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1 Introduction

What is the optimal structure of contracts to induce a group of agents to participate in

a joint activity? How should these contracts take into account the complex externalities

that prevail among the agents? These questions arise in various settings. Governments

around the world seek to foster growth and innovation by emulating the success of Silicon

Valley and creating planned science parks.1 To attract companies, policy makers devote

substantial resources.2 Can governments lower the costs of establishing science parks by

exploiting the heterogeneous externalities that arise between companies? Mall owners

use such a strategy when leasing stores. Gould et al. (2005) show that national brand

stores (which attract the most consumer traffi c to malls) are being used to attract leases

of smaller stores. These smaller stores generate most of the mall owners’leasing revenue.

In many situations a group member decision to participate depends on the choices of

others. These relations are hardly symmetrical; in particular, participation choices may

depend not only on how many members decide to participate, but also on the identity

of the other participating agents. In a mall, a small store substantially gains from the

presence of national brand stores, which attract a high volume of buyer traffi c. The

opposite externality, induced by the small store, has hardly any effect. The recruitment

of a senior star to an academic department can easily attract a junior researcher to

apply to that department. Invited party guests base their participation decisions on the

participation of their close friends. In all of these examples the relations between the

agents should be taken into account when structuring incentives.

In this paper we analyze a principal’s problem of coordinating participation given

heterogeneous externalities between group members. We explore a project initiated by

a principal, when its success depends on the participation of a group. The principal

structures a set of incentive contracts to coordinate the group members’participation.

Such incentives can be tax credits, discounts, gifts, celebrities’participation, or any other

benefits that are conditional on an agent’s participation. We characterize the optimal,

i.e., the least expensive, contracts that induce the participation of the group members.

1The International Association of Science Parks (IASP) currently has members in 49 countries outside
the United States. According to the IASP, the number of science parks in the U.S. alone has increased
from 16 in 1980 to 170 in 2010.

2For example, Hong Kong spent more than $2 billion to develop a planned research and development
park (Cheng 1999).
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In our model, the heterogeneous externalities are additive and described by a matrix

whose entry wi(j) represents the extent to which agent i benefits from joint participation

with agent j.3 Following Segal (2003) we focus on situations in which the principal cannot

coordinate agents to his preferred equilibrium in a multiple-equilibria setting. That is, we

mainly focus on contracts that sustain agents’participation in a unique Nash equilibrium.4

This set of contracts is of the form of divide and conquer.5 For any given ranking of

the agents, divide-and-conquer contracts are structured in the following way: offer each

agent a reward that would convince him to participate in the belief that the agents who

precede him in the ranking participate, and all subsequent agents abstain. Thus, the

optimal contract is achieved by the ranking (henceforth, optimal ranking) that produces

the least expensive divide-and-conquer incentive scheme.

Given the complex relations between the agents due to heterogeneity we ask: (1)

Who should be getting a higher-powered incentive for participation? In other words,

how should we determine the optimal ranking of the agents? (2) How do changes in the

structure of externalities affect the principal’s cost of sustaining the group’s participation?

We show that the optimal ranking can be constructed using a virtual popularity tour-

nament between the agents. In this tournament, we say that agent i beats agent j if

agent j’s benefit from i’s participation is greater than i’s benefit from j’s participation.

This binary relation is described by a directed graph. We use basic graph theory ar-

guments to characterize the optimal ranking which depends on the number of winnings

in the virtual tournament.6 Hence, the agents’payoffs are determined with respect to

their success in the tournament. This idea that agents who induce higher externalities

receive higher-powered incentive rewards is supported by an empirical paper by Gould

et al. (2005) who demonstrate that while national brand stores occupy over 58% of the

total leasable space in shopping malls they pay only 10% of the total rent collected by

the mall owners.
3We consider non-additive externalities in Section 4 of the paper
4Recent experimental papers (see Brandt and Cooper 2005) indicate that in an environment of positive

externalities agents typically are trapped in the bad equilibrium of no-participation.
5Segal (2003) uses a similar structure to characterize a setting of homogeneous externalities. Che

and Yoo (2001) show that a similar structure arises as an optimal mechanism in a moral hazard in team
setups.

6The ranking is directly determined by the number of winnings if the directed graph is acyclic. If the
graph is cyclic, ranking depends on the number of winnings as well as on the differences between agents’
externalities.
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A key characteristic of group externalities is the level of asymmetry7 between the pairs

of agents, which we show to reduce the principal’s cost. Greater asymmetry offers the

principal more leverage in exploiting the externalities to lower costs. This result has a

significant implication on the principal’s choice of group for the initiative in the selection

stage.

Our problem surprisingly connects to two quite distinct topics: (1) ranking sport

teams based on tournament results, which has been discussed in the Operations Research

literature, and (2) ranking candidates in a voting problem based on the outcomes of

pairwise elections, which was suggested by Condorcet (1785). Condorcet’s solution uses

a similar approach to ours, where candidates are the nodes in the graph, and the arcs’

directions are the election results of pair-wise voting.

This work is part of an extensive body of literature on multi-agent contracting in

which externalities arise between the agents.8 Our general approach is closely related to

the seminal papers by Segal (1999, 2003) on contracting with externalities. Segal (2003)

introduced a general model of trade contracts that admit externalities among agents. He

shows that increasing externalities implies that the principal gains from using a divide-

and-conquer mechanism, when he cannot coordinate players to play his most-preferred

equilibrium. Segal’s model is suffi ciently general to fit nicely into a variety of IO applica-

tions (like takeovers, vertical contracting, exclusive dealing, and network externalities).

While Segal (2003) defines the divide-and-conquer mechanism in a general contracting

setup that allows for heterogeneity, he doesn’t solve for the optimal mechanism except for

special cases such as the symmetric case (although he is able to obtain some comparative

static results without deriving the optimal mechanism explicitly). Our objective here is to

solve for the optimal mechanism for any matrix of externalities. While our environment

is more restrictive than Segal’s in the sense that agents’choices are binary (participate or

not), we develop a sharper characterization by allowing externalities to be heterogeneous

7By asymmetry we refer to the sum of differences in bilateral externalities.
8To give a few examples, these applications include vertical contracting models (Katz and Shapiro

1986a; Kamien, Oren, and Tauman 1992) in which the principal supplies an intermediate good to N
identical downstream firms (agents), which then produce substitute consumer goods; employment models
(Levin 2002) in which a principal provides wages to induce effort in a joint production of a group of
workers; exclusive dealing models (Rasmusen, Ramseyer, and Wiley 1991; Segal and Whinston 2000)
in which the principal is an incumbent monopolist who offers exclusive dealing contracts to N identical
buyers (agents) in order to deter the entry of a rival; acquisition for monopoly models (Lewis 1983;
Kamien and Zang 1990; Krishna 1993) in which the principal makes acquisition offers to N capacity
owners (agents); and network externalities models (Katz and Shapiro 1986b).
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and thus capture the contracting implications of complex relations between the agents.

In fact, most of the literature assumes that externalities are homogeneous (in our

setting, such an assumption implies that the benefit from joint participation depends

on the number of participants), and not on the identity of the agents. Exceptions to

this assumption are Jehiel and Moldovanu (1996) and Jehiel, Moldovanu, and Stachetti

(1996), who consider an auction in which a single indivisible object is sold to multiple

heterogeneous agents. Jehiel and Moldovanu (1999) introduce resale markets and consider

the implications of the identity of the initial owner of the good to the initial consumer.

Our paper is also related to Milgrom and Roberts (1990) who pointed out that a principal

can gain from collusion or coordination among his agents in an interaction that gives rise

to strategic complementarity.

We consider several extensions to verify the robustness of our assumptions. First, we

study situations in which agents’choices are sequential and we show that our solution

applies when the principal is interested in implementing effort via a stronger solution

concept that admits a dominant strategy for each player at his relevant subgame. We show

that the analysis remains valid when we allow the externalities to affect agents’outside

options, as well as for more complicated contingent contracts. We consider more general

externalities structures. In particular, we allow externalities to be both negative and

positive, and provide the conditions under which the solution for the mixed externalities

participation problem can be derived by decomposing the mixed problem to two problems

one of which is positive and the other negative. Finally, we consider the case of a non-

additive externalities structure.

The rest of the paper is organized as follows. In Section 2 we introduce the general

model. Section 3 provides the solution to a participation problem with positive exter-

nalities between the agents. In Section 4 we consider several extensions of the model, by

which we demonstrate that our results apply in more general settings. Section 5 demon-

strates how the model can be used to solve selection problems and Section 6 concludes.

Proofs are presented in the Appendix.
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2 The Model

A participation problem is given by a triple (N,w, c) where N is a set of n agents.

The agents’ decision is binary: participate in the initiative or not. The structure of

externalities w is an n × n matrix specifying the bilateral externalities between the

agents. An entry wi(j) represents agent i’s added value from participation in the initia-

tive jointly with agent j. Agents gain no additional benefit from their own participation,

i.e., wi(i) = 0. Agents’preferences are additively separable; i.e., agent i’s utility from

participating jointly with a group of agents M is
∑

j∈M wi(j) for every M ⊆ N . In the

extensions section we consider a model in which agents’preferences are non-additive; i.e.,

externalities are defined over all subsets of agents in group N.

We assume that the externalities structure w is fixed and exogenous. Also, c is the

vector of the outside options of the agents. For simplicity, and with a slight abuse of

notation, we assume that every outside option is constant and equals c for all agents. In

the extensions section we demonstrate that our results hold also when the outside options

are affected by the participation choices of the agents.

We assume that contracts offered by the principal are simple and descriptive in the

sense that the principal cannot provide payoffs that are contingent on the participation

behavior of other agents. Many of the examples discussed above seem to share this

feature. Based on the data used by Gould et al. (2005) which includes contractual

provisions of over 2,500 stores in 35 large shopping malls in the U.S., there is no evidence

that contracts make use of such contingencies. The theoretical foundation for the absence

of such contracts is beyond the scope of this paper. One possible explanation is the

complexity of such contracts. In Section 5 we demonstrate that our analysis remains

valid even if we allow contingencies to be added to the contracts.

The set of contracts offered by the principal can be described as an incentives vector

v = (v1, v2, ..., vn) in which agent i receives a payoff of vi if he decides to participate and

zero otherwise. vi is not constrained in sign and the principal can either pay or charge

the agents but he cannot punish them for not participating (limited liability). Given
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a contracting scheme v, agents face a normal-form game G(v).9, 10 Each agent has two

strategies in the game: participation or abstention. For a given set M of participating

agents, each agent i ∈ M earns
∑

j∈M wi(j) + vi and each agent j /∈ M earns c, his

outside option. We define full implementation contracts to be contracts that induce

group participation as a unique Nash equilibrium. Alternatively, partial implementation

contracts induce the group to participate in a Nash equilibrium, which is not necessarily

unique.

3 Contracting with Positive Externalities

Positive externalities are likely to arise in many contracting situations. Network goods,

opening stores in a mall and attracting customers, and contributing to public goods are a

few such examples. In this section we consider situations in which agents benefit from the

participation of the other agents in the group. Suppose that wi(j) > 0 for all i, j ∈ N ,

such that i 6= j. In this case, agents are more attracted to the initiative as the set of

participants grows.

As a first step toward characterizing optimal full implementation contracts, we show

in Proposition 1 that an optimal contracting scheme is part of a general set of contracts

characterized by the divide-and-conquer11 property. This set of contracts is constructed

by ranking agents in an arbitrary fashion, and by offering each agent a reward that

would induce him to participate in the belief that all the agents who precede him in

the ranking participate and all subsequent agents abstain. Due to positive externalities,

“later”agents are induced to participate (implicitly) by the participation of others and

thus can be offered smaller (explicit) incentives. More formally, the divide-and-conquer

9We view the participation problem as a reduced form of the global optimization problem faced by
the principal, which involves both the selection of the optimal group for the initiative and the design of
incentives. Specifically, let U be a (finite) universe of potential participants. For each N ⊆ U let v∗(N)
be the total payment made in an optimal mechanism that sustains the participation of the set of agents
N . The principal will maximize the level of net benefit he can guarantee himself, which is given by the
following optimization problem: maxN⊆U [u(N) − v∗(N)], where u(N) is the principal’s gross benefit
from the participation of the set N of agents and is assumed to be strictly monotonic with respect to
inclusion; i.e., if T  S, then u(T ) < u(S).
10In the extensions section we also consider the case of a sequential offers game.
11See Segal (2003) and Winter (2004) for a similarly structured optimal incentive mechanism in a

setting of homogeneous externalities.
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(DAC) contracts have the following structure:

v = (c, c− wi2(i1), c− wi3(i1)− wi3(i2), ..., c−
∑
k

win(ik))

where ϕ = (i1, i2, ..., in) is an arbitrary order of agents. We say that v is a DAC contracting

scheme with respect to the ranking ϕ. The following proposition, which is similar to

the analysis in Segal (2003, subsection 4.1.1) provides a necessary condition for optimal

contracts.

Proposition 1 If v is an optimal full implementation contracting scheme then it is

a divide-and-conquer contracting scheme.

Note that given contracting scheme v, agent i1 has a dominant strategy in the game

G(v) to participate.12 Given the strategy of agent i1, agent i2 has a dominant strategy to

participate as well. Agent ik has a dominant strategy to participate provided that agents

i1 to ik−1 participate as well. Therefore, contracting scheme v sustains full participation

through an iterative elimination of dominated strategies.

3.1 Optimal Ranking

The optimal contracting scheme satisfies the divide-and-conquer property with the rank-

ing that minimizes the principal’s payment. The optimal ranking is determined by a

virtual popularity tournament among the agents, in which each agent is “challenged”by

all the other agents. The results of the matches between all pairs of agents are described

by a simple and complete13 directed graph G(N,A), where N is the set of nodes and A

is the set of arcs. N represents the agents, and A ⊂ N ×N represents the results of the

matches, which is a binary relation on N . We refer to such graphs as tournaments.14

More precisely, the set of arcs in tournament G(N,A) is as follows:

12Since rewards take continuous values we assume that if an agent is indifferent then he chooses to
participate. Alternatively, we can define an optimal contract to be a vector of payments v such that
any arbitrary increase of the payoffs of all players will result with a unique equilibrium in which all
agents participate. Note also that while the indifferences may generate multiple Nash equilibria, full
participation is a unique Nash equilibrium with iterative elimination of weakly dominated strategies
(without assuming that agents participate whenever they are indifferent).
13A directed graph G(N,A) is simple if (i, i) /∈ A for every i ∈ N and complete if for every i, j ∈ N at

least (i, j) ∈ A or (j, i) ∈ A.
14We allow that (i, j) and (j, i) are both in A.
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(1) wi(j) < wj(i) ⇐⇒ (i, j ) ∈ A

(2) wi(j) = wj(i) ⇐⇒ (i, j) ∈ A and (j, i) ∈ A
The interpretation of a directed arc (i, j) in the tournament G is that agent j values

mutual participation with agent i more than agent i values mutual participation with

agent j. We simply say that agent i beats agent j whenever wi(j) < wj(i). In the case

of a two-sided arc, i.e., wi(j) = wj(i), we say that agent i is even with agent j and the

match ends in a tie.

In characterizing the optimal contracts we distinguish between cyclic and acyclic tour-

naments. We say that a tournament is cyclic if there exists at least one node v for which

there is a directed path starting and ending at v, and acyclic if no such path exists for all

nodes.15 The solution for cyclic tournaments relies on the acyclic solution, and therefore

the acyclic tournament is a natural first step.

3.2 Optimal Ranking for Acyclic Tournaments

A ranking ϕ is said to be consistent with tournament G(N,A) if for every pair i, j ∈ N,

if i is ranked before j in ϕ, then i beats j. In other words, if agent i is ranked higher than

agent j in a consistent ranking, then agent j values agent i more than agent i values j.

We start with the following graph theory lemma:

Lemma 1 If tournament G(N,A) is acyclic, then there exists a unique ranking that

is consistent with G(N,A).

We refer to the unique consistent ranking proposed in Lemma 1 as the tournament

ranking.16 In the tournament ranking, each agent’s location in the tournament ranking is

determined by the number of his wins. Hence, the agent ranked first is the agent who won

all matches and the agent ranked last lost all matches. As we demonstrate later, there

may be multiple solutions when tournament G(N,A) is cyclic. Proposition 2 provides the

solution for participation problems with acyclic tournaments, and shows that the solution

is unique.

Proposition 2 Let (N,w, c) be a participation problem for which the correspond-

ing tournament G(N,A) is acyclic. Let ϕ be the tournament ranking of G(N,A). The

15By definition, if (i, j) ∈ A and (j, i) ∈ A, then the tournament is cyclic.
16The tournament ranking is actually the ordering of the nodes in the unique Hamiltonian path of

tournament G(N,A).
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optimal full implementation contracting scheme is given by the DAC with respect to ϕ.

The intuition behind Proposition 2 is based on the notion that if agents i, j ∈ N

satisfy wi(j) < wj(i) then the principal is able to reduce the cost of incentives by wj(i),

rather than by only wi(j), by giving preferential treatment to i and placing him higher

in the ranking. Applying this notion to all pairs of agents minimizes the principal’s total

payment to the agents, since it maximizes the inherent value of the participants from the

participation of the other agents.

The optimal contracting scheme can be viewed as follows. First the principal pays

the outside option c for each one of his agents. The winner of each match in the virtual

tournament is the agent who imposes a higher externality on his competitor. The loser of

each match pays the principal an amount equal to the benefit that he gets from mutually

participating with his competitor. The total amount paid depends on the size of bilateral

externalities and not merely on the number of winning matches. However, the higher

agent i is located in the tournament, the lower is the total amount paid to the principal.

An intuitive solution for the participation problem is to reward agents according to

their level of popularity in the group, such that the most popular agents would be the

most rewarded. A possible interpretation of popularity in our context would be the sum

of externalities imposed on others by participation, i.e.,
∑n

j=1wj(i). However, as we

have seen, agents’ranking in the optimal contracting scheme is determined by something

more refined than this standard definition of popularity. Agent i’s position in the ranking

depends on the set of peers that value agent i’s participation more than i values theirs.

This two-way comparison may result in a different ranking than the one imposed by

a standard definition of popularity. This can be illustrated in the following example

in which agent 3 is ranked first in the optimal contracting scheme despite being less

“popular”than agent 1.

Example 1 Consider a group of four agents with an identical outside option c = 20.

The externalities structure of the agents is given by matrix w, as shown in Figure 1. The

tournament G is acyclic and the tournament ranking is ϕ = (3, 1, 2, 4). Consequently, the

set of optimal contracts is v = (20, 17, 14, 10), which is the divide-and-conquer contracting

scheme with respect to the tournament ranking. Note that agent 3 who is ranked first is

not the agent who has the maximal
∑n

j=1wj(i).
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Figure 1

The derivation of the optimal contracting scheme requires the rather elaborate step of

constructing the virtual tournament. However, it turns out that a substantially simpler

formula can derive the cost of the optimal contracts. Two terms play a role in this formula:

the first measures the aggregate level of externalities, i.e., Kagg =
∑

i j wi(j); the second

measures the bilateral asymmetry between the agents, i.e., Kasym =
∑

i<j |wi(j)− wj(i)|.

Hence, Kasym stands for the extent to which agents induce mutual externalities on each

other. The smaller the value of Kasym the higher the degree of mutuality of the agents.

Proposition 3 shows that the cost of the optimal contracting scheme is additive and

declining in these two measures.

Proposition 3 Let (N,w, c) be a participation problem and Vfull be the princi-

pal’s cost of the optimal full implementation contracts. If the corresponding tournament

G(N,A) is acyclic then Vfull = n · c− 1
2

(Kagg +Kasym) .

An interesting consequence of Proposition 3 is that for a given level of aggregate

externalities, the principal’s payment is decreasing with a greater level of asymmetry

among the agents, as stated in Corollary 3.1.

Corollary 3.1 Let (N,w, c) be a participation problem with an acyclic tournament.

Let Vfull be the principal’s cost of the optimal full implementation contracts. For a given

level of aggregate externalities, Vfull is strictly decreasing with the asymmetry level of the

externalities within the group of agents.

The intuition behind this result is related to the virtual tournament discussed above.

In each match the principal extracts “fines”from the losing agents. It is clear that these

fines are increasing with the level of asymmetry (assuming wi(j)+wj(i) is kept constant).

Hence, a higher level of asymmetry allows the principal more leverage in exploiting the
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externalities. This observation has important implications for the principal’s selection

stage.

Consider the comparison between the optimal full and partial implementation con-

tracts, where in the latter the principal suffi ces with the existence of a full participa-

tion equilibrium, not necessarily unique. With partial implementation, the cost for the

principal in the optimal contracting scheme is substantially lower. More specifically, in

the least costly contracting scheme that induces full participation, each agent i receives

vi = c−
∑

j wi(j). However, these contracts entail a no-participation equilibrium as well;

hence coordination is required. The total cost of the partial implementation contracts is

Vpartial = n · c −
∑

i j wi(j) and the principal can extract the full revenue generated by

the externalities.17

It is worth mentioning that for a fixed level of aggregate externalities, the difference

between full and partial implementation contracts, Vfull − Vpartial, is stricty decreasing

with the level of asymmetry of the externalities within the group. In the extreme case

where Kasym = 0 (wi(j) = wj(i) for all pairs), then the cost of moving from partial to

full implementation is the most expensive. On the other hand, when externalities are

always one-sided; i.e., for each pair of agents i, j ∈ N satisfies that either18 wi(j) = 0

or wj(i) = 0,then the additional cost is zero and full implementation is as expensive as

partial implementation.

Note that increasing the aggregate level of externalities will not necessarily increase

the principal extraction of revenue in the optimal contracting scheme. For example, in

an asymmetric two-person problem raising slightly the externality that the less attractive

agent induces on the other one will not change the principal’s revenue.19 From the

perspective of the agents, their reward is not a continuous increasing function of the

externalities they impose on the others. However, it is possible that a slight change in

these externalities may increase rewards significantly, since a minor change in externalities

17Our emphasis on full implementation is motivated by the fact that under most circumstances the
principal cannot coordinate the agent to play his most-preferred equilibrium. Brandts and Cooper
(2005) report experimental results that speak to this effect. Agents’ skepticism about the prospects
of the participation of others trap the group in the worst possible equilibrium even when the group
is small. Nevertheless, one might be interested in evaluating the cost of moving from partial to full
implementation.
18Since this section deals with positive externalities, assume that wi(j) = ε or wj(i) = ε when ε is

very small.
19It can be shown that in an n-person asymmetric problem one can raise the externalities in half of

the matrix’s entries (excluding the diagonal) without affecting the principal’s surplus extraction.
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may change the optimal ranking and thus affect agents’payoffs.

The extreme asymmetric case nicely contrasts with the completely symmetric case,

where the principal’s surplus increases with any slight increase of the externalities. With

partial implementation, which allows the principal full extraction of surplus, the princi-

pal’s revenue is sensitive to the values of externalities whether the problem is symmetric

or asymmetric.

3.3 Optimal Ranking of Cyclic Tournaments

In the previous section we demonstrated that optimal full implementation contracts are

derived from a virtual tournament among the agents in which agent i beats agent j if

wi(j) < wj(i). However, the discussion was based on the tournament being acyclic. If

the tournament is cyclic, the choice of the optimal DAC contracting scheme (i.e., the

optimal ranking) is more delicate since Lemma 1 does not hold. Any ranking is prone

to inconsistencies in the sense that there must be a pair i, j such that i is ranked above

j although j beats i in the tournament. To illustrate this point, consider a three-agent

example where agent i beats j, agent j beats k, and agent k beats i. The tournament

is cyclic and any ranking of these agents necessarily yields inconsistencies. For example,

take the ranking {i, j, k} , which yields an inconsistency involving the pair (k, i) since k

beats i and i is ranked above agent k. This applies to all possible rankings of the three

agents.

The inconsistent ranking problem is similar to problems in sports tournaments, which

involve bilateral matches that may turn out to yield cyclic outcomes. Various sports or-

ganizations (such as the National Collegiate Athletic Association - NCAA) nevertheless

provide rankings of teams/players based on the cyclic tournament outcome. Extensive

literature in Operations Research suggests solution procedures for determining the “min-

imum violation ranking”(e.g., Kendall 1955, Ali et al. 1986, Cook and Kress 1990, and

Coleman 2005) that selects the ranking for which the number of inconsistencies is mini-

mized. It can be shown that this ranking is obtained as follows. Take the cyclic (directed)

graph obtained by the tournament and find the smallest set of arcs such that reversing

the direction of these arcs results in an acyclic graph. The desired ranking is taken to be

the consistent ranking (per Lemma 1) with respect to the resulting acyclic graph.20

20Multiple rankings may result from this method.
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One may argue that this procedure can be improved by assigning weights to arcs in

the tournament depending on the score by which team i beats team j and then look for

the acyclic graph that minimizes the total weighted inconsistencies. In fact this approach

goes back to Condorcet’s (1785) classical voting paper in which he proposed a method

for ranking multiple candidates. In the voting game, the set of nodes is the group of

candidates, the arcs’directions are the results of pairwise voting, and the weights are

the plurality in the voting. The solution to our problem follows the same path. In our

framework arcs are not homogeneous and so they will be assigned weights determined by

the difference in the bilateral externalities. As in Condorcet’s voting paper, we will look

for the set of arcs such that their reversal turns the graph into an acyclic one. While

Young (1988) characterized Condorcet’s method axiomatically, our solution results from a

completely different approach, i.e., the design of optimal incentives to maximize revenues.

Formally, we define the weight of each arc (i, j) ∈ A by t(i, j) = wj(i)− wi(j). Note

that weights are always non-negative as an arc (i, j) refers to a situation in which j

favors i more than i favors j. Hence t(i, j) refers to the extent of the one-sidedness of the

externalities between the pairs of agents. If an inconsistency in the ranking arises due

to an arc (i, j), then this implies that agent j precedes agent i despite the fact that i

beats j. Relative to consistent rankings, inconsistencies generate additional costs for the

principal. More precisely, the principal has to pay an additional t(i, j) when inconsistency

is due to arc (i, j) ∈ A.

For each subset of arcs S = {(i1, j1), (i2, j2), ..., (ik, jk)} we define t(S) =
∑

(i,j)∈S t(i, j),

which is the total weight of the arcs in S. For each graph G and subset of arcs S we

denote by G−S the graph obtained from G by reversing the arcs in the subset S. Consider

a cyclic graph G and let S∗ be a subset of arcs that satisfies the following:

(1) G−S∗ is acyclic.

(2) t(S∗) ≤ t(S) for all S such that G−S∗ is acyclic.

Then, G−S∗ is the acyclic graph obtained from G by reversing the set of arcs with the

minimal total weight, and S∗ is the set of pairs of agents that satisfies inconsistencies in

the tournament ranking of G−S∗. Proposition 4 shows that the optimal ranking of G is

the tournament ranking of G−S∗ since the additional cost from inconsistencies, t(S∗), is

the lowest.
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Proposition 4 Let (N,w, c) be a participation problem with a cyclic tournament

G. Let ϕ be the tournament ranking of G−S∗. Then, the optimal full implementation

contracts are the DAC with respect to ϕ.

In the symmetric case, the principal cannot exploit the externalities among the agents,

as Kasym = 0, and the total payment made by the principal is identical for all rankings.

This can be seen to follow from Proposition 4 as well by noting that the tournament has

two-way arcs connecting all pairs of agents, and t(i, j) = 0 for all i, j and t(S) is uniformly

zero. An intriguing feature of the symmetric case is that all optimal contracting schemes

are discriminative in spite of the fact that all agents are identical.

Corollary 4.1 When the externalities structure w is symmetric then all DAC con-

tracts are optimal.

We can now provide the analogue version of Proposition 3 for the cyclic case. In this

case, the optimal ranking has an additional term Kcyclic = t(S∗) representing the cost of

making the tournament acyclic, i.e., the cost borne by the principal due to inconsistencies.

Proposition 5 Let (N,w, c) be a participation problem. Let Vfull be the principal’s

optimal cost of a full implementation contract. Then Vfull = n · c − 1
2
(Kagg + Kasym) +

Kcyclic.

Corollary 3.1 still holds for pairs of agents that are not in S∗. More specifically, if we

increase the level of asymmetry between pairs of agents that are outside S∗, we reduce

the total expenses that the principal incurs in the optimal contracting scheme.

4 Extensions

In this section we discuss the implications of the assumptions we made so far. We demon-

strate that the optimal contracts remain optimal if we assume sequential participation

choices when the principal desires to implement participation in a subgame perfect equi-

librium with the property that each player has a dominant strategy on the subgame that

he plays. In addition, we show that even when the outside option is affected by the agents’

participation choices, the construction of the optimal contracts remains unchanged. We
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demonstrate that when contracts can be contingent on the participation of a subset of the

agents, then the optimal contracts are closely related to the analysis above. Our analysis

is valid in more general setups in which externalities can be either negative or positive.

Moreover, the solution is also relevant to non-additive externalities structures.

4.1 Sequential Participation Decisions

We first point out that our analysis applies to any sequential game except for one of

perfect information, i.e., when each player is fully informed about all the participation

decisions of his predecessors. Indeed, this extreme case of perfect information is a strong

assumption as agents rarely possess the participation decisions of all their predecessors.

Any partial information environment implies that some actions are taken simultaneously,

and therefore the divide-and-conquer contracting scheme and the virtual tournament

apply.

Nevertheless, it is interesting to point out that our analysis is also relevant to the

extreme case of perfect information. Consider a game in which players have to decide

sequentially about their participation based on a given order. Suppose that the principal

wishes to implement the full participation in a subgame perfect equilibrium with the

additional requirement that each player has a dominant strategy on the subgame in

which he has to play.21 It is easily verified that the optimal contracting scheme in this

framework is the DAC applied to the order of moves; i.e., the first moving player is

paid c and the last player is paid c −
∑

j∈N wi(j). Under this contracting scheme each

player has a dominant strategy on each subgame. Assume now that the principal can

control the order of moves (which he can do by making the offers sequentially and setting

a deadline on agents’ decisions). Then the optimal sequential contracting scheme is

exactly identical to the one discussed in previous sections for the simultaneous case. If

the principal suffi ces with a standard subgame perfect equilibrium (without the strategy

dominance condition), then the optimal contracting scheme will allow him to extract

more and he will pay c−
∑

j∈N wi(j) to all agents.

21Such a requirement may reflect the principal’s concern that a player will fail to apply complex
backward induction reasoning.
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4.2 Participation-dependent Outside Options

In many situations non-participating agents are affected by the participation choices of

other agents. Consider the case of a corporate raider who needs to acquire the shares of N

identical shareholders to gain control (similar to Grossman and Hart 1980). If the raider

is enhancing the value of the firm when he holds a larger stake in the firm, then selling

shareholders impose positive externalities on non-participating agents. If the raider gains

private benefits from the firm which will decrease its value, then selling shareholders

induce negative externalities on the non-participating agents.

In this section we consider the case in which the agents’outside option is partly deter-

mined by the agents who choose to participate. For a given group of agents P ⊆ N who

participate, we define the outside option of non-participants as c + η
∑

j∈P wi(j). In the

former analysis we assumed η = 0.22 Segal (2003) defines externalities as increasing (de-

creasing) when an agent is more (less) eager to participate when more agents participate.

In our setup, eagerness to participate is identity-dependent. When η ≤ 1, we say that

agents are more eager to participate when highly valued agents choose to participate.

If η > 1, the benefits of non-participation outweigh the benefits of participation when

highly valued agents choose to participate; hence agents are less eager to participate. In

Segal’s terminology, the former case is equivalent to increasing externalities, while the

latter is equivalent to decreasing externalities.

Following the analysis of Proposition 1, if v is an optimal full implementation con-

tracting scheme then it is easy to verify that under the current setup, v is a DAC of the

form:

v = (c, c− (1− η)wi2(i1), ..., c− (1− η)
∑
k

win(ik))

where ϕ = (i1, i2, ..., in) is an arbitrary ranking. Instead if η > 1, the participation prob-

lem is identical to a standard participation problem (with fixed outside option) where

externalities are (1−η)wi(j) < 0. In these negative externalities problems the DAC mech-

anism does not apply and the optimal scheme requires that the principal reimburse the

agents for their total burden, i.e., c− (1− η)
∑

j wi(j)),which is a positive number when-

ever the outside option and wi(j) are positive. Finally, the case of η = 1 corresponds to an

22The following analysis can be generalized by specifying an externalities matrix q that distinguishes
between the benefits of participating and non-participating agents. It can be shown that in such a case
our analysis remains unchanged. However, we choose to use the simpler and more intuitive outside option
form of c+ η

∑
j∈C wi(j).
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environment of no externalities at all and the optimal scheme requires simply to reimburse

agents for their outside option. We can summarize with the following proposition:

Proposition 6 Let (N,w, c∗) be a participation problem where c∗i = c+ η
∑

j∈P wi(j)

and P ⊆ N is a group of participating agents. Let G(N,A) be the equivalent tournament.

The optimal full implementation contracts are given as follows:

(1) for η < 1, DAC contracts with respect to the optimal ranking;23

(2) for η ≥ 1, the optimal mechanism pays agent i the payoff c− (1− η)
∑

j wi(j)),

which is exectly c, whenever η = 1.

4.3 Contingent Contracts

Our model assumes that the principal cannot write contracts that make a payoff to an

agent contingent on the participation of other agents. Under such contracts the principal

could extract the total surplus from positive externalities among the agents.24 We find

such contracts not very descriptive. Based on the data used by Gould et al. (2005)

which consists of contractual provisions of over 2,500 stores in 35 large shopping malls in

the U.S., there is no evidence that contracts make use of such contingencies. Shopping

malls are a natural environment for contingent contracting; the fact that these contracts

are still not used makes it likely that in other, more complicated settings such contracts

are exceptional as well. The theoretical foundation for the absence of such contracts

is beyond the scope of this paper. However, one possible reason for their absence is

the complexity of such contracts, especially in environments where participation involves

long-term engagement and may be carried out by different agents at different points in

time. We point out that if partial contingencies are used, i.e., participation is contingent

on a subset of the group, our model and its analysis remain valid. Specifically, for each

player i, let Ti ⊆ N be the contingency set, i.e., the set of agents whose participation

choice can appear in the contract with agent i. Let T = (T1, T2, ..., Tn) summarize the

contingency sets in the contracts. The optimal contracts under the contingency sets are

closely related to the original optimal contract (when contingencies are not allowed).

More precisely, Let w be the original matrix of externalities. Denote by wT the matrix

23As described in Section 4.
24One possible contracting scheme is to offer agent i a participation reward of vi = c −

∑
j∈N wi(j)

if each of the other agents participates, and a reward of vi = c if any of the contingencies is violated.
Such contracts will sustain full participation as a unique Nash equilibrium, and the principal extracts
the entire surplus.
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of externalities obtained from w by replacing wi(j) with zero whenever j ∈ Ti. Lemma

6.1 in the Appendix shows that the optimal full implementation contracting scheme is

as follows: agent i gets c if one of the agents j ∈ Ti does not participate; i.e., the

contingency requirement is violated.25 If all agents in Ti participate, then agent i gets

the payoff vi(N,wT , c)−
∑

j∈Ti wi(j), where vi(N,w
T , c) is the payoff for agent i for the

participation problem (N,wT , c) under no-contingencies (as developed in Section 4).

4.4 Mixed Externalities Structure

So far we have limited our discussion to environments in which agents’participation pos-

itively affects the willingness of other agents to participate. However, in many situations

this is not the case, such as in environments of congestion. Traffi c, market entry, and

competition among applicants all share the property that the larger the number of agents

who participate, the lower the utility of each participant. The heterogeneous property

in our framework seems quite descriptive in some of these examples. In the context of

competition it is clear that a more qualified candidate/firm induces a larger negative

externality. It is also reasonable to assume, at least for some of these environments, that

the principal desires a large number of participants in spite of the negative externalities

that they induce on each other.

In Proposition 7 we demonstrate that in order to sustain full participation as a unique

Nash equilibrium under negative externalities the principal has to fully compensate all

agents for the participation of the others.

Proposition 7 Let (N,w, c) be a participation problem with negative externalities.

Then optimal full implementation contracts v are given by vi = c +
∑

i 6=j |wi(j)| , and v

is unique.

Naturally, real-world multi-agent contracting problems may capture both positive and

negative types of externalities. In social events, individuals may greatly benefit from some

of the invited guests, while preferring to avoid others. In a mall, the entry of a new store

may benefit some stores by attracting more customers, but impose negative externalities

on its competitors.

25In fact, the principal can offer lower payments to the agents in case of contingencies’violations, by
exploiting the participation of other agents. However, these off-equilibrium payments do not affect the
principal’s payment in the full participation equilibrium.
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Our analysis of the mixed externalities case is based on the following binary relation.

We say that an agent i is non-averse to agent j if wi(j) ≥ 0, and we write it as i � j.We

will assume that � is symmetric and transitive, i.e., i � j =⇒ j � i and if i � j and j � k

then i � k. Note that this assumption does not imply any constraint on the magnitude of

the externalities, but just on their sign. While the symmetry and transitivity of the non-

averse relation seem rather intuitive assumptions, not all strategic environments satisfy

them. These assumptions are particularly relevant to environments where the selected

population is partitioned into social, ethnic, or political groups with animosity potentially

occurring only between groups but not within groups. We analyze a specific example of

this sort of environment in Section 6.

It turns out that the optimal solution of participation problems with symmetry and

transitivity of the non-averse relation is derived by a decomposition of the participation

problem into two separate participation problems: one that involves only positive exter-

nalities, and the other that involves only negative externalities. This is done by simply

decomposing the externalities matrix into a negative and a positive matrix. In the follow-

ing proposition we show that the decomposition contracting scheme, a contract set that

is the sum of the two optimal contracts of the two decomposed participation problems,

is the optimal contracting scheme for the mixed externalities participation problem.

Proposition 8 Consider a participation problem (N,w, c). Let (N,w+, c) be a par-

ticipation problem such that w+i (j) = wi(j) if wi(j) ≥ 0 and w+i (j) = 0 if wi(j) < 0,

and let u+ be the optimal full implementation contracts of (N,w+, c). Let (N,w−, 0)

be a participation problem such that w−i (j) = wi(j) if wi(j) < 0 and w−i (j) = 0 if

wi(j) ≥ 0, and let u− be the optimal full implementation contracts of (N,w−, 0). Then,

the decomposition contracting scheme v = u+ + u− induces a unique full participation

equilibrium. Moreover, if agents satisfy symmetry and transitivity with respect to the

non-averse relation, v is the optimal contracting scheme.

Proposition 8 shows that the virtual popularity tournament discussed in earlier sec-

tions plays a central role also in the mixed externalities case as it determines payoffs

for the positive component of the problem. When symmetry and transitivity hold, the

principal can exploit the positive externalities to reduce payments. In this tournament i

beats j whenever (1) wj(i) ≥ 0 and wj(i) ≥ 0, and (2) wj(i) > wi(j). Note that under
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the non-averse assumptions, the principal provides complete compensation for the agents

who suffer from negative externalities, as in the negative externalities case. Finally, it

is easy to show that equivalently to Proposition 5, the principal’s cost of achieving full

implementation in a mixed externalities setting is equivalent to the positive externali-

ties setup, except that now the principal has to add the compensation for the negative

externalities.

4.5 Non-additive Preferences

We propose here an extension of the model in which we impose no restrictions on agents’

preferences; i.e., preferences are no longer assumed to be separably additive. Using an

iterative procedure that makes use of the solution for the additive case allows us to narrow

down the set of potential optimal incentive contracts, even when no structure is assumed.

A participation problem is described by a group of agents N and their outside option

is equal to c, as noted previously. We assume a general externalities structure, which is

composed of the non-additive preferences of the agents over all subsets of agents in the

group N. More specifically, for each i, vi : 2N\{i} −→ R. The function vi(S) stands for the

benefit of agent i from the participation with the subset S ⊆ N. We normalize v(∅) = 0.

The condition of positive externalities now reads: for each i and subsets S, T such that

T ⊂ S we have vi(S) ≥ vi(T ).

Arguments similar to those used in Proposition 1 show that the optimal contracting

scheme that sustains full participation as a unique equilibrium also satisfies the divide-

and-conquer property. Hence, the optimal contracts rely on the optimal ranking of the

agents.

We leave the detailed description of the procedure to the proof of Proposition 9.

Instead, we provide an example to illustrate the basic ideas.

4.5.1 A Simple Example

Consider a four-agent example. Given that the optimal solution is DAC for any given

ranking of agents ϕ = {i1, i2, i3, i4}, the DAC contracts with respect to ranking ϕ are

(c, c− vi2(i1), c− vi3(i1, i2), c− vi4(i1, i2, i3)) . Instead of identifying the optimal ranking,

we apply an iterative procedure of N −1 steps to eliminate rankings that we infer cannot

be optimal. Our starting point is the set of all possible rankings of the agents; in this
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example there are 24 such rankings.

STEP 1. Let’s assume that the bilateral externalities vi(j) between the agents result

in the corresponding acyclic graph described below. Therefore the tournament yields the

unique consistent ranking for step one when φ1 = (3, 1, 2, 4).

Figure 2

We argue that any ranking that orders the first two agents in a way that contradicts

their relative ranking in φ1 cannot be the optimal. To see that, consider the ranking

(4, 2, 1, 3) which is inconsistent with φ1 with respect to the relative ranking of agents 4

and 2. We can immediately construct a cheaper ranking by reversing the position of the

first two agents, and keeping the position of the remaining agents ranked lower in the

same order. Hence, we can eliminate (4, 2, 1, 3) from the set of potential optimal rankings.

Applying this logic to the entire set of potential rankings we are left with 12 potential

rankings; i.e., the optimal ranking of the original problem must start with any of the

following pairs: (3, 1), (3, 2), (3, 4), (1, 2), (1, 4), (2, 4).

STEP 2. We now proceed to the second iteration in which for each agent located in

the first position we construct a graph that is based on the bilateral relations conditional

on the participation of the first agent. In particular, we consider the case in which agent

1 is ranked first and build the graph based on agents’ preferences conditional on the

participation of agent 1; i.e., the externalities matrix is given by (wi(j) = vi(j, 1)|j ∈

{2, 3, 4}).

Let’s assume that preferences take the following form:

v2(3, 1) > v3(2, 1)

v2(4, 1) > v4(2, 1)

v3(4, 1) > v4(3, 1)

Since the graph is acyclic the unique consistent ranking of the second iteration, conditional
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on agent 1 being first, is φ2|1 = (4, 3, 2). Again, we require rankings to be consistent with

φ2|1. For example, ranking (1, 2, 4, 3) cannot be optimal since (2, 4, 3) is not consistent

with φ2|1 and transposing the order of 2 and 4 we get ranking (1, 4, 2, 3), which is cheaper.

While there are six rankings in which agent 1 is ranked first, we can immediately eliminate

three that do not agree with φ2|1 and we are left with {(1, 4, 2, 3), (1, 4, 3, 2) , (1, 3, 2, 4)} .

However, these rankings must agree with the constraints from the previous step. This

is not the case for ranking (1, 3, 2, 4), as we can transpose the order of 1 and 3 and get

a cheaper mechanism; thus we can eliminate it as well.26 Hence, if the optimal ranking

starts with agent 1 it must be followed by agent 4 ranked second. Rather than discussing

the construction of cases where agents 2 and 3 are ranked first, we continue to explore

the case where agent 1 is ranked first and proceed to step 3.

STEP 3. In this iteration we repeat and construct the graph based on agents 2 and

3’s preferences, conditional on the participation of agents 1 and 4. Let’s assume that

v2(3, 1, 4) < v3(2, 1, 4); hence φ3|1,4 = {2, 3} . Thus, the only ranking that can be optimal

in the original problem conditional on agent 1 being first is (1, 4, 2, 3).

4.5.2 General Result

The example above illustrates our procedure for generating the optimal incentive con-

tracts can also be used iteratively to eliminate non-optimal rankings, when we impose no

structure on agents’preferences.

The starting point is the set of all agents’rankings. We proceed with an iterative

procedure of N − 1 stages, in each we rule out possible rankings by constructing a graph

that is based on the bilateral preferences of the agents conditional on the participation

of the agents ranked above them. We assume that in each step the resulting graph is

acyclic and thus generates a unique consistent ranking. We eliminate rankings that are

inconsistent with the step’s consistent ranking or with the constraints imposed in the

previous step. The formal description of this iterative procedure is provided in the proof

of Proposition 9.

Proposition 9 Let (N, c) be a participation problem with non-additive preferences,

for which all tournaments in the iterative procedure are acyclic. Then, the set of surviving

rankings is non-empty and includes the optimal ranking.

26We refer to this check as the interface condition and discuss it more fully in the proof of Proposition
9.
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Proposition 9 demonstrates that the fundamental logic underlying our analysis of

additive externalities also underlies our construction of optimal contracts while taking

into account the complex structure of externalities among agents.

5 Group Identity and Selection

In this section we consider special externalities structures to demonstrate how the selec-

tion stage can be incorporated once we have solved the participation problem. Assume

that the externalities take values of 0 or 1. In this environment an agent either bene-

fits from the participation of his peer or gains no benefit. We provide three examples

of group identities in which the society is partitioned into two groups and agents have

hedonic preferences for members in these groups. We demonstrate how the optimal con-

tracting scheme proposed in previous sections may affect the selection of the agents in

the planning of the initiative.

(1) Segregation - agents benefit from participating with their own group’s members

and enjoy no benefit from participating with members from the other group. More

specifically, consider the two groupsB1 andB2 such that for each i, j ∈ Bk , k = 1, 2,

we have wi(j) = 1. Otherwise, wi(j) = 0.

(2) Desegregation27 - agents benefit from participating with the other group’s mem-

bers and enjoy no benefit from participating with members of their own group.

More specifically, consider the two groups B1 and B2 such that for each i, j ∈ Bk ,

k = 1, 2, we have wi(j) = 0. Otherwise, wi(j) = 1.

(3) Status - the society is partitioned into two status groups, high and low. Each

member of the society benefits from participating with each member of the high-

status group and enjoys no benefit from participating with members of the low-

status group. Formally, let B1 be the high status group and set wi(j) = 1 if and

only if j ∈ B1 . Otherwise wi(j) = 0.

Proposition 10 Let (N,w, c) be a participation problem. Let n1 and n2 be the number

of agents selected from groups B1 and B2, respectively, such that n1 +n2 = n. Denote by

27An example could be a singles party.
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v(n1, n2) the principal cost of incentivizing agents under the optimal contracts given that

the group composition is n1 and n2. The following holds:

1) under Segregation v(n1, n2) is decreasing with | n1 − n2|;

2) under Desegregation v(n1, n2) is increasing with | n1 − n2|;

3) under Status v(n1, n2) is decreasing with n1.

In the case of Segregation, the principal’s cost of incentives is increasing with the mix-

ture of groups; hence in the selection stage the principal would prefer to give precedence

to one group over the other. In the Desegregation case the principal’s cost is declining

with mixture; hence in the selection stage the principal would like to balance between

members of the groups. In the Status case the cost is declining with the number of agents

recruited from B1, who will be strongly preferred to the members of B2.

6 Conclusion

In this paper we analyzed a contracting framework with heterogeneous externalities.

Introducing a complicated structure of externalities allowed us to explore several aspects

of the multi-agent contracting environments that are not apparent in the homogeneous

case. These include the impact of externalities asymmetry on payments, the implications

of externalities structure on the hierarchy of incentives, and the effect of variations in the

externalities structures on both the principal’s payments and the agents’rewards.

Exploring the role of heterogeneous externalities reveals the importance of external-

ities asymmetry within the group. More specifically, greater asymmetry between the

agents’benefits reduced the principal’s payment in the full implementation problem. In

addition, externalities asymmetry turns out to play a role also in the selection between

partial and full implementation, as it affects the premium required to sustain full partic-

ipation as a unique equilibrium. Greater asymmetry decreases this premium, and thus

makes full implementation more profitable.

The hierarchy of incentives is determined by a ranking that results from a virtual

popularity tournament. In the simplest case, an agent i is ranked above agent j if agent

i benefits less from joint participation than agen j does from it. We demonstrated that

this ranking of incentives is different from the standard ranking that is based on agents’
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popularity.

The implications of externalities on the rankings of agents may suggest a preliminary

game in which agents invest effort to increase the positive externalities that they induce

on others which can ultimately increase the rewards from the principal. For example,

agents can invest in their social efforts to make themselves more attractive guests at

social events. A firm may invest to increase its market share in order to improve its

ranking in an acquisition game. Under certain circumstances such an investment may

turn out to be quite attractive as we have seen that a slight change in externalities may

result in a substantial gain, due to a change in the ranking. Our analysis contributes

to the understanding of how to make such a strategic investment profitable. The new

game will now have two stages. In the first stage agents’investment efforts change the

exterrnalities they induce on other members of the group. In the second stage, the

externalities determine the network formation and the consequent incentives provided by

the principal. The analysis of such a game is beyond the scope of this paper but seems

to be a natural next step.

26



References

Brandts, J. and D. Cooper. 2006. “A Change Would Do You Good... An Experimental

Study on How to Overcome Coordination Failure in Organizations,”American Economic

Review 96, 669-693.

Calvò, A. and M. Jackson. 2004. “The Effect of Social Networks on Employment and

Inequality,”American Economic Review 94, 426-454.

Calvò, E., J. Lasaga, and A. van den Nouweland. 1999. “Values of Games with Proba-

bilistic Graphs,”Mathematical Social Sciences 37, 79-95.

Che, Y. K. and S. Yoo. 2001. “Optimal Incentives for Teams,”American Economic

Review 91, 525-541.

Cheng, M. “Hong Kong’s Silicon Dreams.”San Francisco Chronicle. October 12, 1999.

Condorcet, Marquis de. 1785. Essai sur l’application de l’analyse a la probabilite des

decisions rendues a la probabilite des voix, Paris: De l’imprimerie royale.

Gould, E., P. Pashigian, and C. Prendergast. 2005. “Contracts, Externalities, and In-

centives in Shopping Malls,”Review of Economics and Statistics 87, 411-422.

Goyal, S. and J. L. Moraga. 2001. “R & D Networks,”RAND Journal of Economics 32,

686-707.

Grossman, S. J. and O. D. Hart. 1980. “Takeover Bids, the Free-rider Problem, and the

Theory of the Corporation,”The Bell Journal of Economics 11, 42-64.

Jackson, M.. 2004. “A Survey of Models of Network Formation: Stability and Effi -

ciency,” in Group Formation in Economics; Networks, Clubs and Coalitions, edited by

G. Demange and M. Wooders, Cambridge University Press.

Jehiel, P., B. Moldovanu, and E. Stachetti. 1996. “How (Not) to Sell Nuclear Weapons,”

American Economic Review 86, 814-829.

Jehiel, P. and B. Moldovanu. 1996. “Strategic Nonparticipation,”RAND Journal of

Economics 27, 84-98.

27



Jehiel, P. and B. Moldovanu. 1999. “Resale markets and the Assignment of Property

Rights,”The Review of Economic Studies 66, 971-991.

Kamien, M., S. Oren, and Y. Tauman. 1992. “Optimal Licensing of Cost-Reducing

Innovation,”Journal of Mathematical Economics 31, 483-508.

Kamien, M. and I. Zang. 1990. “The Limits of Monopolization through Acquisition,”

Quarterly Journal of Economics 105, 465-499.

Katz, M. and C. Shapiro. 1986a. “How to License Intangible Property,” Quarterly

Journal of Economics 101, 567-589.

Katz, M. and C. Shapiro. 1986b. “Technology Adoption in the Presence of Network

Externalities,”Journal of Political Economy 94, 822-841.

Kendall, M.. 1962. Rank Correlation Methods, 3rd ed., Hafner: New York.

Krishna, K.. 1993. “Auctions with Endogenous Valuations: The Persistence of Monopoly

Revisited,”American Economic Review 83, 147-160.

Levin, J.. 2002. “Multilateral Contracting and the Employment Relationship,”Quarterly

Journal of Economics 117, 1075-1103.

Lewis, T.. 1983. “Preemption, Divestiture, and Forward Contracting in a Market Domi-

nated by a Single Firm,”American Economic Review 73, 1092-1101.

Milgrom, P., and J. Roberts. 1990. “Rationalizability, Learning, and Equilibrium in

Games with Strategic Complementarities,”Econometrica 58, 1255-1277.

Mutuswami, S. and E. Winter. 2002. “Subscription Mechanisms for Network Formation,”

Journal of Economic Theory 106, 242-264.

Page, F., M. Wooders, and S. Kamat. 2001. “Networks and Farsighted Stability,”Dis-

cussion Paper, University of Warwick.

Rasmusen, E., M. Ramseyer, and J. Wiley. 1991. “Naked Exclusion,”American Eco-

nomic Review 81, 1137-1145.

28



Segal, I.. 1999. “Contracting with Externalities,”Quarterly Journal of Economics 114,

337-388.

Segal, I. and Whinston M.. 2000. “Naked Exclusion: Comment,”American Economic

Review 90, 296-309.

Segal, I.. 2003. “Coordination and Discrimination in Contracting with Externalities:

Divide and Conquer?”Journal of Economic Theory 113, 147-327.

Winter, E.. 2004. “Incentives and Discrimination,” American Economic Review 94,

764-773.

Winter, E.. 2006. “Optimal Incentives for Sequential Production,”RAND Journal of

Economics 37, 376-390.

Young, H. P.. 1988. “Condorcet’s Theory of Voting,”The American Political Science

Review 82, 1231-1244.

29



Appendix

Proof of Proposition 1 Let v = (vi1 , vi2 , ..., vin) be an optimal full implementation

contracting scheme of the participation problem (N,w, c). Hence, v generates full par-

ticipation as a unique Nash equilibrium. Since no-participation is not an equilibrium,

at least a single agent, say i1, who reward is at least as high as his outside option c.

Otherwise, a no-participation equilibrium exists. Due to the optimality of v his payoff

would be exactly c. Agent i1 chooses to participate under any profile of other agents’

decisions. Given that agent i1 participates and an equilibrium of a single participation

is not feasible, at least one other agent, say i2, receives a reward at least as high as

c−wi2(i1). Since v is the optimal contracting scheme, i2’s reward equals c−wi2(i1), and

under any profile of decisions i2 will participate. Applying this argument iteratively on

the first k − 1 agents, at least one other agent, henceforth ik, must get a payoff at least

as high as c −
∑k−1

j=1 wik(j), but again, since v is optimal, the payoff for agent k must

be equal to c −
∑k−1

j=1 wik(j). Hence, the optimal contracting scheme v must satisfy the

divide-and-conquer property with respect to a ranking ϕ.

Proof of Lemma 1 We will demonstrate that there is a single node with n− 1 out-

going arcs. Since the tournament is a complete, directed, and acyclic graph there cannot

be two such nodes. If such a node does not exist, then all nodes in G have both incoming

and outgoing arcs. Since the number of nodes is finite, we get a contradiction to G being

acyclic. We denote this node as i1 and place its corresponding agent first in the ranking

(hence this agent beats all other agents). Now let us consider a subgraph G(N1, A1)

that results from the removal of node i1 and its corresponding arcs. Graph G(N1, A1)

is directed, acyclic, and complete and, therefore, following the previous argument, has a

single node that has exactly n−2 outgoing arcs. We denote this node as i2, and place its

corresponding agent at the second place in the ranking. Note that agent i1 beats agent

i2 and therefore the ranking is consistent so far. After the removal of node i2 and its arcs

we get subgraph G(N2, A2) and consequently node i3 is the single node that has n − 3

outgoing arcs in subgraph G(N2, A2). Following this construction, we can easily observe

that the ranking ϕ = (i1, i2, ..., in) is consistent among all pairs of agents and due to its

construction is also unique.

Proof of Proposition 2 According to Proposition 1 the optimal contracting scheme

satisfies the DAC property. Hence the optimal contracting scheme is derived from con-
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structing the optimal ranking and is equivalent to minimizing the sum of incentives,

Vfull :

Vfull = min
(j1,j2,...,jn)

[
n · c−

{
1∑

k=1

wj1(jk) +
2∑

k=1

wj2(jk) + ...+
n∑
k=1

wjn(jk)

}]

= max
(j1,j2,...,jn)

[
1∑

k=1

wj1(jk) +
2∑

k=1

wj2(jk) + ...+
n∑
k=1

wjn(jk)

]

Since no externalities are imposed on nonparticipants, the outside options of the agents

have no role in the determination of the optimal contracting scheme. We will show that

the ranking that solves the maximization problem of the principal is the tournament

ranking. Let us assume, without loss of generality, that the tournament ranking ϕ is the

identity permutation: hence ϕ(i) = i, and Wϕ =
∑2

k=1w2(k) + ... +
∑n

k=1wn(k), where

Wϕ is the principal’s revenue extraction. By way of contradiction, assume that there

exists ϕ 6= σ such that Wϕ ≤ Wσ. First, assume that σ is obtained from having two

adjacent agents i and j in ϕ trade places such that i precedes j in ϕ and j precedes i in

σ. By Lemma 1, agent i beats agent j; thus Wσ = Wϕ − wj(i) + wi(j) and Wσ < Wϕ.

Note that since ϕ is the tournament ranking, agent 1 beats all agents, agent 2 beats

all agents but agent 1, and so on. Now consider unconstrained σ = {i1, ..., in} such that

ϕ 6= σ. If agent 1 is not located first, by a sequence of adjacent swaps (1, ij), we move

agent 1 to the top of the ranking. In each of the substitutions agent 1 beats ij. Next,

if agent 2 is not located at the second place, by a sequence of adjacent substitutions

(2, ij), we move agent 2 to the second place. Again, agent 2 beats all agents ij. The

process ends in at most n stages and produces the desired order ϕ. As demonstrated, any

adjacent substitution results in a higher extraction, and soWσ < Wϕ. Therefore, the DAC

contracting scheme with respect to the tournament ranking is unique and optimal.

Proof of Proposition 3 Without loss of generality, assume that the tournament

ranking ϕ is the identity permutation. Hence, under the optimal contracting scheme, the

principal’s payment is Vfull = n · c −
[∑1

j=1w1(j) + ...+
∑n

j=1wn(j)
]
. Denote si(j) =

[wi(j) + wj(i)] and ai(j) = [wi(j)− wj(i)]. We can represent Kagg and Kasym in the fol-

lowing manner: Kagg =
∑
i j

wi(j) =
∑
i< j

(wi(j) + wj(i)) =
∑
i<j

si(j) and Kasym =
∑
i<j

|ai(j)|.
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Since wi(j) = 1
2

(si(j) + ai(j)) we can rewrite the principal’s payment as

Vfull = n · c− 1

2

[
1∑
j=1

{s1(j) + a1(j)}+ ...+

n∑
j=1

{sn(j) + an(j)}
]

= n · c− 1

2

(∑
i>j

si(j) +
∑
i>j

ai(j)

)

Note that si(j) = sj(i) and ai(j) = −aj(i). In addition ai(j) > 0 when i > j as the

tournament is acyclic and ranking is consistent. Therefore,

Vfull = n · c− 1

2

(∑
i<j

si(j)−
∑
i<j

|ai(j)|
)

= n · c− 1

2
(Kagg +Kasym)

Proof of Corollary 3.2 The result follows immediately from Proposition 3, where

we show that Vfull = n · c − 1
2

∑
i j wi(j) − 1

2

∑
i<j |wi(j)− wj(i)|, and from Vpartial =

n · c−
∑

i j wi(j). Taken together, the two yield

Vfull − Vpartial =
1

2

∑
i j

wi(j)−
1

2

∑
i<j

|wi(j)− wj(i)| =
1

2
(Kagg −Kasym)

Proof of Proposition 4 Let G(N,A) be a cyclic graph. Consider a subset of arcs S

such that G−S is acyclic, and the tournament ranking of G−S is ϕ = (j1, j2, ..., jn). The

payment of the principal Vfull under the DAC contracting scheme with respect to ϕ is

Vfull = n · c−
{

1∑
k=1

wj1(jk) +

2∑
k=1

wj2(jk) + ...+

n∑
k=1

wjn(jk)

}

Note that each (i, j) ∈ S satisfies an inconsistency in tournament ranking ϕ. More specif-

ically, if (i, j) ∈ S, then i beats j, and agent j is positioned above agent i. In addition,

wi(j) = wj(i)− t(i, j), where wi(j) < wj(i) and t(i, j) > 0. Consider the following substi-

tution: if (i, j) ∈ S then wi(j) = ŵj(i)− t(i, j); otherwise wi(j) = ŵi(j). This allows us to

rewrite the principal’s payment as Vfull = n · c−
{∑1

k=1 ŵj1(jk) + ...+
∑n

k=1 ŵjn(jk)
}

+

t(S). Note that ŵi(j) = max(wi(j), wj(i)). Therefore, different rankings affect only the

level of t(S), as the first two terms in Vfull remain indifferent to variations in the ranking.
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This implies that the subset S with the lowest t(S) brings Vfull to a minimum. Hence,

the optimal contracting scheme is the DAC with respect to the tournament ranking of

G−S∗.

Proof of Proposition 5 As demonstrated in Proposition 4, the optimal payment of

the principal is the DAC contracting scheme with respect to the tournament ranking of

G−S∗ . According to Proposition 4, this can be written as

Vfull = n · c−
{

1∑
k=1

ŵj1(jk) + ...+
n∑
k=1

ŵjn(jk)

}
+ t(S)

when ŵi(j) = max(wi(j), wj(i)) . Following the argument of Proposition 3, denote si(j) =

[ŵi(j) + ŵj(i)] and ai(j) = [ŵi(j) − ŵj(i)] and the principal’s payment is Vfull = n · c −
1
2

(∑
i<j si(j) +

∑
i<j |ai(j)|

)
+ t(S) = n · c− 1

2
(Kagg +Kasym) +Kcyclic.

Proof of Proposition 6 The cost of a full implementation contracting scheme is

simply Vfull = nc − (1 − η)
∑

i

∑
j<iwi(j). If η = 1, then the cost does not depend on

the externalities. If η < 1, the minimal cost is obtained by selecting a ranking that

maximizes
∑

i

∑
j<iwi(j). This is equivalent to the tournament ranking outlined in

Proposition 4. If η > 1, the participation problem is identical to a standard participation

problem (with fixed outside option) where externalities are (1 − η)wi(j) < 0. In these

negative externalities problems the DAC mechanism does not apply and the optimal

scheme requires that the principal reimburse the agents for their total burden, i.e., c −

(1 − η)
∑

j wi(j)),which is a positive number whenever the outside option and wi(j) are

positive.

Lemma 6.1 Let (N,w, c) be a participation problem and T = (T1, ..., Tn) define the

contingency sets. Define wT to be such that wTi (j) = wi(j) if j /∈ Ti and wTi (j) = 0

otherwise. Let ϕ be the optimal ranking of the participation problem (N,wT , c), and

v(N,wT , c) the corresponding DAC payment vector. The optimal full implementation

contracts set of (N,w, c) is such that it provides c for agent i if contingencies Ti are

violated, and vi = vi(N,w
T , c)−

∑
j∈Ti wi(j) otherwise.

Proof of Lemma 6.1 Since externalities are positive, contingencies allow the princi-

pal to reduce payments. In particular, when exploiting all contingencies allowed in T, the

contracting scheme that sustains a unique full participation Nash equilibrium offers each

agent i a reward vi = c−
∑

j∈Ti wi(j) if contingencies are met, and c if they are violated.
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If for all agents Ti = N/ {i} , then full extraction of surplus is possible as a unique equi-

librium. However, if only partial contingencies are allowed, i.e., for some agents Ti ⊂ N

/ {i} then the principal can perform even better than in the contracts outlined above.

Let’s define ŵi(j) = wi(j) if j /∈ Ti and ŵi(j) = 0 otherwise. Consider an arbitrary

ranking of agents ϕ = {1, 2, ..., n} in which the first agent is offered v1 = c−
∑

j∈T1 w1(j)

if contingencies are met, and c otherwise. Agent 1 will choose to participate. Given the

participation of agent 1, we can offer agent 2 the following payment: v2 = c − ŵ2(1) −∑
j∈T2 w2(j) if contingencies are met, and c otherwise. Hence, agent 2 will agree to

participate given the participation of agent 1. Following the same argument, we could

offer the last agent in the ranking vn = c−
∑n−1

i=1 ŵn(i)−
∑

j∈Tn wn(j). This set of contracts

will sustain full participation as a unique Nash equilibrium.

The optimal full implementation contracting scheme is thus achieved by obtaining

the ranking of agents that will maximize
∑

i

∑
j>i ŵi(j). Given our definition of ŵi(j),

this is equivalent to finding the optimal ranking of agents in the problem (N,wT , c) when

wTi (j) = wi(j) if /∈ Ti and wTi (j) = 0 otherwise. In other words, in the optimal full

implementation contracting scheme, the payment for participation for each agent will be

vi = vi(N,w
T , c)−

∑
j∈Ti wi(j) if contingencies are met, and c otherwise.

Proof of Proposition 7 Given contracting scheme v, participation is a dominant

strategy for all agents under the worst-case scenario in which all other agents participate,

since ui =
∑n

i=1wi(j) + vi = c for every i ∈ N . To show that v is optimal, consider

a contracting scheme m for which mi < vi for some agents and mi = vi for the rest.

By way of contradiction, assume full participation equilibrium holds under contracting

scheme m. Consider an agent i for which mi < vi. If all other agents are participating,

then agent i’s best response is to abstain, since ui =
∑n

i=1wi(j) + mi < c. Hence, v is a

unique and optimal contracting scheme.

Proof of Proposition 8 See Complementary Note.

Proof of Proposition 9 We proceed in three steps. First we describe the iterative

procedure formally. Then we show that the iterative procedure has a finite number of

steps with a non-empty set of outcomes. Finally, we demonstrate that the optimal ranking

of the original problem is among those orders that survive the procedure.

Formal Description of the Iterative Procedure. The starting point is the set of all

possible rankings of the N agents. We start with the first two positions in the ranking.
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We construct a tournament ranking in which wij = vi(j) and eliminate all the rankings

in which the first two agents are ordered in a manner that is inconsistent with this

ranking. All rankings that survived the elimination provide a possible assignment for the

first position in the order. Suppose we have implemented the procedure k-1 steps and

obtained a subset of the assignment to the first k− 1 positions of the order. Let Wk−1 be

the set of sub-orders for the first k− 1 agents obtained in step k− 1. For each w ∈ Wk−1

we denote by Sw the set of agents assigned to one of the first k−1 slots in the assignment

w. We now define a tournament Tw on the set of agents N\Sw in such a manner that

wij = vi(Sw ∪j) defines the externalities matrix. Assuming the graph is acyclic we denote

by πw the uniquely consistent order of the agents in N/Sw.

Next, we construct a subset of assignments to the first k slots based on the set Wk−1

and the orders πw for each w ∈ Wk−1. We first look at the set of all orders of N\Sw
and eliminate all orders in which the first two agents are ordered in a manner that is

inconsistent with πw. We denote by Pw the set of all ordered pairs that survive this

elimination.

We now do the following check which we refer to as the interface condition: Take

a pair pw ∈ Pw. Suppose this pair is iw, jw and let kw be the last player in w. If kw

beats iw then the suborder w, iw is a permissible suborder in step k and is added to Wk;

otherwise it is excluded. We now proceed in a similar way for every w ∈ Wk−1 and the

set of permissible suborders of length k which defines Wk.

Claim 1: The process ends in N−1 steps and results in a non-empty set of permissible

orders.

Proof: We define inductively an order that survives all the steps of this procedure.

The first agent in the order is the one ranked first under the tournament wij = vi(j) of

the first step; call him i1. The second agent is the one ranked first under the tournament

Tw where w = i1.

Suppose that the first k − 1 slots of the order have been defined. The k-th agent in

the order is the one ranked first under the tournament Tw , where w = i1, ...ik−1

Clearly the interface condition that we defined earlier will never be violated since

at each step the agent who is added beats all the agents who are not yet ordered. This

implies that the process yields a non-empty set of orders and the number of steps is finite.

Claim 2: The optimal order is among those orders that survive the procedure.
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Proof: Suppose w.l.o.g. that the optimal order is the identity i.e., 1, 2, 3, ...n. We

denote this order by π. Suppose by way of contradiction that the optimal order is elim-

inated at some step k. This means that the interface condition between k-1 and k is

violated or that the order was eliminated because the next two agents (say i, i+ 1) in the

order π are not consistent with their order in the tournament ranking of N\Sw of the

current stage. This means that i + 1 beats i in this tournament on N\Sw. This implies

that reversing their order will increase the principal’s revenue in the divide-and-conquer

scheme. Consider the tournament in stage k which is on the set of agents k, k + 1, ..., n

and wij = vi({1, ...k− 1} ∪ j). Let S be the subset of agents in k, k+ 1..., n such that for

each j ∈ S the agent j is not placed last under the consistent order of the tournament

wij = vi({1, ...k − 1} ∪ j). Any such agent can be the next to be ordered and appear

immediately after player k-1. By our assumption any such agent will violate the interface

condition. This means that all players in S win against k-1 in the tournament defined in

step k-1. We now distinguish between two cases. Case 1: k ∈ S. In this case consider the

order obtained by switching the positions of k-1 and k in the original identity order. We

denote this order by π′.We note that payments in the divide-and-conquer mechanism for

the orders π and π′ differ only in terms of players k-1 and k. Furthermore, since k is in S, k

beats k-1 in the tournament defined in step k-1. Hence the total payment under π′ is less

than that under π, which contradicts the optimality of π.We now move to Case 2: k is not

in S. In this case k must be ranked last under the tournament wij = vi({1, ...k−1}∪j). In

particular k+ 1 beats k in this tournament. Consider now the order π′ which is identical

to π except that k+1 appears before k. As in the argument made earlier, payments to

all players but k and k+1 are identical in π and π′ and because k + 1 bits k under the

tournament wij = vi({1, ...k− 1} ∪ j), the order π′ corresponds to lower total payments

to k and k + 1, again in contradiction to the optimality of π.

Proof of Proposition 10 In both segregated and desegregated environments the

externalities structure is symmetric and, following Corollary 5.1, all rankings are optimal.

Consider first the segregated environment. Since all rankings are optimal, a possible

optimal contracting scheme is v = (c, ..., c − (n1 − 1), c, ..., c − (n2 − 1)). Hence, the

optimal payment for the principal is v(n1, n2) = n · c−
∑n1−1

l=1 l −
∑n2−1

k=1 k = n · c −
n1(n1−1)

2
− (n−n1)(n−n1−1)

2
. Assuming that v(n1, n2) is continuous with n1, it follows that

∂v(n1,n2)
∂n1

= n − 2n1, the maximal payment is achieved at n∗1 = n∗2 = n
2
, and the cost
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of incentivizing is declining with | n1 − n2|. In the desegregated example, a possible

optimal contracting scheme is v = (c, ..., c, c − n1, ..., c − n1). Therefore, the principal’s

payment is v(n1, n2) = n · c− (n − n1) · n1. Again, let us assume that v(n1, n2) is

continuous with n1, in which case solving
∂v(n1,n2)

∂n1
= 2n1− n = 0 results in the minimum

payment for the principal in the desegregated environment being received at n∗1 = n∗2 =

n
2
, and the cost of incentivizing is increasing with |n1 − n2|. In a status environment,

since group B1 is the more esteemed group, all agents from B1 beat all agents from

B2; therefore agents from B1 should precede the agents from B2 in the optimal ranking.

A possible optimal ranking is ϕ = {i1, ., , , in1 , j1, ..., jn2} when ik ∈ B1, jm ∈ B2, and

1 ≤ k ≤ n1, 1 ≤ m ≤ n2. Therefore, a possible optimal contracting scheme is v =

(c, c − 1..., c − (n1 − 1), c − n1, ..., c − n1). The principal’s payment is v(n1, n2) = n · c−∑n1−1
l=1 l−n2 ·n1 = n · c− n1(n1−1)

2
− (n−n1)n1 = 1

2
n1−nn1 + 1

2
n21 + cn. Again, assuming

that v(n1, n2) is continuous with n1,
∂v(n1,n2)

∂n1
= n1 + 1

2
− n = 0 and the minimal payment

is achieved at n∗1 = n − 1
2
. Note that V (n1 = n) = V (n1 = n − 1). Therefore, the

best scenario for the principal is when n1 = n. Alternatively, the cost of incentivizing is

decreasing with n1.
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NOT FOR PUBLICATION

Complementary Appendix

Proposition 8 Consider a participation problem (N,w, c). Let (N,w+, c) be a participa-

tion problem such that w+i (j) = wi(j) if wi(j) ≥ 0 and w+i (j) = 0 if wi(j) < 0, and let

u+ be the optimal full implementation contracts of (N,w+, c). Let (N,w−, 0) be a partici-

pation problem such that w−i (j) = wi(j) if wi(j) < 0 and w−i (j) = 0 if wi(j) ≥ 0, and let

u− be the optimal full implementation contracts of (N,w−, 0). Then, the decomposition

contracting scheme v = u+ + u− induces a unique full participation equilibrium. More-

over, if agents satisfy symmetry and transitivity with respect to the non-averse relation,

v is the optimal contracting scheme.

Proof of Proposition 8 To prove the proposition we use the following lemma.

Lemma 8.1: Consider a participation problem (N,w, c) with mixed externalities. Then

the decomposition contracting scheme sustains full participation as a unique equilibrium.

Proof : Consider a decomposition contracting scheme v of the participation problem

(N,w, c), when w includes mixed externalities. By definition vi = u+i + u−i , where

u+ is the optimal full implementation contracting scheme for the positive participation

problem, and u− is the optimal contracting scheme for the negative participation prob-

lem. Let φ = {i1, ..., iN} be the optimal ranking in the positive participation problem

(N,w+, c). As demonstrated in Proposition 6, the optimal contracting scheme for the neg-

ative participation problem is full compensation of agents for the negative externalities,

i.e., u−i =
∑

j∈Di |wi(j)| where Di = {j | wi(j) < 0 s.t. j ∈ N}.We will demonstrate that

v sustains full participation as a unique equilibrium. To deter no-participation equilib-

rium, at least a single agent has to participate, regardless of the participation choices of

the other agents. Agent i1 gets u+i1 = c, and u−i1 =
∑

j∈Di1
|wi1(j)| ; therefore, regardless

of the others’ choices, agent i1 will participate in the initiative. Next, it is necessary

to prevent an equilibrium in which only a single agent participates, and note that given

agent i1’s participation, agent i2 will choose to participate, regardless of the choices of

agents i3, ..., iN . This is true since u+i2 = c−w+i2(i1) and u
−
i1

=
∑

j∈Di2
|wi2(j)| , and, given

the participation of agent i1 and the compensation for negative externalities, agent i2

will participate. Applying the same logic for all subsequent agents, we get that the only
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possible equilibrium is full participation, since all agents are willing to participate given

the participation of the agents who preceded them in the optimal ranking of the positive

participation problem, and since they are being compensated for negative externalities.

End of Lemma.

Now we need to show that if the matrix of externalities satisfies symmetry and transi-

tivity with respect to the non-averse relation, then the decomposition contracting scheme

generates the optimal set of contracts for full participation. Note that since we have de-

fined wii = 0 for each agent i, the non-averse relation � is reflexive (i.e., i � i) and

together with the symmetry and transitivity assumptions it is an equivalence relation.

Therefore the set of agents can be partitioned into equivalence classes S1, ..., Sm such that

∪jSj = N and Sj ∩ Si = � for all i, j, and for each k, l ∈ Si we have that k and l induce

non-negative externalities on each other. Let us now define m new participation prob-

lems by restricting the matrix of externalities to the set Sj where 1 ≤ j ≤ m. All these

problems are non-negative and their optimal contracting schemes are all DAC. Let u+j be

an optimal contracting scheme for the problem defined on the set Sj, which is a vector

of size #Sj. Write u+ = (u+1 , ..., u
+
m ). For each agent i ∈ N denote by di the total of

negative externalities imposed on agent i, i.e., di = Σ{j;wij<0}wij, and set u
− = (d1, ..., dn).

We will show that u = u+ + u− is an optimal contracting scheme for the mixed problem.

Let w be the original matrix of externalities and let w = w++w− be the decomposition

of w , where w+ is a non-negative matrix and w− is a non-positive matrix. Clearly, u+

is an optimal contracting scheme for w+. This is true since under w+ the externalities

between agents of the same class are non-negative and between agents of different classes

they are zero. By a similar argument, u− is the optimal contracting scheme for w−. Hence

u = u+ + u− is a decomposition contracting scheme and as such by Lemma 1 it sustains

full participation as a unique equilibrium.

To show that u = u+ + u− is optimal for the participation problem (N,w, c) we have

to show that the principal cannot extract more from the agents in the full participation

unique equilibrium. Let ij denote the agent at the i−th location in the optimal order

of the DAC contracting scheme within class Sj. Consider first an alternative contracting

scheme u′, which is identical to u in terms of incentives for all agents except for a single

agent, who is placed first in the optimal order of some class j. This agent is getting less

in u′, i.e., u′1j < u1j. Under the contracting scheme u′ there exists a Nash equilibrium
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in which the set of participating agents is N\Sj. This is true since 1j does not have a

dominant strategy to participate and therefore all agents in Sj fail to participate in a Nash

equilibrium in the game restricted to Sj, and hence also in the entire game. Furthermore,

any agent in N\Sj chooses to participate when Sj participates, and even more so if the

Sj class stays out (given the negative externalities between Sj and the rest). Hence u′

does not qualify as an optimal contracting scheme. A similar argument holds whenever

we reduce the payoff of more than one agent while limiting ourselves to one class only,

say Sj. As we proved in Propositions 2 and 4, this induces an equilibrium on the game

restricted to Sj with partial participation and this equilibrium also applies to the entire

game; hence u′ does not induce a unique full participation equilibrium.

Now consider the case where the alternative contracting scheme u′ reduces the payoff

to more than a single agent and from more than a single class. Assume first that for

some k classes {l1, ..., lk}, with k ≤ m, agents 1j, j ∈ {l1, ..., lk} are paid less in u′ than

in u and that all other agents are paid the same. It must be the case that under u′ full

participation is a Nash equilibrium; otherwise it is definitely not the optimal unique full

participation Nash equilibrium. We assume therefore that under u′ full participation is

a Nash equilibrium and we shall show that it is nevertheless not a unique equilibrium.

Specifically, we will show that under u′ we can construct a Nash equilibrium with the set

of participants being N\Sj∗, when Sj∗ is an arbitrary class such that j∗ ∈ {l1, ..., lk}.

We first note that there exists an equilibrium in which none of the members in Sj∗

participate. Indeed, given that all agents inN\Sj∗ participate, participation is no longer a

dominant strategy for agent 1j∗ and hence there exists an equilibrium in which all agents

in Sj∗ are staying out of the game restricted to Sj∗, and therefore this equilibrium holds

also for the entire game. Since for all agents in N\Sj∗ it was a best response to participate

even when all members in Sj∗ (with whom they have negative externalities) participate,

it is certainly still a best response for these agents when Sj∗ do not participate. Hence

partial participation is a Nash equilibrium and we obtained the desired contradiction.

Next, we assume a contracting scheme u′ in which an arbitrary group of agents is paid

less than the payoff in u. Let j∗ be a class such that j∗ ∈ {l1, ..., lk} in which some agent

ij is paid less. Using the argument in the first part of the proof and in Propositions

2 and 4, there is a Nash equilibrium in the game restricted to Sj∗ where there is only

partial participation. Furthermore, the profile in which the set of participants is exactly
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N\Sj∗ in addition to the subset of participants in Sj∗ is a Nash equilibrium in the entire

game. This again follows from the fact that under u′ the best response of each agent in

N\Sj∗ to full participation by the rest must be to participate, and N\Sj∗ will definitely

participate if a subset of Sj∗ does not participate.

We have shown so far that for a given contracting scheme u′ in which some agents get

less than u and the rest get the same as u, there is an equilibrium in which some agents do

not participate. It is therefore left to show that for a given contracting scheme u′ in which

we reduce the payoff for some agents and increase the payoff for others either we still have

an equilibrium in which some agents do not participate or alternatively the total payment

of the principal increases. Consider first that u is unique; hence the optimal solution uj+

for each positive participation problem in each class is unique. Assume that u′ is achieved

by lowering the payoff for the agent ranked first in class j∗, i.e., agent 1j∗. To rule out the

equilibrium in which class Sj∗ is not participating it is necessary to increase the payoff of

another agent, say kj∗, in such a way that he will have a dominant strategy to participate,

and induce the participation of the agent whose payoff was lowered. This means moving

the kj∗ agent up to become first in the class. But this must cost more to the principal as

vj∗ is unique, a contradiction. Alternatively, if u is not unique, then there are multiple

solutions for each positive participation problem. The argument is very similar. Say

that u was chosen from a group of decomposition contracting schemes. Again, to avoid

partial participation equilibrium it is necessary to provide higher incentives to agent kj∗,

who becomes first. If the total payment is identical to the payment in vj∗ then we have

reached a different optimal solution to the participation problem of class j∗. However,

if we do not reach a different decomposition contracting scheme, this implies that the

payment in this case is higher. The same logic can be applied to situations in which we

lower the payoffs for other agents within the different classes. Therefore we conclude that

the decomposition contracting scheme is the optimal contracting scheme that sustains

full participation as a unique equilibrium.
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