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Abstract. Understanding the purpose of sex is a fundamental unresolved problem in

evolutionary biology. The di¢ culty is not that there are too few theories of sex, the

di¢ culty is that there are too many and none stand out. To distinguish between theories,

we ask: Why are there no triparental species with o¤spring composed of the genetic

material of three individuals? A successful theory should confer an advantage to biparental

sex over asexual reproduction without conferring an even greater advantage to triparental

sex. Of two leading theories (red queen and mutational) we show that only one is successful

in this sense.

1. Introduction

The breadth and variety of methods by which di¤erent species reproduce through sex

is nothing short of remarkable. Nonetheless, sexual reproduction displays a stunning

regularity.

Each sexually produced o¤spring of any known species is produced from

the genetic material of precisely two individuals. That is, sex is always

biparental.
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The obvious, but overlooked, question is, Why? In particular, why are there no

triparental species in which an o¤spring is composed of the genetic material of three

individuals?

Answering this question �and similar questions regarding quadriparental sex,

etc. �is bound to shed light on the purpose of sex itself, one of the most important

unresolved problems in evolutionary biology (see, e.g., Otto and Lenormand (2002)

or Rice (2002) on the importance of this question). Indeed, a complete theory of sex

must strike a delicate balance. On the one hand �as is well known �it must explain

why genetic mixing is su¢ ciently bene�cial so that biparental sex overcomes the

twofold cost of males it su¤ers because an equally-sized asexual population would

grow twice as fast (Maynard Smith 1978). On the other hand �and this point is

central here �genetic mixing must not be so bene�cial that a further increase in

�tness would be obtained from even more of it through triparental sex.

Little or no attention has been paid to the possibility that a theory of biparental

sex might inadvertently confer an advantage to triparental sex. Perhaps this is

because one is tempted to dismiss triparental sex on the grounds that the associated

costs � be they the cost of unproductive males or mating coordination costs � are

prohibitive. But, insofar as such arguments have been provided at all, they are

unpersuasive. In particular, they fail to take into account the key point that any

argument against the transition from biparental sex to triparental sex may be even

more persuasive for ruling out the transition from asexual reproduction to biparental

sex. Several such arguments are considered below.

The present paper considers whether either of the two leading theories for the

maintenance of biparental sex is consistent with the absence of triparental sex. The

�rst of these theories is the (deterministic) mutational hypothesis due to Kondrashov
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(1982, 1988). The second is the �red queen�hypothesis, of which several models

have been proposed (see, e.g., Jaenike 1978; Hamilton 1980; and Hamilton et. al.

1990). Both the mutational and red queen hypotheses exploit the fact that sex

generates genetic mixing, although they are in sharp disagreement about precisely

why genetic mixing is advantageous. Roughly, the mutational hypothesis asserts

that genetic mixing reduces the rate at which harmful mutations accumulate, while

the red queen hypothesis asserts that it reduces the impact of parasitic attack by

increasing genotypic variability.

We observe that there is a particular triparental sexual system that involves

no additional cost of males relative to biparental sex. Under the mutational hy-

pothesis this triparental system has a �tness advantage over biparental sex for all

parameter values considered because it generates more genetic mixing. Moreover,

this advantage can be substantial when the mutation rate is high enough so that

biparental sex has a �tness advantage over asexual reproduction (i.e., high enough

so that biparental sex overcomes its twofold cost of males). That is, if the muta-

tional hypothesis is true, then either asexual reproduction has a �tness advantage

over biparental sex (because the mutation rate is low) or triparental sex has a signif-

icant �tness advantage over biparental sex (because the mutation rate is high). The

mutational hypothesis is therefore unable to simultaneously explain the presence of

biparental sex and the absence of triparental sex.

On the other hand, we present a simpli�ed red queen model that confers an

overwhelming advantage to biparental sex over asexual reproduction but confers no

advantage at all to triparental sex (or to quadriparental sex, etc.) over biparental

sex. The red queen hypothesis therefore is not at odds with the presence of bi-

parental sex and the absence of triparental sex.

3



2. Triparental sex

Triparental sex will be said to occur when each cell of an o¤spring is composed of

the genetic material of three parents. We will focus upon a particularly signi�cant

triparental system in which an o¤spring receives half of its genetic material from its

mother and one-quarter from each of its two fathers. We refer to this reproductive

system as 1
4
-1
4
-1
2
-triparental sex, or simply 1

4
-1
4
-1
2
sex. Before proceeding any further,

let us address several possible arguments against any such triparental system.

First, there is the obstacle of developing the requisite genetic machinery for

combining the genetic material of more than two parents. Providing a plausible and

detailed microbiological mechanism through which triparental sex might operate is

well beyond the scope of this paper. Nevertheless, it is noteworthy that, although

triparental sex has never been observed in nature, triparental recombination is well

known to occur in viruses,5 where o¤spring DNA are routinely a combination of the

DNA of two, three or more parents (e.g., Bresch 1959;, Stent 1963; and Munz et.

al. 1983).6 The presumption that nature could never adapt this viral triparental

recombination technology, or some other existing technology, into an advantageous

triparental sexual mechanism becomes less and less plausible as the advantage of

triparental sex over biparental sex grows. As we shall show, the mutational hypoth-

esis implies that if biparental sex is to have an advantage over asexual reproduction,

then triparental sex must have a signi�cant advantage over both.7

5According to most biologists, viral recombination is not a form of sexual reproduction. There
is even a question as to whether viruses are �alive.�

6According to Bresch (1959), �In a �triparental� cross, for instance, the [host] cells will be
infected by the [viral] phage types ab+c+, a+bc+, and a+b+c. In this case one �nds triparental
recombinants abc among the progeny, i.e., particles with a marker from each of the three parental
types.�

7One might conjecture that nature is incapable of developing any form of advantageous tri-
parental sex since any mutation in that direction is bound to create a zygote that is not viable.
But such a pessimistic view seems unwarranted, especially in light of the in vitro fertilization tech-
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Second, one might argue that the costs of coordinating the mating of three in-

dividuals over just two outweigh the potential bene�ts.8 To be taken seriously,

such an argument must carefully consider the additional bene�ts and coordination

costs incurred not only in the transition from biparental to triparental sex, but

also in the transition from asexual reproduction to biparental sex. A serious dif-

�culty for any such argument is that while there are clearly signi�cant additional

coordination costs involved in the transition from asexual to biparental sex� e.g., a

technology for locating mates must be developed and maintained� the ample empir-

ical evidence for sperm competition (e.g., Parker 1970) implies that the additional

coordination cost of triparental sex over biparental sex is negligible for a large num-

ber of species. Indeed, as the following quote from Birkhead (1998) highlights, the

prevalence of sperm competition implies that biparental mating behavior routinely

brings together, within a single female, genetic material from multiple males.

A common assumption about reproduction is that the spermatozoa in

the vicinity of ova around the time of fertilization are from a single

male. However, for a wide range of organisms, both internal and external

fertilizers, this assumption is almost certainly wrong. It is wrong because

among internal fertilizers, females typically copulate with more than one

male during a single reproductive cycle, and among externally fertilizing

animals, often several males simultaneously release spermatozoa near a

nique for humans recently approved for use in the U.K. Under this technique, the future child�s
mitochondrial DNA comes from a second woman so that the child will be free of an otherwise
serious mitochondrial disease. The result is a �tter triparental child with 0.1% of its DNA from
the second woman, a permanent change that will be passed down through the generations. While
this is not the full triparental sex we consider here, it shows that additional mixing of human
genetic material is by no means always fatal.

8We have not found any detailed or thorough analyses of the additional coordination costs of
triparental over biparental sex, although an informal and very brief discussion on a related topic
can be found in Power (1976).
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spawning female. When the ejaculates from two or more males compete

to fertilize the ova of a particular female, the process is referred to as

sperm competition. Sperm competition is virtually ubiquitous and its

biological consequences are considerable.

Sperm competition occurs, for example, in birds (Goetz et. al. 2003; and Parrott

2005), ants and bees (Holldobler and Wilson 1994), shrimp (Bilodeau et. al. 2004),

snails (Evanno et. al. 2005), snakes (Garner et. al. 2002), tortoises (Roques et. al.

2004), fruit-�ies (Bressac and Hauscheteck-Jungen 1996), and in polyspermic species

such as the comb jelly where a female�s egg may be penetrated by multiple sperm,

one of which is �chosen�to fertilize it (Carre and Sardet 1984). In all these cases,

which are by no means exhaustive, triparental sex� e.g., where the sperm of two

distinct males fertilize a single egg� would entail negligible additional coordination

costs over biparental sex.

Thirdly, there is the �twofold cost of sex,�namely, that a sexual population with

a one to one ratio of (unproductive) males to females produces half as many o¤spring

as an equally-sized asexual population (Maynard Smith 1978). The simple reason

for this is that every individual in the asexual population can reproduce whereas

only half of the individuals in the sexual population �the females �can do so. One

might then naturally expect 1
4
-1
4
-1
2
sex � involving two unproductive males and

one female � to display a threefold cost of males relative to asexual reproduction.

But, remarkably, 1
4
-1
4
-1
2
sex results in only a twofold cost. Put di¤erently, 1

4
-1
4
-1
2

triparental sex involves no additional cost of males relative to biparental sex. We

now explain why.

Because the cost of males is determined not by the ratio of males to females

in each mating instance but, rather, by the population ratio of males to females,
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determining the population ratio is central. We therefore turn to Fisher�s (1930)

celebrated equilibrium argument. Applying Fisher�s logic to 1
4
-1
4
-1
2
sex, we note �rst

that the total reproductive value of all of the males in any generation is precisely

equal to that of all of the females in that generation. This is because, under 1
4
-

1
4
-1
2
sex, all of the females supply half of the genes of all future generations. But

then the remaining half must be supplied by all of the males. Consequently, if

the equilibrium sex ratio were not one, it would be evolutionarily advantageous to

produce only o¤spring of the sex that is in short supply, pushing the sex ratio toward

one.9 We conclude that the equilibrium sex ratio must be one, and that each male

therefore mates with two females and vice versa. But this means that the cost of

males is twofold, precisely as in the case of biparental sex. That is, 1
4
-1
4
-1
2
sex entails

no additional cost of males relative to biparental sex.10

Since 1
4
-1
4
-1
2
sex is not observed in nature, it must not have a �tness advantage

over biparental sex. We now show that the mutational hypothesis is not consistent

with this requirement.

3. The mutational hypothesis

A well known explanation for the maintenance of sex in large populations is Kon-

drashov�s (1982, 1988) mutational hypothesis in which sex is advantageous because

it halts the otherwise steady accumulation of harmful mutations. The �rst theory

of this kind was due to Müller (1932, 1964), but relied upon a �nite population.
9We maintain the usual assumption that o¤spring of either sex are equally costly to raise to

maturity.
10In contrast, there is a threefold cost of males in a triparental population in which a mother

and two fathers all contribute equally to the o¤spring, i.e., 13 -
1
3 -
1
3 sex. In such a system, because all

females supply only one-third of the genes of all future generations, Fisher�s argument implies that
there must be twice as many males as females, and hence a threefold cost of males. So although
in comparison to 1

4 -
1
4 -
1
2 sex, the additional genetic mixing from

1
3 -
1
3 -
1
3 sex yields additional �tness

bene�ts, once its additional 1.5-fold cost of males is taken into account, it has a lower overall �tness
than 1

4 -
1
4 -
1
2 sex under all parameter values considered here.
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Kondrashov�s (1982) model is as follows. There is a population consisting of

a continuum of individuals. Each individual consists of a single strand of DNA

(i.e., individuals are haploid) that has in�nitely many loci.11 ;12 Mutations at all loci

are equally harmful and an o¤spring�s survival probability is determined entirely

by the number of mutations in his genome. Speci�cally, an o¤spring with i <

K mutations survives with probability si = 1 � ( i
K
)�: O¤spring with K or more

mutations are not viable. As individuals develop into adults, they independently

receive additional mutations according to a Poisson distribution with mutation rate

�; where the probability that any particular locus receives a mutation is zero. These

additional mutations do not a¤ect survival, but may be passed on to one�s o¤spring,

a¤ecting its survival.

Kondrashov compares the limiting �tnesses (survival probabilities) of two kinds

of populations, one that reproduces asexually and one that reproduces biparentally.

For an asexual population, Kondrashov shows that after many generations the lim-

iting fraction of o¤spring that survives in each generation is e��; regardless of the

values of K and �: We refer the reader to Kondrashov (1982) for the details. As

for a biparental population, we review Kondrashov�s analysis here so that we may

adapt it to a 1
4
-1
4
-1
2
triparental population.

A biparental population is divided equally into males and females with identical

distributions of mutations. Only pairs of individuals of opposite sex can produce

an o¤spring which is equally likely to be male or female, and males are randomly

matched to females prior to mating.13

11A locus is a location on a strand of DNA. Each locus contains a gene. A typical strand of
DNA, also called a ploid, consists of many loci.

12The assumption that individuals are haploid is for simplicity only. The results are identical
when individuals are diploid, i.e., consist of two strands of DNA.

13Because the two sexes are completely symmetric, Kondrashov did not in fact divide his pop-
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The life-cycle is mutations-recombination-selection-mutations. That is, adults

accumulate mutations, males and females are randomly matched and sexual re-

production occurs (recombination), �t o¤spring survive and become adults, adults

accumulate mutations, etc. It is assumed that when recombination occurs, there is

no linkage between loci. That is, the probability that an o¤spring receives a mu-

tation from a particular locus of a parent�s genome is independent of the locations

and number of other mutations on that parent�s genome.

Individuals live for a single generation. Let qi denote the common fraction of

males and females in a given generation with i mutations after selection. After

mutations arrive according to the Poisson process, the fraction of males and females

with i mutations is

q0i = e
��

iX
j=0

qj
�i�j

(i� j)! : (1)

Now, because no two matched individuals have more than one mutation in total

at each locus, the frequency with which an o¤spring from parents having n and m

mutations has i mutations is
�
n+m
i

�
(1
2
)n+m�i(1

2
)i; because, at any locus the o¤spring

is equally likely to inherit the content of the mother�s or the father�s locus, inde-

pendently of what occurs at any other locus. Consequently, the fraction of o¤spring

having i mutations after recombination is,

q00i =
X
n+m�i

q0nq
0
m

�
n+m

i

��
1

2

�n+m
;

and half of these o¤spring are male and half are female. Finally, since o¤spring

ulation into males and females. Instead, he assumed that any two individuals can mate, leading
to a simpler model with identical results. But to provide a uni�ed treatment of biparental and
triparental sex, we introduce males and females now because they will be needed when we consider
1
4 -
1
4 -
1
2 triparental sex, where the roles of the two sexes are not symmetric.
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with i < K mutations survive with probability si and o¤spring with K or more

mutations do not survive, the fraction of males and females with i < K mutations

after selection is,

q000i =
siq

00
i

s0q000 + :::+ sK�1q
00
K�1

; (2)

where s0q000 + ::: + sK�1q
00
K�1 is the �tness of the population, or equivalently, the

fraction of surviving o¤spring, male or female. The equilibrium distribution of mu-

tations is characterised by the additional condition that qi = q000i for i = 0; 1; :::; K�1;

from which one can also obtain the population�s equilibrium �tness.

We now adapt Kondrashov�s biparental analysis to a triparental 1
4
-1
4
-1
2
sexual

population, again divided equally into males and females (by Fisher�s 1930 equilib-

rium argument). As in the biparental case, the life cycle is mutations-recombination-

selection-mutations, and we again let qi denote the common fraction of males and

females with i mutations after selection. As before, after mutations arrive, the

fraction of males and females with i mutations is q0i given by equation (1).

Consider a triparental match in which the mother has m mutations and the

two fathers have n total mutations. The o¤spring can have i mutations if for some

m0 � m and some n0 � n; it receives m0 from the mother and n0 from the fathers,

wherem0+n0 = i. Analogous to biparental recombination, at any locus, the o¤spring

inherits the contents of the mother�s locus with probability one-half and inherits

the content of a father�s locus with probability one-quarter, independently of what

occurs at any other locus. Therefore, because the three parents have no more than

one mutation in total at each locus, the frequency, with which their o¤spring have

10



i mutations is,

rim;n =
X�

m

m0

��
n

n0

��
1

2

�m�
1

4

�n0 �
3

4

�n�n0
;

where the sum is over m0 � m and n0 � n such that m0 + n0 = i:14 Since half the

o¤spring are male and half are female, the fraction of male and female o¤spring

having i mutations after recombination is,

q00i =
X
n+m�i

q0m

 
nX
j=0

q0jq
0
n�j

!
rim;n:

Finally, the fraction of males and females having i < K mutations after selection is

q000i ; which as before, is related to q
00
i through equation (2).

The equilibrium distribution of mutations is again characterised by the additional

condition that qi = q000i for i = 0; 1; :::; K � 1; from which one can also obtain the

population�s equilibrium �tness.

Let us now compare the equilibrium �tness of a 1
4
-1
4
-1
2
sexual population with

that of a biparental population. The values of � = 1; 2;1 and K = 5; 20; 60; 80

considered here are taken from the literature (Kondrashov (1982), Howard (1994)).

14Analogous to biparental recombination, at any locus, the o¤spring�s gene comes from the
mother with probability one-half and from each of the two fathers with probability one-quarter,
independently of what occurs at any other locus.
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� K = 5 K = 20 K = 60 K = 80 �

1
2:1
2:3�

2:0�

1:0
1:6�

1:4�

0:4
0:7�

0:6�

0:3
0:5�

0:5�

1
2
1

2
4:8
4:8
4:4�

3:0
4:2
4:1

1:4
2:3
2:2

1:1
1:8
1:7

1
2
1

3
7:4
7:1
6:7

5:6
7:0
7:1

2:8
4:3
4:3

2:2
3:6
3:6

1
2
1

4
9:8
9:3
8:8

8:6
10:1
10:2

4:5
6:6
6:7

3:6
5:6
5:7

1
2
1

6
14:2
13:2
12:6

15:3
16:7
16:8

8:9
11:8
12:0

7:3
10:2
10:4

1
2
1

8
17:8
16:5
15:9

22:7
23:7
23:7

14:4
17:7
18:0

11:9
15:5
15:7

1
2
1

Table 1: % Advantage of Triparental Sex

Table 1 shows the advantage of 1
4
-1
4
-1
2
sex over biparental sex. Each entry in

the table is the percentage amount by which the equilibrium �tness of a 1
4
-1
4
-1
2

sexual population exceeds that of a biparental population for a particular vector of

parameters, (�;K; �). Because the only cost to sex in Kondrashov�s model is the

cost of males, there is no cost to 1
4
-1
4
-1
2
sex over biparental sex. Consequently, each

entry is also the percentage amount by which the growth rate of the triparental

population exceeds that of the biparental population. An asterisk indicates that

biparental sex fails to overcome its twofold cost relative to asexual reproduction in

that cell.

Every entry in Table 1 is positive, indicating that a 1
4
-1
4
-1
2
sexual population

always grows faster than a biparental population. Moreover, when biparental sex

overcomes its twofold cost � indicated by cells without asterisks � the advantage
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to triparental sex can be substantial. For example, with intermediate selection (i.e.,

� = 2) and a mutation rate of 2, a 1
4
-1
4
-1
2
population grows between 1:8% and 4:8%

faster than a biparental population, implying a relative doubling time of between

14 and 39 generations. The mutational hypothesis therefore does not provide an

explanation for both the presence of biparental sex and the absence of triparental

sex.

Also, the higher is the mutation rate, the larger is the advantage to 1
4
-1
4
-1
2
sex.

With intermediate selection, for example, a mutation rate of 3 is already high enough

to imply that a 1
4
-1
4
-1
2
sexual population grows 3:6% to 7:1% faster than a biparental

population, implying a relative doubling time of between 10 and 20 generations.

Thus, in contrast to the literature (Kondrashov 1988; Charlesworth 1990; and

Howard 1994), not only do low mutation rates � e.g., below 1 or 2 � constitute

evidence against the mutational hypothesis, but high mutation rates too constitute

evidence against it. And indeed, genomic mutation rate estimates of between 3 and

6 have been found, for example, in chimpanzees (Keightley and Eyre-Walker 2000).

To permit a direct comparison with the literature, Table 1 provides relative

equilibrium �tnesses of triparental and biparental populations. However, to further

illustrate the inability of the mutational hypothesis to explain the absence of tri-

parental sex, we also establish that a small fraction of triparental females introduced

into an equilibrated biparental population will eventually take over.

An equilibrated biparental population is seeded with a small fraction of females

each possessing one copy of a dominant triparental gene for 1
4
-1
4
-1
2
sexual reproduc-

tion. Their distribution of mutations is that of the biparental population. Males

can mate with biparental and triparental females. The triparental gene is expressed

only in females, although males can pass it on to male and female o¤spring, the
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latter then reproducing triparentally through 1
4
-1
4
-1
2
sex.
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Figure 1: f = 0:001; � = 3; K = 20; � = 2

In all runs, the fraction of triparental females � i.e., those with at least one

copy of the triparental gene � increases with each generation, and the biparental

population is driven to extinction. A particular example of one of our runs is shown

in Figure 1, where f denotes the initial number of females, as a fraction of the

population, possessing a single copy of the triparental gene. In contrast, when a

triparental sexual population is in equilibrium, biparental sex fails to successfully

invade.

4. A red queen model

A second major class of theories for the maintenance of sex is the class of red queen

theories. These explain sex as a way for a host organism to maintain parity in

the race against parasites (e.g., Jaenike 1978, Hamilton 1980, and Hamilton et. al.

1990).
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Our purpose in this section is to present a red queen model in which biparental

sex has an overwhelming advantage over asexual reproduction but in which tri-

parental sex has no advantage over biparental sex. In particular, biparental sex

will strictly dominate triparental sex if the latter entails even an arbitrarily small

additional cost.

Red queen theories are idealizations of the following scenario in nature. A typ-

ical parasite reproduces very frequently within a host, undergoing subtle random

mutations with each successive generation. Occasionally, these mutations create a

parasitic o¤spring that is capable of bypassing the host�s defense mechanisms. The

parasite is then able to rapidly multiply within the host, with the aim of exiting the

host and spreading throughout the host population. The rapid multiplication within

the host often results in the host�s death. The parasite will spread throughout the

host population, killing those that it infects. But it can only infect individuals whose

defense mechanisms are su¢ ciently similar to that which it �evolved�to defeat. In

particular, if all members of the host population have identical DNA sequences (i.e.,

identical �genotypes�), as can be the case for an asexual species, the entire popu-

lation may be killed o¤ since all its members rely on the same susceptible defense

mechanism. In contrast, if there is su¢ cient genetic variation within the host pop-

ulation, as is the case for a sexual species, then only a fraction of individuals may

be susceptible to the parasite.

In a nutshell then, the essence of this class of red queen theories is this. The

absence of genetic variation can render an asexual species extremely susceptible to

attack from parasites, whereas the genetic variation created by a sexually reproduc-

ing species provides protection, making it far less susceptible. It is less susceptible

because the distribution of genotypes created by sexual reproduction is su¢ ciently
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spread out that a parasitic attack on any one genotype, or on any small range of

genotypes, a¤ects only a small fraction of the population. Moreover, unlike in an

asexual population, genotypes that are killed o¤ by the parasite can re-emerge as

o¤spring in the next generation of a sexual population via genetic recombination

thereby maintaining the overall genetic diversity of the population. The broad con-

clusion from this class of models is that when a parasite is su¢ ciently virulent and its

attacks are not too infrequent, a sexually producing species can be more successful

than an asexual species, even after accounting for the twofold cost of males.

In the remainder of this section we present a highly simpli�ed red queen model

that captures the features described above and that gives an overwhelming ad-

vantage to biparental sex over asexual reproduction. But, unlike the mutational

hypothesis, it gives no further advantage to triparental sex. The important general

insight upon which this conclusion is based is that the time-dynamics of population

genetics implies that, whether a species is biparental or triparental (or beyond), the

limit distribution of its genotypes is the same (Perry, Reny, and Robson 2007). As

a result, multi-parental sex with three or more parents will not yield any �tness

advantage over biparental sex.

Consider an in�nite population of haploid individuals whose genomes have four

loci, A;B;C;D: Each locus can be occupied by one of two alleles, a or a0 in locus

A; b or b0 in locus B; c or c0 in locus C; and d or d0 in locus D:15 Thus, (a; b0; c0; d)

and (a0; b0; c; d) are two of the sixteen possible genotypes that might comprise an

individual in this population.16

15Recall that each locus on a strand of DNA marks the location of a particular gene. An allele
is one of several variations of a gene.

16The extension to any number of alleles and loci is straightforward. One can also allow indi-
viduals to be diploid, or triploid, etc., rather than haploid without changing the results.
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At each date (generation) t = 1; 2; ::: all individuals in the population always

reproduce either asexually, biparentally, or triparentally. We will consider each

possibility in turn. But regardless of the sexual system that is in place, once every

N generations there is a probability " > 0 that a parasitic attack will occur, killing

all individuals of a randomly chosen genotype in the current population.17 For

simplicity, we will suppose that each genotype in the current population is equally

likely to be killed conditional on the occurrence of an attack.18 Individuals live for

a single generation.

Let us �rst consider the fate of an asexual population. Because there are �nitely

many (indeed, 16) possible genotypes, each one will, with probability one, be the

target of a parasitic attack at some date. Moreover, once all individuals of a partic-

ular genotype are killed, that genotype will be extinct forever since, under asexual

reproduction, the o¤spring of the remaining distinct genotypes are identical to their

parents. Consequently, an asexual species will become extinct with probability one,

regardless of the initial distribution of genotypes in the population.

Consider next the fate of a biparental sexual population in which males and

females mate randomly and both parents contribute half of their genetic material

to the o¤spring. Speci�cally, suppose that in any mating instance the alleles in two

of the o¤spring�s loci come from its mother and the other two alleles come from its

father, with all six possibilities being equally likely, and that the o¤spring is equally

likely to be male or female.19

17Our results would be unchanged if most of the time only a fraction of individuals with the
chosen genotype were killed, so long as there is at least a small positive probability that all of them
are killed.

18Our conclusion would not change, for example, if the conditional probabilities were instead
proportional to a genotype�s representation in the population.

19Equiprobable recombination events are not necessary. It would su¢ ce to assume merely that
the probability is less than one that the o¤spring receives any two alleles from the same parent.
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The dynamics of this sexual population are more interesting. Let us suppose,

for a moment, that there is no possibility of a parasitic attack, i.e., that N = 1:

Then the population dynamics are deterministic because the population is in�-

nite. Indeed, if qt(i;k;j;l) is the date-t fraction of individuals in the population with

genotype (i; j; k; l) 2 fa; a0g � fb; b0g � fc; c0g � fd; d0g; then we can compute the

date-(t + 1) fraction, qt+1(i;j;k;l); of such individuals as follows. Since the probability

is one-sixth that in any particular match the female will contribute her �rst pair

of alleles to an o¤spring and the male will contribute his second pair, the fraction

of o¤spring who receive (i; j) as their �rst pair of alleles from their mother and

(k; l) as their second pair from their father is one-sixth the fraction of matches of

females whose �rst pair of alleles is (i; j) with males whose second pair is (k; l);

that is
P

i0;j0k0;l0 q
t
(i;j;k0;l0)q

t
(i0;j0;k;l)=6: Repeating this for all the possible combinations

in which the two parents can contribute alleles i; j; k and l; we obtain

qt+1(i;k;j;l) =
X

i0;j0k0;l0

(qt(i;j;k0;l0)q
t
(i0;j0;k;l) + q

t
(i;j0;k;l0)q

t
(i0;j;k0;l) + q

t
(i;j0;k0;l)q

t
(i0;j;k;l0))=3:

Thus, starting from any initial distribution of genotypes one can straightforwardly

trace out the dynamics of the population�s genotype distribution.

It is well-known that the distribution of genotypes in the above dynamical sys-

tem converges to linkage equilibrium regardless of the initial distribution (see, e.g.

Christiansen 1999). In linkage equilibrium, the fraction of individuals of any par-

ticular genotype is the product of the population frequencies with which each allele

occurs.20 So, if we let pi denote the fraction of the population�s locus-A alleles that

are equal to i 2 fa; a0g; and let pj denote the fraction of the population�s locus-B
20Without loss of generality, it is assumed that, as here, each allele is speci�c to a single locus.
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alleles that are equal to j 2 fb; b0g; and similarly for pk and pl for alleles at loci C

and D; then the limiting population frequency of genotype (i; j; k; l) is pipjpkpl. It is

easy to verify that this distribution is indeed an equilibrium of the above dynamical

system, and it is unique by the global convergence result.

Importantly, the rate of convergence to linkage equilibrium is very fast, exponen-

tial in fact. Consequently, returning now to the case in which N <1; if N is not too

small, the distribution of genotypes will be very close to linkage equilibrium prior

to the �rst attack. We can now describe the dynamics of the biparental population.

For N not too small, the distribution of genotypes will be approximately in

linkage equilibrium just prior to an attack, i.e., genotype (i; j; k; l) will occur with

frequency close to pipjpkpl: When an attack occurs, all individuals of one genotype,

say (a; b; c; d); will be eliminated. But because the population was close to linkage

equilibrium, all alleles remain present, e.g., allele a occurs in the still-present geno-

type (a; b0; c; d) which made up a positive fraction, approximately papb0pcpd; of the

pre-attack population. The distribution of alleles, however, is no longer the same,

e.g., the new relative frequency of allele a to allele a0 has fallen to approximately

(1� pbpcpd)pa=pa0 : Consequently, during the next N generations the population will

converge approximately to its new linkage equilibrium before the next attack.

The overall biparental dynamics are therefore as follows. Beginning approxi-

mately from linkage equilibrium, all individuals of a random genotype are killed by

a parasitic attack. All alleles remain present, however. The population, with its new

distribution of alleles, converges after N generations to its new approximate linkage

equilibrium. The next attack occurs, killing all individuals of a random genotype,

and so on. Thus, a biparental population survives forever.21

21It is possible that the population fraction of some particular allele tends to zero along the

19



Clearly then, biparental sex has an overwhelming advantage over asexual repro-

duction. But what about triparental sex? The key observation, and this observation

holds very generally, is that the dynamics are una¤ected by whether sexual repro-

duction is biparental or 1
4
-1
4
-1
2
sexual. This is because:

For any given distribution of alleles, the distribution of genotypes in

a 1
4
-1
4
-1
2
sexual population converges, at an exponential rate, to the (�)

same linkage equilibrium distribution as in a biparental population.22

To get a sense of this convergence result, let us suppose that 1
4
-1
4
-1
2
sex works

as follows. There are equal populations of males and females and each female is

randomly matched with two males (each male mates twice). In each mating instance

there are two males and one female, and the alleles in two of the o¤spring�s loci come

from its mother and the other two alleles come, one each, from the two fathers, with

all twelve possibilities being equally likely.

While analysis of the triparental dynamics would take us too far a�eld (see

Perry, Reny, and Robson 2007), let us show that the biparental population�s link-

age equilibrium distribution is also a linkage equilibrium distribution of the tri-

parental population. Suppose then that the triparental population begins with the

biparental population�s linkage equilibrium distribution of genotypes. It su¢ ces to

show, by symmetry, that the fraction of triparental o¤spring with genotype (a; b; c; d)

is papbpcpd: One way that this o¤spring can be produced is if the mother contributes

path. But the fact remains that the species survives forever.
22See Perry, Reny, and Robson (2007) who show that this convergence result holds for any

number of alleles, any number of loci, any number of ploids, and any ploid-symmetric distribution
over recombination events such that the probability that an o¤spring receives any two alleles from
the same parent is less than one (i.e., there is imperfect linkage between loci).
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ab and the �rst father contributes c and the second father contributes d: The fraction

of mothers whose AB loci contain ab is papb; the fraction of fathers whose C locus

contains c is pc; and the fraction of fathers whose D locus contains d is pd: Hence,

the fraction of triparental matches of this kind is papbpcpd: There is a one-sixth

probability that the mother in this triparental match contributes ab; and a one-half

probability that the �rst father contributes c and the second contributes d: Hence,

this one way of producing the o¤spring (a; b; c; d) has probability papbpcpd=12: Since

there are twelve equiprobable ways of producing this particular o¤spring, the result-

ing fraction of o¤spring with this genotype is papbpcpd; exactly as in the previous

generation.

Hence, because the red queen dynamics depend only on the derived sequence of

linkage equilibria, and because by (�) the linkage equilibria are the same whether

sex is biparental or 1
4
-1
4
-1
2
triparental, the population growth rate will be the same

with either sexual system. So, biparental sex can dominate asexual reproduction,

but 1
4
-1
4
-1
2
sex can never dominate biparental sex. Consequently, in contrast to the

mutational model, biparental sex dominates triparental sex here if the latter involves

even an arbitrarily small extra cost.

Finally, let us address two further issues. First, one might wonder what would

happen if the number of generations between attacks were random. As before,

an asexual population goes extinct with probability one. But the biparental and

triparental populations can never go extinct so long as their populations have at

least four distinct genotypes, because if the number of genotypes is ever reduced

to three, sexual recombination ensures that the next generation consists of at least

four. Furthermore, we expect that there remains no advantage of triparental sex

over biparental sex given their shared tendencies toward linkage equilibrium.
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Second, one might wonder whether an asexual species can successfully invade

a biparental population. To ensure that it cannot, one may need to allow the

interactions between the host and parasite to be more frequent. Then, the biparental

(or triparental) population need not arrive approximately at linkage equilibrium

between successive parasitic attacks. Nevertheless, we would not expect triparental

sex to have any advantage over biparental sex, but further study here would be

welcome.

5. Discussion

There are rich returns to addressing the question: �Why is sex never triparental?�

Under the mutational hypothesis, triparental sex always dominates biparental

sex and high genomic mutation rates only serve to increase this advantage. With

all three options available, either asexuality would be best or triparental sex would

be best. Accordingly, biparental sex should not be observed.

In contrast, there is a ray of hope with the red queen hypothesis. Using a

deliberately simpli�ed red queen model, we have shown that biparental sex can

have even an overwhelming advantage over asexuality, yet there is no further gain

from more than two parents.

These results demonstrate that those who ask �why sex?�should also ask �...and

why only in pairs?�Answering the second question can distinguish between other-

wise equally plausible answers to the �rst.
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