
@ trade places such that ¢ precedes j in ¢ and j precedes ¢ in 0. By Lemma 1, agent
i beats agent j. Therefore, W, = W, — w;(i) + w;(j) and W, < W,,. Consider now
the case in which 7 and j are not adjacent. Since any substitution is a result of a
series of adjacent substitutions, using the previous argument iteratively results with
W, < W, . Consider now any arbitrary ranking o different from ¢. Since we can
move from o to ¢ by a finite number of swaps of the sort described above we get
again the result that W, < W,,. Therefore the DAC mechanism with respect to the
tournament ranking is unique and optimal. B

Proof of Proposition 3 Without loss of generality, let’s assume that the tourna-
ment ranking ¢ is the identity permutation. Hence, under the optimal mechanism,

the principal’s payment is V' = n - ¢ — [Z}Zl w1 (j) + ...+ 35 wa(j)| . Denote

si(j) = [wi(y) + w;(?)] and a;(j) = [wi(j) — w;(z)]. We can represent K4, and

Ksym in the following manner: K,,, = sz( )= > (wi(j) +w;(7)) = > s:(j) and
i< j 1<j

Kasym = 2 lai(j)]. Since w;(j) = 3 (s (]) + a;(j)) we can rewrite the principal’s

1<j
payment as:

vV = n~c—%[2{51()+a1 )+ +Z{3n +an(3)}]

j=1
1 .
= nc—g <23i<])+zaz<.])>
i>] 1>]
Note that s;(j) = s;(¢) and a;(j) = —a;(i). In addition a;(j) > 0 when i > j

due to the acyclic tournament and the consistent ranking. Therefore, V =n-c —

(S 5i0) = Scy as)]) =1 € = § (Kagy + Kugyr) . 8

Proof of Corollary 3.2 The result follows immediately from Proposition 3,
where we show that V = n-c — —Z”wz( ) — %Zi<j |w;(j) — w;(7)], and from
Vinuttiple = n-c—) _; i w; (). Taken together, the two yield V-V, uutipie = %ZZ ;Wi (j)—
%Ziq ’wz(ﬁ ( )‘ = %( agg_Kasym)'.
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Proof of Proposition 4 Consider a subset of arcs S where G_g is acyclic,
and assume that the tournament ranking of G_g is ¢ = (ji,j2,..-,Jn). The pay-
ment of the principal V' under the DAC mechanism with respect to ¢ is V =
mee— {20y wiGin) + Y2y wi () + -+ Yy ;. (i) - Note that each (i, j) € 9
satisfies an inconsistency in tournament ranking ¢. More specifically, if (i,7) € S,
then i beats j, agent j is positioned above agent i.Note that in this case w;(j) =
w; (i) — t(i,j), where w;(j) < w;(i) and (7, 5) > 0. Consider the following substitu-
tion: If (4,75) € S then w;(j) = w;(i) — t(7, 5); otherwise w;(j) = w;(j) and rewrite
the principal’s payment as V =n-c — {2,16:1 W, (k) + o+ Dopey @y, (k) } 4+ £(S).
Note that w;(j) = max(w;(j), w;(7)); therefore rankings differ only in the level of
t(S). Hence, the subset S with the lowest #(S) brings V' to a minimum. Hence, the
optimal mechanism is the DAC mechanism with respect to the tournament ranking
of G—S* .

Proof of proposition 5 As demonstrated in proposition 4, the payment of the
principal can be written as V =n-c— {Z/lcﬂ W, () + o+ Doy @5, (k) } + £(S)
when w;(j) = max(w;(j),w;(7)). Following the argument of proposition 3, denote
si(7) = [wi(j) + w;(¢)] and a;(j) = [w;(j) — w;(¢)] and the principal’s payment is
V= nee— 1 (Lo si) + Sy lail)) +S) =06~ (Kagy + Kaym) + Koyt @

Proof of Proposition 6 Given mechanism v, participation is a dominant strat-
egy for all agents, under the worst-case scenario in which all other players participate
since u; = Y i, wi(j) + v; = ¢ for every i € N 0. To show that v is optimal, con-
sider a mechanism m for which m; < v; for some agents and m; = v; for the rest.
By contradiction, assume full participation equilibrium holds under mechanism m.
Consider an agent ¢ for which m; < v;. If all other players are participating, then
player ¢’s best response is to default since u; = Y., w;(j) + m; < c. Hence, v is a
unique and optimal mechanism. W

Proof of Proposition 7 Assume by contradiction that there exists a mechanism
¥ that sustains full participation unique equilibrium in the participation problem
(N,w,c) such that > . 0; < ) .v;. Lets adjust payoffs of v and ¥ by substracting
the compensations for the negative externalities, hence @; = ©; — >, |w;(j)| and
u; = v; — Y p |wi(j)| when D; = {j | wi(j) <0 s.t. i,j € N}. Mechanisms u and
@ provide incentives for the participation problem (N, gq,c) where ¢;(j) = w;(j) if
w;(j) > 0 and ¢;(j) = 0 if w;(j) < 0. But then, > . 4; < >, u; in contradiction to
the optimality of u. B

16 As mentioned earlier, since rewards take continuous values we assume that if an agent is indif-
ferent then he chooses to participate.
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Proof of Proposition 9 In both segregated and desegregated environments
the externality structure is symmetric and, following Corollary 5.1, all rankings are
optimal. Let’s consider first the segregated environment. Since all rankings are
optimal, a possible optimal mechanism is v = (¢, ...,c — (ny — 1), ¢, ...,c — (n2 — 1)).

Hence, the optimal payment for the principal is v(ny, ng) = n-c— 7:11_1 I— Zi_ll k=
n-c— matu=l)  (p=ni)(n—ni—1) Assuming that v(ny,ns) is continuous with n; then
%&m) = n — 2n; and maximum is achieved at nj = n3 = 7, and the cost of

incentivizing is declining with | ny —ns|. In desegregated example, a possible optimal
mechanism is v = (¢, ...,¢,¢ — nq, ...,c — ny). Therefore, the principal’s payment is
v(ny,ng) =n-c— (n—nq)-ny. Again, let’s assume that v(nq,ny) is continuous with

Av(n

ny, in which case solving 8—1’"2) = 2n7 —n = 0 results that the minimum payment

for the principal in the desegnﬁegated environment is received at n} = n3 = 7, and
the cost of incentivizing is increasing with |n; — ny|. In a status environment, since
group Bj is the more esteemed group, all agents from B; beat all agents from Bjy;
therefore agents from B; should precede the agents from Bj in the optimal ranking.
A possible optimal ranking is ¢ = {i1,.,,, 00, J1, -, Jn,} When iy, € By, ju, € Bs
and 1 < k < ny, 1 < m < ny. Therefore, a possible optimal mechanism is v =
(¢c,c—1....,c—(ny—1),c¢—ny,...,c—ny). The principal’s payment is v(ny,ny) = n-c—

ni—1 1(n1—-1)
2

n 1 1 .
oy l—=mng-ng =n-c— —(n—mny)ny = 507 —nny + 5”% + cn. Again,

2

assuming that v(nq,ny) is continuous with 7y, %ﬁfw =n; + % —n = 0 and the
minimal payment is achieved at nj = n — 1. Note that V(n; =n) =V(n; =n—1).
Therefore, the best scenario for the principal is when n; = n. Alternatively, the cost

of incentivizing is decreasing with n;. B

Proof of Proposition 10 Since the optimal mechanism is a DAC mechanism,
it is a result of the following optimization problem:

max - [ug, (1) + ugs (J, J2) + -+ wg, (s s 1))
(J1:925--59n)
Assume, without loss of generality, that the tournament ranking ¢ is the identity
permutation, hence (i) =4, and W, = ua(1) +us(1,2) + ... +u,(1,...,n —1). W, is
the principal’s revenue extraction. By contradiction let’s assume that there exists a
different ranking denoted by o such that W, < W,. First, assume o is obtained from
having two adjacent agents i and j (j = i+1) in ¢ trade places such that ¢ precedes j
in ¢ (hence i beats j) and j precedes i in o. Therefore, o = {1, ...,i—1, j, i, ...,n}.First
note that all the players that appear after j in order ¢ earn the same payoff in the
DAC mechanism of both ¢ and ¢. The same holds also for all the agents who appear
before ¢ in the order ¢. So the cost of the DAC mechanisms with respect to ¢ and o
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differs only in terms of the payoff of players i and j. and we get that
We=W,+A

When A = [w;(1,....,i—1,7) —wi(1,...,0 — 1)] — [u;(1,...,i — 1,9) — u;(1,...,i — 1)].
The term A compares the marginal contribution of i relative to the marginal con-
tribution of j, given a subset S = {1,...,i — 1}. Therefore, A < 0, which entails
W, < W,. Consider now the case in which 7 and j are not adjacent. Since any sub-
stitution is a result of a series of adjacent substitutions, using the previous argument
iteratively results with W, < W,,, and the rent extraction from o is lower . Consider
now any arbitrary ranking o different from ¢. Since we can move from o to ¢ by
a finite number of swaps of the sort described above we get again the result that
W, < W,. Therefore the DAC mechanism with respect to the tournament ranking
is unique and optimal. B
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