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1. Introduction

Why do humans live in long lasting monogamous families? The fact that essentially all

vertebrates are known to be non-familial (Lott 1991) suggests that the emergence of the

family cannot be taken for granted.1 This paper addresses such a question using a nonco-

operative evolutionary model in which males and females care only for the survivorship and

propagation of their own genes into future generations (Hamilton 1964). Following Becker’s

(1973, 1974, 1981/1991, 1989 and 1993) seminal work on the family, our analysis relies on

an individual-optimizing approach and places a minimal set of assumptions to identify how

the monogamous family came about and grew.2 We use three special conditions for this

purpose, the overlap of different cohorts of offspring, parental investment, and fatherhood

uncertainty.

The first special, and perhaps most important, ingredient of our model is the presence

of overlapping cohorts of dependent children, which is a highly distinctive feature of human

behavior. This is tightly linked to our second ingredient, the salience of parental investment

(Trivers 1972), which is shared by other non-human species as evidenced, for instance, by the

complex non-familial colonies of eusocial insects (Wilson 1975). The third special feature

is fatherhood uncertainty. When paternity is uncertain, a man must resort to guard his

opposite-sex partner(s) if he wishes to enhance confidence in his biological association with

the children he feeds (Hawkes, Rogers, and Charnov 1995).3 Fatherhood uncertainty however

is not unique to humans, as it is shared, for example, by all males of mammal species in

which female ovulation is concealed (Krützen et al. 2004): most of such species in fact do

not form families.

The main set of results of the paper is that, when all three ingredients operate together,

life long monogamy is the dominant form of sexual organization among humans as opposed

to other family types, such as serial monogamy, polygyny, and cenogamy. Dominance here

means that the monogamous family grows faster and is evolutionarily stable against devia-

tions to each of the other family conventions, while the other family types are not.

To gain insight into these results consider a large population in which people live for

five periods, the first two as children and the last three as adults. As a child, an individual

depends on parental investments. All adults strive to maximize the expected number of

their biological children who are born in the first two periods of adulthood. There is full

1Using a looser notion of family in which offspring continue to interact, into adulthood, with their parents,
Emlen (1995) argues that less than 3 percent of avian and mammal species are known to be familial.

2Biologists and animal scientists, instead, usually identify several pathways that might have triggered
the evolution of the family among humans and nonhuman animals alike (e.g., Emlen 1994; Reichardt and
Boesch 2003; Chapais 2008; Gavrilets 2012).

3Even in contemporary general populations, nonpaternity rates seem to be non-negligible. Baker and
Bellis (1995) report a worldwide median nonpaternity rate of 9 percent from a sample of ten studies. In a
meta-analysis of 67 studies, Anderson (2006) shows that nonpaternity rates vary from 2 to about 30 percent.
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intrahousehold labor specialization (Becker 1981/1991), with men being food providers and

women (and only women) being in control of the allocation of food to their children.4 Men

and women can engage in casual sex and, as a consequence, a man guard his mate because

he cannot be certain that the children he feeds are his. So, why is monogamy superior to

the other family conventions?

In a monogamous environment a man protects his paternity by guarding the same woman

for both of her (and his) fertile periods. In the serially monogamous convention instead a

man makes does not keep the same mate from the previous period and thus has two groups

of children from two different partners. The efficiency difference between these two family

types arises because mothers redistribute resources among their children. If a woman receives

resources from two different men, there is a free-rider problem in which each man realizes that

his contribution to his official children will be shared with other children who are most likely

not his.5 Consequently, he will shift more of his resources toward cheating and guarding,

which are socially wasteful activities.

Life long monogamy dominates serial monogamy precisely because it is socially more

efficient and delivers a higher rate of population growth. Interestingly, this result lines

up well with the extensive body of contemporary empirical evidence according to which

children who live part of their childhood in a blended (serially monogamous) family have

lower educational attainment and experience worse outcomes later in life (e.g., McLanahan

and Sandefur 1994; Duncan and Brooks-Gunn 1997; Ginther and Pollak 2004). Our notion

of evolutionary stability of family conventions builds on the important work by Bergstrom

(1995) and Alger and Weibull (2010) and underpins a powerful idea of cultural transmission

according to which official parents serve as direct role models for their children.

We show that monogamy also dominates cenogamy — in which all women share all men

in the population as partners — as well as polygyny — in which one man has multiple

official partners at the same time. In the cenogamy convention, the free-rider problem is

more pervasive and leads to a classic tragedy of the commons whereby men shift resources

from food production to their own consumption. In polygyny, the polygynous male has to

defend his paternity claims from harsher competition by the unmatched men who spend

their entire endowment on cheating.

We also show that altruistic ties between siblings are uniquely associated with the monog-

amous family, in the sense that food transfers among siblings provide survivorship gains only

4As long as women are the only foo allocators to children, all our results hold true even when we relax the
full specialization assumption and women are allowed to be food providers. See the discussion in subsection
6B.

5Private underprovision of public goods is a standard result (Samuelson 1955; Becker 1981/1991;
Bergstrom, Blume, and Varian 1986). In Weiss and Willis’s (1985) model of divorce, the free-rider problem
is between former spouses who cannot verify each others’ allocative decisions rather than between unrelated
men who cannot write down binding verifiable contracts.
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in its context and not in the context of the other family conventions. Monogamy is thus the

only family configuration in which an adult man, who is uncertain about his paternity and

yet cares about reproductive success and invests in children, values his siblings because they

provide him with the assurance that some of his genes will survive into future generations.

This mechanism echoes those elaborated by Diamond and Locay (1989) and by earlier bio-

logical and anthropological research (Alexander 1974; Kurland 1979), although they suggest

that if a male is uncertain about paternity, he may wish to invest in his sister’s children

with whom he is sure to share some genes. Our overlapping-generation model is an advance

over such earlier studies in that it emphasizes the more fundamental link between older and

younger siblings, with lower levels of genetic relatedness (e.g., with nephews and nieces)

being expected to be only of lower importance (Hamilton 1964). By stressing the individual

and societal gains obtained through kinship ties, this result identifies the monogamy fam-

ily as a key source of exchange among its members and thus a primary engine of primeval

economic growth (Ofek 2001; Chapais 2008; Galor and Michalopoulos 2011).

A final point worth stressing is on interpretation. In our setup, a family convention

specifies the matching protocol defining how many women a man can guard or if he can guard

at all. Once the matching protocol is fixed, the other individual activities (hunting, cheating,

and food distribution) are determined in equilibrium. Since cheating and guarding turn out to

be socially wasteful, a convention that puts pressure on them has an evolutionary advantage

over another convention that does not. A convention then can be interpreted as the body

of social norms, beliefs, and institutions that may determine evolutionary success or hamper

it. One of such institutions is religion, whereby a convention can be seen, in and of itself, as

a ‘religion’. This reasoning allows us to use our results to understand why all major world

religions have centered around and supported the monogamous fidelity family (Browning,

Green and Witte 2006). This remark allows us also to contribute to the understanding of

the broader association between religion and economic outcomes (Acemoglu, Johnson and

Robinson 2005; Guiso, Sapienza and Zingales 2006) and, more specifically, to the important

debate about whether economic growth is affected by religious beliefs (Iannaccone 1998;

McCleary and Barro 2006).

Related Literature — Since Becker’s pioneering works (1973, 1974, and 1981/1991), the family

has become a prominent area of investigation among economists.6 Becker (1973, pp. 818–

820) emphasizes the importance of own children as the explanation of why men and women

live together in an environment in which there is complementarity of male and female time

inputs in production. Because own children are important, the notion of uncertain paternity

is implicitly called upon in order to justify why unions of several men to one or several women

6See Bergstrom (1996), Weiss (1997), Lundberg and Pollak (2007), Browning, Chiappori and Weiss (2011)
for insightful surveys and discussions.
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are uncommon. In Becker’s analysis, however, men are not allowed to respond to fatherhood

uncertainty (for example with the introduction of implicit contracts or with guarding), and

all non-monogamous unions are essentially assumed to be less efficient than monogamous

partnerships.

The focus of Becker’s research as well as of other subsequent studies instead has been on

the gains from trade that a man and a woman can realize by marrying compared to remaining

single. The gains to marriage arise from gender specialization in home and market activities,

provided that individuals have no direct preferences for spending time in some tasks and not

in others, and that the time inputs of household members in the household production of

public goods are perfect substitutes (Lundberg and Pollak 2007). In this environment, mar-

riage, which is broadly defined to include both formal unions and cohabitations, corresponds

roughly to our notion of the monogamous family. The alternative to marriage, however, is

not another form of partnership (such as the serial monogamy family in the present study)

but singlehood. The comparison to singlehood, however, is not compelling in an environment

in which individuals care for the survivorship of their genetic endowment.

Earlier studies by Becker (1973 and 1974) and Grossbard (1976) show that polygyny can

be explained in a world characterized by male inequality in wealth combined with gender

differences in the constraints on reproduction. They do not have an explanation, however,

of why polygyny has declined over time in those part of the world where it was once more

common. Recent work by Gould, Moav and Simhon (2008) does provide an explanation

based on the increasing relevance of female human capital. Gould and colleagues argue that

educated men increasingly value educated women for their ability to raise educated children,

and this drives up the value of educated women to the point where educated men prefer one

educated partner to multiple unskilled wives. Our model abstracts from male and female

heterogeneity but, while emphasizing the importance of fatherhood uncertainty, establishes

the evolutionary dominance of monogamy.

Another important strand of economic research explicitly incorporates biological consid-

erations into individual or household behavior (Bergstrom 1995; Robson 2001; Cox 2007;

Bergstrom 2007) as well as economic development and growth (Galor and Michalopoulos

2011; Ashraf and Galor 2011).7 For instance, Siow (1998) investigates how differential fe-

cundity interacts with market structure to affect gender roles in monogamous societies. Alger

and Weibull (2010) examine the strategic interactions between mutually altruistic siblings

to assess the extent to which family ties may vary in relation to environmental factors, such

as output variability and marginal returns to effort.8

7Earlier work by Becker (1976), which also considered the relationship between sociobiology and eco-
nomics, argued that economic models can explain biological selection of altruistic behavior toward children
and other kin by the advantages of altruism when there are physical and social interactions.

8Interestingly, Alger and Weibull (2010) relate the same environmental factors, including the harshness of
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Somewhat closer to our approach is another set of studies that emphasize the importance

of fatherhood uncertainty. These include Edlund and Korn (2002), Edlund (2006), Saint-

Paul (2008), and Bethmann and Kvasnicka (2011). But, unlike ours, such papers rule out

casual sex and mate guarding. Rather, they underline the explicit or implicit transfers that

take place between a man and a woman engaged in sexual reproduction (as in the case of

legal marriages, which are seen as a contractual form of establishing paternity presumption

and custodial rights to the man), and examine their consequences in terms of, for example,

the matching patterns in marriage markets, the dynamics of human capital accumulation

and parental investments in children, and in response to environmental changes that might

have altered the demand for marriage (e.g., the introduction of oral contraceptives). By

looking at the question of why humans started to form families, we exclude the possibility of

binding commitments and enforceable contracts and, rather, concentrate on mate guarding

as men’s strategic adaptation to casual sex and uncertain paternity.

Diamond and Locay (1989) also stress the role played by uncertain paternity in explaining

kin ties. They note that males invest in sisters’ children even at high paternity probabilities

and that, in many societies, men invest in the children of both their official partner and

their sisters. Like in our model, Diamond and Locay’s explanation is that a male values

his sister’s children in part because they provide him with the assurance that some of his

genes will survive into future generations. As the number of children of his official partner

increases, the probability that the male is the father of at least one of them also increases.

Thus the value of the assurance provided by sister’s children decreases with either an increase

in the paternity probability or an increase in the number of own official children. As noted,

we emphasize an even more fundamental link, that is, the link between older and younger

siblings rather than that between an adult man and his sororal nephews and nieces.

Several recent studies focus on the relevance of religion among individuals, groups and

cultures (Iannaccone 1998; Acemoglu, Johnson and Robinson 2005; Guiso, Sapienza and

Zingales 2006). This paper contributes to that broad research agenda, especially to the

area concerned with the economic consequences of religion and social norms (Freeman 1986;

Botticini and Eckstein 2007; McCleary and Barro 2006; Becker and Woessmann 2009), but

looks at religion from a different perspective. In particular, by stressing the role of religion

as game setter and, possibly, as a group adaptation mechanism, our model underlines the

evolutionary advantage induced by institutions that promote the monogamous family and

punish cheating (Wilson 2002).

the physical environment, to the development of specific religions. Our provides a discussion about religion
from a different perspective. See subsection 6C.
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2. The Model

A. Setup

Consider an overlapping generations model in which individuals live for five periods. In each

period there is a unity sex ratio between identical men and identical women. During the first

two periods (labeled i and ii), individuals are young, infertile, unproductive, and dependent.

In each of the first two periods of adulthood (labeled 1 and 2), two opposite-sex individuals

from the same cohort are matched and have multiple child. In period 3, instead, individuals

are not fertile and use their resources only to support their progeny. Men (and only men) are

hunters and provide food for their offspring, while women (and only women) are carers and

allocate the food they receive from their partners between their children.9 Allowing mothers

to be food providers does not alter any of our main results. We shall come back to this issue

in Section 6.

In each period 1 and 2, a man divides his resource (or time) endowment into three activi-

ties: (a) hunting, which provides food necessary for child survival; (b) mate guarding, which

increases the probability that the children he supports carry his genes; and (c) cheating or

casual sex, which increases the chance that his genes are represented in the next generation’s

gene pool. In the last period (labeled 3), men are only food providers because they (as well

as all the women in their cohort) are no longer fertile and thus do not engage in guarding and

cheating. A fourth activity is own consumption, which improves the man’s physical fitness

and thus increases his offspring’s survivorship. Since most of our results hold irrespective

of whether male consumption is modeled or not, for the rest of this section as well as in

Sections 3 and 4, we ignore this activity for the sake of notational simplicity and without

loss of generality. We will formally introduced it instead in subsection 5B when we analyze

the full promiscuity case for which it does play a role.

We consider four alternative and mutually exclusive social configurations (or conventions):

(a) the monogamy family, denoted by CM , where a female is matched with the same male

in periods 1 and 2; (b) serial monogamy, denoted by CS, where each female is matched with

a male in period 1 and another male in period 2; (c) polygyny, CP , where one man mates

with more than one woman each period; and (d) full promiscuity (or group marriage or

cenogamy), CG, in which all men are considered to be officially matched to all women and

all group members share equal parental responsibilities. In this context then matching is

convention specific, and depending on the family configuration, it expects a given male to

guard only his official partner(s).

9This full gender specialization in home and market tasks echoes Becker (1981/1991). Interestingly,
for hunter-gatherer societies, Robson and Kaplan (2006) provide evidence according to which, after taking
own consumption into account, women supply 3 percent of the calories to offspring while men provide the
remaining 97 percent. For further discussion, see Kaplan et al. (2000).
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In what follows, individuals do not choose among configurations, but abide to one of

them. A convention specifies the matching protocol between men and women, i.e., it defines

how many women a man can guard or if he can guard at all. For each given convention,

we characterize the Nash equilibrium in actions. In particular, Section 3 focuses only on

CM and CS and shows that the two respective Nash equilibria exist. Section 4 compares

them and considers their evolutionary stability. It will be shown that CM dominates CS in

the sense that it yields a higher population growth rate and that it is evolutionary stable

while CS is not. Having established such results, the analysis of CP and CG becomes quite

natural. This will be presented in Section 5. Section 6 extends the model allowing for kin

ties among siblings and considering the possibility of maternal food provision and discusses

the interpretation of conventions as religions. Section 7 concludes. All proofs are contained

in the Appendix.

B. Technologies and Actions

Let gt denote the amount of time a man devotes to guarding his mate in period t, t= 1, 2,

kt be the amount of time he spends in casual sex, and k̂t the average amount of time spent

cheating by all other men in period t. The probability that guarding is successful is given

by Π(gt, k̂t) and the probability that an adult man’s guarding is not successful is 1−Π(gt, k̂t)

for any t.

Assumption 1. The function Π exhibits the following properties:

(i) Πg(g, k)>0, Πk(g, k)<0, for all k>0 and g>0;

(ii) Πgg(g, k)<0, Πkk(g, k)>0, for all k>0 and g>0;

(iii) Π(g, 0)=1 for any g>0, Π(0, k)=0, for all k≥0;

(iv) limg→0 Πg(g, k)=∞, for all k>0; and limk→0 Πk(g, k)=−∞, for all g>0;

(v) there exists a twice differentiable mapping P : R+→R+ such that

Π(g, k) = P ◦ γ(g, k), where γ(g, k) = g/(g + k) for all g, k>0. (1)

Assumption 1(i)–(iv) states standard regularity conditions according to which Π is in-

creasing and concave in g and decreasing and convex in k and it is well behaved at the

boundaries. With Assumption 1(v), which is introduced just for simplicity, Π is parameter-

ized in such a way that the probability of successful guarding is a function of the proportion

of time devoted to guarding relative to the total time spent on guarding and cheating.10

10It is easy to verify there exists an open set of functions satisfying conditions (i)-(v) of Assumption 1. An
example of a class of such functions is given in the Appendix.
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This guarantees that, for any given level of guarding, the likelihood of paternity is inversely

related to the average level of casual sex of all other men.

Child survival is stochastic and depends only on the amounts of food children receives

during the first two periods of life, which are generically denoted by u and v respectively.

From the parents’ viewpoint, the expected number of children of a given cohort who survive

into adulthood is thus given by F (u, v). The function F is assumed to satisfy the following

conditions.11

Assumption 2. The function F has the following properties:

(i) F is increasing and strictly concave;

(ii) F (0, v)=F (u, 0)=0;

(iii) limu→0 Fu(u, v)=∞ for all v>0 and limv→0 Fv(u, v)=∞ for all u>0;

(iv) Fuv>0 for all u>0 and v>0;

(v) F (u, v)=F (v, u).

Through Assumption 2(i)–(iii), F shows a number of properties that are similar to those

of a standard neoclassical production function. Assumption 2(iv) ensures that F is also

supermodular, which in our context is rather natural and amounts to the dynamic com-

plementarity property discussed by Cuhna and Heckman (2007). Finally, Assumption 2(v),

which is invoked for analytical convenience, imposes a symmetry condition of parental in-

vestment timing on survivorship: that is, the probability that a child survives with transfer

u in the first period of childhood and v in the second is the same as the survival probability

obtained when the time order of the transfers is reversed to v first and u second. This, in

the context of the skill formation model proposed by Cuhna and Heckman (2007), implies

that early and late childhood investments are equally critical and equally sensitive.

An adult man is productive only in periods 1 and 2 and can store food from period to

period at no cost. Let x1 and x2 be the time equivalent amounts of food a man transfers to

the official mother of his first-period children in periods 1 and 2, respectively. Similarly, he

gives y2 and y3 to the mother of his second-period children in periods 2 and 3. A male then

will face the following lifetime resource constraint

ω = g1 + k1 + x1 + g2 + k2 + x2 + y2 + y3, (2)

11For analytical convenience only, we assume that the actual death of children born in a given period
can occur only after the two periods of childhood at the beginning of the adulthood stage. Thus, F can
be interpreted as the number of children who are expected to reach adulthood as fertile and productive
individuals. All children reach the adulthood stage but, without adequate parental investment, they will be
unfit to mate and (re-)produce. The model also abstracts from other features which are not essential for our
results to hold, such as economies of scale in food production.
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which is defined over the entire adulthood period.12 Each man is endowed with ω units of

resources, that can be allocated either to seek paternity, or to engage in casual sex, or to

hunt and provide food to his mate. The exact timing of such decisions is irrelevant, except

that guarding and cheating will not be carried out in the last period because all adults of

the same generation (men and women alike) are no longer fertile.

A mother has to decide how to allocate the food she receives in a given period between

her offspring. This allocation decision is straightforward in period 1, when she gives all the

food she receives, x1, to her first-period children. In period 3, she also cannot affect the

amount of food supplied by the male to the second-born for her children’s second stage of

childhood, y3. Her decision instead is more complex in period 2, when she has two cohorts

of children to nurture. In this case, keeping her partner’s decisions as given, the mother

chooses the food allocation, m∈ (0, 1), that maximizes her payoff, which — contrary to the

male’s — includes neither guarding, because motherhood is certain, nor casual sex, because

her total fertility is unaffected. The amounts of food she allocates to her first-period and

second-period children are thus given respectively by mR and (1−m)R, where R = x2+y2

is the total amount of food she receives from her partner(s) in period 2.

We next consider the preference specification conditional on a given family convention.

In what follows, the ‘hat’-notation is used to indicate variables that are not a choice under

the chooser’s control.

C. Preferences

Adult Man in the Monogamous Family Convention — It is important to emphasize again

that individuals care only for the survivorship of their genes. A monogamous man chooses

g1, k1, x1, g2, k2, R, and y3 to maximize his payoff13

1

2
Π
(
g1, k̂1

)
F
(
x1, m̂R

)︸ ︷︷ ︸
“first period children”

+
1

2
Π
(
g2, k̂2

)
F
(
(1− m̂)R, y3

)︸ ︷︷ ︸
“second period children”

+
1

2

[
1− Π

(
ĝ1, k1

)]
F
(
x̂1, m̂R̂

)︸ ︷︷ ︸
“first period casual sex”

+
1

2

[
1− Π

(
ĝ2, k2

)]
F
(
(1− m̂)R̂, ŷ3

)︸ ︷︷ ︸
“second period casual sex”

(3)

where R = x2+y2, subject to (2) and standard nonnegativity constraints 0≤g1, k1, x1, g2, k2,

R, y3. The first term in (3) indicates the contribution to the man’s payoff from first pe-

riod offspring. These children are genetically related to the adult male with probability

12For simplicity, expression (2) assumes the possibility of free storage and borrowing. However, provided
that men are less productive in their last adult period, only saving but not borrowing will occur in equilibrium.

13As mentioned in subsection 2A, we ignore own consumption here. Formally this would enter the man’s
payoff function multiplying each of the F terms in (3). The same remark also applies to the payoff function
of serially monogamous men specified below (see equation (4)). Male consumption instead will be explicitly
considered when we analyze the CG convention in subsection 5B.
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Π(g1, k̂1)/2, while F (x1, m̂R) represents the expected number of such children surviving the

first and second periods of childhood. Notice that when casual sex is arbitrarily close to

zero, then Π(g1, k̂1) = 1 and the degree of genetic relatedness with own child will boil down

to the standard coefficient of 1/2. The same considerations apply to the second term which

captures the payoff obtained by a man through his second period offspring.

The last two terms in (3) refer to the payoff a male can obtain from casual sex. With

probability 1−Π(ĝt, kt), t = 1, 2, he is the unofficial father of other children who will not

be supported by him. They instead receive food by the official mate of the mother and the

cheating male does not have control over such transfers. This is why he takes them as given

and we denote them with the usual ‘hat’-notation.

Adult Man in the Serial Monogamy Convention — Taking into account that the female

he guards already has (or will eventually have) children with a different male, a serially

monogamous man chooses g1, k1, x1, g2, k2, R
′, R′′, and y3, to maximize

1

2
Π
(
g1, k̂1

)
F
(
x1, m̂R

′)︸ ︷︷ ︸
“first period children”

+
1

2
Π
(
g2, k̂2

)
F
(
(1− m̂)R′′, y3

)︸ ︷︷ ︸
“second period children”

+
1

2

[
1− Π

(
ĝ1, k1

)]
F
(
x̂1, m̂R̂

′)︸ ︷︷ ︸
“first period casual sex”

+
1

2

[
1− Π

(
ĝ2, k2

)]
F
(
(1− m̂)R̂′′, ŷ3

)︸ ︷︷ ︸
“second period casual sex”

(4)

where R′=x2+ŷ2 and R′′= x̂2 + y2, subject to (2) and the usual nonnegativity constraints.

This formulation acknowledges that, from the viewpoint of a given male in period 2, the

woman he guarded in the first period (whom he expects to be the mother of his first period

children) receives x2 from him and ŷ2 from the (different) male who guards her in period 2

and with whom she begets her second period offspring. The opposite occurs for the mother

of his second period children.

Adult Woman — A female must decide on how to allocate food to her progeny. The food

is given to her by her official partner(s), i.e., the man (men) responsible to guard her. She

cannot affect the amount of food given to the first period children in her first adult period,

x̂1, nor the amount of food received by the second period children in the third period, ŷ3.

Her problem is thus to choose the food allocation, m, in the second period to maximize her

own payoff

1

2
F
(
x̂1,mR̂

)
+

1

2
F
(
(1−m)R̂, ŷ3

)
for convention CM , (5)

1

2
F
(
x̂1,mR̂

′)+
1

2
F
(
(1−m)R̂′′, ŷ3

)
for convention CS, (6)

while taking males’ choices as given. Since she has no uncertainty about her motherhood,

the degree of genetic relatedness to each of her children is 1/2.
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3. Monogamy and Serial Monogamy Equilibria

As already mentioned, in our model individuals do not choose the type of family structure

(either long life monogamy or serial monogamy) in which they live. Rather, this is an

exogenous institution. Let us now consider one family convention at a time. We focus on

pure Nash equilibria and adopt the following definition.

Definition of Equilibrium. An equilibrium (Cj, σ∗j ), j =M,S, is a family convention Cj
and a strategy σ∗j , with σ∗j = (m∗, g∗1, k

∗
1, x

∗
1, g
∗
2, k
∗
2, x

∗
2, y
∗
2, y
∗
3)j, such that σ∗j is a pure Nash

equilibrium. That is, given Cj, the equilibrium strategy is a fixed point in actions, whereby

each man maximizes his own payoff and each woman maximizes hers, given the partner’s

actions as well as the actions of everyone else.

We start with a characterization of the equilibrium in the life long monogamy and then

present the serial monogamy case.14

Proposition 1. In the monogamous family configuration, there exists a unique interior

Nash equilibrium (CM , σ∗M) with the equilibrium strategy σ∗M characterized by m∗ = 1/2,

g∗1 =k∗1 =g∗2 =k∗2, and x∗1 =y∗3 =(x∗2 + y∗2)/2.

Proposition 1 shows that, in the monogamy family convention, the mother splits resources

equally between the two cohorts of her children and both cohorts will receive equal amounts

of food in each of their childhood periods, regardless of birth order. As a result of the

concavity and symmetry of the F function, this is in fact the only efficient food allocation.

An adult male will devote an equal fraction of his resource endowment to guarantee paternity

of both cohorts of his children in periods 1 and 2, and this also coincides with the fraction

of resources spent on casual sex in both periods.

Repeating the same exercise for the individuals who form families in the serial monogamy

convention leads to the next result.

Proposition 2. In the serial monogamy configuration, there exists a unique interior Nash

equilibrium (CS, σ∗∗S ) with the equilibrium strategy σ∗∗S given by m∗∗=1/2, g∗∗1 =k∗∗1 = g∗∗2 =

k∗∗2 , x∗∗1 =y∗∗3 and x∗∗2 =y∗∗2 , with x∗∗1 >x∗∗2 and y∗∗2 <y∗∗3 .

It is worth stressing there are three similarities with the monogamous family case: moth-

ers split their resources equally among their children, males spend as much on guarding as

14We should point out that in the monogamous family convention as well as in the serial monogamy
configuration, there will always exist another equilibrium in which parents provide food only to one cohort
of children, starving the other cohort to death. For instance, m∗ = 0 is the mother’s optimal response to
x∗1 = 0, and similarly x∗1 = 0 is optimal given m∗ = 0. Given the purposes of the model, however, we argue
this is not an interesting equilibrium and we thus ignore it.
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they do on cheating, and children from different cohorts receive an equal total amount of

resources over their entire childhood. There is however a notable difference in the amount

of the transfers by birth order: first-born children receive more food in their first period of

life, while second-born children receive more food in their second stage of childhood. The

reason for this difference is simple. In period 2, when both official fathers of the children

born to the same woman have to transfer food to her, they essentially free ride on each other

and supply less food than what they would have done if they were the sole providers. In

the second period, food provision is less efficient from the male’s viewpoint because he does

not have control over the allocation decision of his (current or former) mate, who could use

part of his food provision to care not for his offspring but for the children of the other man.

Hence, every man finds it more productive to shift more resources to casual sex, which in

turn induces greater guarding in equilibrium. The next section will ascertain whether this

reallocation of resources delivers greater or lower payoffs to parents and population growth

rates.

4. Evolutionarily Stable Family Conventions

A configuration can only exist if a group of individuals adopts its norms. This means that

our analysis of stability must focus on group deviations, i.e., deviations of a small population

share of men and women rather than individual deviations as it is practice in evolutionary

game theory (Weibull 1995). A family convention Cj, j=M,S, is then evolutionarily stable

if it resists the invasion of a small group of deviators who adopt the alternative convention

Cj′ , j′ 6=j.15

We investigate two different concepts of stability. The first looks at the case when de-

viators interact only with other deviators. This might happen for instance when the group

of deviators isolate themselves entirely from the rest of the population to form and protect

families, feed children, and have casual sex, as if they moved to a new separate village or

island and cannot migrate and trade so that interactions between the two populations are

inhibited or avoided. With the second concept of stability instead we analyze situations in

which deviators interact with incumbents as well. In particular, we shall consider interactions

that occur only through casual sex.

15Since any group deviation requires some form of coordination amongst deviators, we assume they can
engage in a costless preplay communication as if they used a “secret handshake” when meeting each other
(Robson 1990).
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A. Stability when Deviators Interact Only with Deviators

If deviators interact only with deviators it is natural to assume that their offspring adopt their

parents’ family configuration. In this context the convention with the highest population

growth is also the convention that is evolutionarily stable, precisely because it will take over

the other convention in the long run. We then compute the survival rate for each of the two

conventions and establish the following result.

Proposition 3. Survivorship in the monogamous family is always greater than survivorship

in the serial monogamy family.

The mechanism underpinning this result is the absence of free riding in the life long

monogamy convention. Compared to the serial monogamy convention, in fact, food provision

in the monogamous family is more efficient. This comes about through two channels. The

first is that the absence of free riding has a direct effect on the individual male incentive to

hunt and supply food, because all his food transfers in the CM configuration are received by

his own official children. The second is a more subtle aspect of the mechanism identified in

Propositions 1 and 2. Monogamous men and women distribute food to their offspring equally

in such a way that the two childhood periods are perfectly symmetric.16 This guarantees an

equal food distribution for both cohorts in both periods. Since the survivorship function F

is concave and symmetric, this distribution turns out to be the most efficient intrahousehold

allocation. Now, when greater food provision is efficiency enhancing, each man will have

an incentive to shift resources away from casual sex into hunting, a shift that in turn will

reduce the need for mate guarding. Since cheating and guarding are wasteful from a societal

viewpoint, the equilibrium outcome is therefore efficient in the monogamy family.

B. Example

We illustrate some of the results found so far, including those of Section 3, for the special

case in which both Π and F are power functions. In particular, they take the following

parametric specifications:17

Π(g, k) =

(
g

g + k

)α
and F (u, v) = (uv)α, (7)

where the parameter α∈(0, 1/2) is the same in both functions and thus provides a measure

of efficiency of both the guarding technology and the food provision technology. With the

functions given in (7) and ω=2, it is easy to show that Proposition 1 holds with m∗=1/2,

16Recall that the free riding behavior in CS occurs only in one period for each cohort of children.
17It is easy to verify that the function Π in (7) does not satisfy restriction (iv) of Assumption 1. The set

of conditions in Assumption 1 in fact is not necessary but only sufficient.
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g∗1 = k∗1 = g∗2 = k∗2 = 1/6, and x∗1 = x∗3 = (x∗2 + y∗2)/2 = 1/3. Similarly, Proposition 2 holds

with m∗∗ = 1/2, g∗∗1 = k∗∗1 = g∗∗2 = k∗∗2 = 1/5, and x∗∗1 = y∗∗3 = 2/5 and x∗∗2 +y∗∗2 = 2/5. With

such equilibrium values, we can check that, on the one hand, the probability of successful

guarding is identical in the two conventions and equal to (1/2)α. On the other hand, the

expected number of surviving children in the serially monogamous family is (2/5)α(1/5)α

which, irrespective of α, is always lower than the corresponding number in the life long

monogamy family, where instead it is equal to (1/3)α(1/3)α. This illustrates that child

survivorship is greater under the monogamy convention than under the serial monogamy

configuration.

C. Stability when Deviators Interact with Incumbents

There might be situations in which deviators interact with incumbents. If the interaction

between deviators and incumbents is ‘small’ or ‘local’, in the sense that deviators consume

their casual sex predominantly with other deviators, then the previous notion of stability

remains valid. This might happen when the degree of isolation between the two populations

is high (e.g., they live in separate villages), so the contact rate between individuals of the

two groups is low.

If instead the interaction is pervasive, we must be specific about the convention followed

by a child born from the casual sex union between a deviating parent and an incumbent

parent. In this analysis, we follow and extend the approaches proposed by Bergstrom (1995)

and Alger and Weibull (2010). More specifically, we suppose that children propagate the

family configuration by copying the role model of the family in which they were born. Family

configurations are thus copied from cultural parents. This means, for example, that if in the

monogamous configuration a male deviator — who is serially monogamous and has causal

sex with a woman of the incumbent convention — has a child with her, the child will adopt

the mother’s (and official father’s) family norm and will thus be monogamous. In this

environment we find the following result.

Proposition 4. If deviators interact with incumbents, the monogamous convention is evo-

lutionarily stable, whereas the serially monogamous convention is not.

As in the case when deviators interact only with deviators, here too the mechanism

that underpins Proposition 4 is the free riding on food provision in the serial monogamy

convention. That is, the lower productivity in food provision among serially monogamous

men gives them a greater incentive to chase other men’s partners as well as guard their own

mates. The negative externality that cheating generates by inducing men to guard their

partners plays a key role in generating the result in Proposition 4. In equilibrium, therefore,
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overguarding and overcheating are socially wasteful activities that prevent serial monogamist

mutants to invade a monogamist population successfully.

Proposition 4 is underpinned by a simple, yet powerful, notion of intergenerational trans-

mission of family norms. As all individuals copy their official parents’ family convention,

official parents serve as direct role models for their children. This is in line with other recent

studies on the transmission of cultural values driven by parents’ incentives to foster their

children’s taste for cooperation (Bisin and Verdier, 2001), honesty (Hauk and Saez-Mart́ı

2002), and work ethics (Lindbeck and Nyberg 2006).

5. Other Family Conventions

A. Polygyny

Polygyny is a family type in which one man has multiple official female partners at the same

time. The analysis below will focus on a comparison between polygyny and monogamy,

given that the latter convention attains a greater population growth than serial monogamy.

A feature of the model so far has been that males and females are homogeneous within a given

convention. To have a meaningful comparison, therefore, we continue to do so here. Hence,

polygynist men have the same endowment as the other men who, by definition, cannot have

official partners. Men are randomly assigned to either the matched or the unmatched group.

To gain an insight as to why such a convention is dominated by monogamy we stress

that, since all individuals care only for the propagation of their genes, unmatched men in CP
will consume their entire endowment in casual sex. Matched men then will have to devote

more of their resources to guarding. This, together with the fact that only a fraction of

males supply food, will drive the result.

More formally, assume for simplicity that matched polygynists have two women in period

1 and the same two women in period 2. It follows that half of the men are matched while the

other half are not.18 We consider the same stability notion used in subsection 4.A according

to which all the individuals of the deviating group isolate themselves from the rest of the

population. As before, the objective is to compute the survival rate for individuals of the CP
convention and compare it to the survival rate obtained under the CM configuration. The

convention with the highest population growth is deemed to be evolutionarily stable. Our

analysis yields the following proposition.

Proposition 5. Survivorship in the monogamous family is always greater than survivorship

in the polygynous family.

18Both this assumption and the condition that matched polygynist men have two partners can be easily
generalized respectively to arbitrary fractions of the population being matched and to arbitrary numbers of
female partners, provided that a unity sex ratio is preserved.
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Let us elaborate this briefly. On the one hand, concavity of F gives men an incentive

to divide up their resource among multiple official partners. This could lead the polygynous

configuration to enjoy greater population growth than its monogamous counterpart. On the

other hand, however, children of polygamous parents can rely on fewer resources than their

monogamous counterparts because each family unit has now a greater number of children.

This is aggravated by the presence of unmatched males whose only activity is having casual

sex that jeopardizes the paternity claims of the officially matched men. To have confidence

in their fatherhood, therefore, matched men must increase guarding significantly compared

to a world in which homogenous males match monogamously, and this in turn leads to lower

population growth. The latter two forces outweigh the first and the net result is thus a

smaller survival rate associated with the polygynous family.19

An important point is in order. Previous studies have typically explained polygyny

through both differential fecundity between men and women and male inequality in wealth,

whereby richer (and generally older) men tend to have multiple wives (Grossbard 1976;

Becker 1991; Gould, Moav, and Simhon 2008). In a world with large endowment inequalities,

polygyny is likely to emerge as an evolutionarily stable configuration, even against deviations

to monogamy. Proposition 5 shows that, when the differences in resource endowments are

not too large, monogamy is evolutionarily stable, while polygyny is not.

B. Full Promiscuity

Another family structure is group marriage (or cenogamy) in which all women share all men

in the population as partners and, similarly, all men share all women as partners in fully

promiscuous relationships (Morgan 1871; Ingoldsby and Smith 2006; Knight 2008; Allen et

al. 2008). In such a convention, labeled CG, it is natural for men to supply food to all the

women who, in turn, pool it together communally and use it to feed their children. A man

in fact does not know which of the women, if any, bear his progeny.

More specifically, all men and women have common dwellings so that guarding is techni-

cally impossible. No time is thus devoted to guarding. Likewise, no time is spent in casual

sex, since reproductive opportunities are freely available to all fertile men. In each of the

three periods 1, 2, and 3, then, every man i supplies food x1i, Ri, and y3i respectively to

the common pool. This pool is distributed equally to each woman, who in turn splits it

among her children. Each child therefore receives x1, R, and y3, where x1 = 1
N

∑N
i=1 x1i,

R = 1
N

∑N
i=1Ri, and y3 = 1

N

∑N
i=1 y3i, and N is the number of men (and women) in a given

19It is unsurprising, but still interesting, to notice that this result — unlike that stated in Proposition
3 — is unrelated to the free riding behavior of polygynous men, since they are assumed to be matched to
the same women for all their adult life. These men then do not have room to free ride on other men but
must protect themselves against the pervasive casual sex of unmatched men by inefficiently increasing mate
guarding.
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cohort of the promiscuous population. Notice therefore that, while each man’s food is equally

distributed among all women in the population, on average only one of them is the mother

of his children.

As mentioned in Section 2, male consumption does play a role in this convention. Recall

that, from Assumption 1 when gt = 0, t = 1, 2, Π equals 0 for kt ≥ 0. Formally then the

optimization problem of a promiscuous man i is to choose x1i, Ri, y3i and Ci to maximize20

h(Ci)

[
1

2
F (x1, R/2) +

1

2
F (R/2, y3)

]
(8)

subject to ω = x1i+Ri+y3i+Ci, where Ci is male i’s own consumption and h is an increasing

and strictly concave function of Ci.

It could be argued that, compared to the monogamy convention, CG is efficiency enhanc-

ing, precisely because guarding is a socially wasteful activity. That is, in an environment

where guarding is technologically impossible, we may expect that more resources would be

made available for food provision and, consequently, child survivorship would improve. This

however is not the case when individuals care only for the propagation of their own genes. It

is easy to see in fact that each man’s best response is to free ride on the other N − 1 men’s

food supply and invest instead in own consumption. Indeed, when the population is large

enough (i.e., N increases), every man will devote almost all his entire (time) endowment

to own consumption to improve his sexual productivity. In equilibrium, therefore, the fully

promiscuous convention will be characterized by no (or very low) food provision and an ex-

tremely high level of male consumption. Interestingly, this relationship is in line with some

of the available anthropological evidence on cenogamous societies (e.g., Levine and Sangree

1980).

This suggests that CG is not evolutionarily stable against deviations to monogamy be-

cause, given its exceptionally low level of food provision, it entails a near-zero probability of

survival in comparison to life long monogamy. Conversely, an invasion of fully promiscuous

deviators in a monogamous population will not succeed in outnumbering the monogamous

incumbents in the long run.

6. Extensions and Discussion

A. Kinship

Several studies have shown that individuals care not only for their own progeny but also for

other genetically close relatives (Alexander 1974; Kurland 1979; Diamond and Locay 1989;

Dunbar, Clark and Hurst 1995; Knight 2008). They have documented a wide array of kinship

20Expression (8) is a suitably modified version of (3) or (4) in which, after accounting for consumption,
the first two terms drop out as a result of the fact that Π=0.
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ties, supporting the notion that the costs and benefits of altruistic acts — in our case, food

transfers among kin — are weighted by the closeness of genetic relatedness (Hamilton 1964;

Bergstrom 1995; Cox 2007).

In this extension we briefly discuss the implications of a simple model in which adult

men can make food transfers, denoted by b, to their presumed younger siblings.21 Notice

that, differently from the framework used in previous sections, siblings’ birth order matters,

so that older males face a different optimization program from that faced by their younger

brothers. The Appendix formalizes such programs.

We turn to our main result, which compares serial monogamy to monogamy. This has

been obtained with the same parametric specifications as those given in (7) and used in the

example of subsection 4.B.

Proposition 6. Assume food transfers between siblings are possible. We characterize two

findings:

(a) In the serial monogamy configuration, there exists a unique interior Nash equilibrium.

In this equilibrium the optimal food transfer is b∗∗=0 (no kin transfer).

(b) In the monogamous family convention, there exists a unique interior Nash equilibrium

in which: (i) b∗ > 0 (positive kin transfers); and (ii) compared to the case without kin ties,

total survivorship is greater.

For the serial monogamy family, part (a) states that kin ties cannot emerge in equilibrium.

The intuition is simple. Because each child has the same likelihood of survival and because

any given man is genetically closer to his own children than to any other individual in the

population, including his own half-siblings, it is optimal for him to provide food only to his

own official offspring.

From part (b) we highlight two points. First, positive kin transfers occur in equilibrium

because, given the survival function F is concave, a man in the monogamous convention

finds it advantageous to provide food to both his offspring and his siblings since these are

equally genetically close to him. Greater efficiency in food provision translates into greater

food transfers, lower cheating, and lower guarding.

Second, in comparison to the case without kinship, firstborn receive strictly more food

from their father in both periods of childhood. Later born children instead receive less food

from their father, and even after taking into account the positive transfer from their older

brothers, their total resources are lower than what they would have received in a context

without kin ties. This primogeniture effect emerges because fathers, irrespective of whether

21The opposite transfers (from younger to older siblings) and more complex kinship systems involving
individuals with lower levels of genetic relatedness (e.g., cousins, nephews, and nieces) are expected to be of
second order importance in our framework and are thus not considered here.
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they made or received food transfers, internalize the possibility that their firstborn will

support their younger siblings. By transferring more food to their first born children, fathers

spread their investment across children more equally, which, owing again to the concavity of

F , increases their payoff.22

Proposition 6(b) guarantees that a monogamous population in which families are linked

through food exchange as opposed to another monogamous population without kin ties will

be characterized by greater total food provision, which, in turn, will lead to greater sur-

vivorship. Because paternity is uncertain, two males who know they share the same mother

could be genetically close to each other as much as they are to their own offspring. In these

circumstances, transferring food to younger (still dependent) siblings is efficiency enhancing.

Because of this, casual sex goes down and thus the need for guarding recedes too. But lower

cheating and lower guarding can only occur within the monogamous convention. The monog-

amous family therefore allows its members not only to achieve greater survivorship but also

to foster altruistic behavior among siblings. Moreover, this result identifies monogamy as a

key source of exchange among its members and thus a primary engine of economic growth

(Ofek 2001; Chapais 2008; Galor and Michalopoulos 2012).

The notion of investing in siblings and more distant kin is relatively underinvestigated

in economic research. Diamond and Locay (1989) offer the first and, to our knowledge, the

only model that examines the investment of a risk-averse man in his sister’s children when he

is uncertain about his paternity. The overlapping-generation model developed in this paper

allows us to focus on the more basic kinship links between older and younger siblings rather

than those between a man and his sister’s children. This framework then provides us with

the natural architecture for extending the analysis to lower levels of genetic relatedness, as

in the case of Diamond and Locay, as well as other forms of kin ties, such as matrilineal

kinship (Allen et al. 2008).

B. Food Provision by the Mother

A feature of our model has been that the man is the sole investor, in the sense that he is

the only food provider (Kaplan et al. 2000; Robson and Kaplan 2006), while the woman

controls the food distribution among children. Mothers nevertheless can be food providers.

An interesting question is to see how this possibility would affect our earlier predictions.

This extension shows that they do not change.

We focus on the case in which in each period every woman has a given amount of resources

that she can use to feed her children. For this case we characterize the following result.

22Recent empirical studies based on contemporary data find evidence that is consistent with our primo-
geniture effect, with sizeable negative impacts of higher birth order on education, earnings, employment, and
teenage fertility (e.g., Black, Devereux, and Salvanes 2005).
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Proposition 7. Suppose an adult woman has a given resource endowment, µt, t = 1, 2, 3.

Then Propositions 1–5 hold true.

As in Propositions 1 and 2, in this extension we consider only interior equilibria.23 Propo-

sition 7 ensures that, even in a world where mothers are food providers, monogamy continues

to dominate serial monogamy, polygyny, and full promiscuity by delivering a greater popu-

lation growth rate.

The intuition behind this result rests on a simple notion of income pooling (Becker

1981) or, more appropriately for our model, food pooling. Men and women take account

of the availability of additional resources and make decisions under their new endowment

ω+
∑

t µt = ω′. The amount of resources received by each child is the same as if the father had

a total endowment of ω′ with the mother, as usual, being in control of the food allocation

among children. This applies not only to monogamy and polygyny but also to the serial

monogamy case when there is free riding between the two men linked to the same woman.

This is possible because the two men in equilibrium make symmetric food transfers and the

woman pools resources with each of them separately. In the cenogamy convention instead

the only food given to children in equilibrium comes from the mother, and this convention

is thus bound to enjoy the least growth.

C. Religion: Convention or Adaptation?

Central to our theory is the observation that, in a world where individuals seek to maximize

their reproductive success, casual sex and mate guarding are unavoidable, even though these

are socially wasteful activities. A recurring point of the paper is that if, in the presence

of such activities, a population behaves according to the monogamous family convention, it

will grow more rapidly in equilibrium than in any other family convention and it will also

be more likely to promote altruistic links among its members.

Because of the inefficiency they generate, cheating and guarding might induce the devel-

opment of social norms, beliefs or institutions that can attenuate their negative effects. One

of such institutions is religion. It could be argued that each of the family conventions ana-

lyzed in the paper can be seen, in and of itself, as a ‘religion’. In our setup, by specifying the

matching protocol between men and women, a convention/religion essentially defines how

many women a man can guard or if he can guard at all. The matching protocol then defines

the game for the group. Once the game is fixed, the other activities (hunting, cheating, and

food distribution) are determined in equilibrium by strategic interactions among rational

players. Based on the results from Sections 4 and 5, this reasoning allows us to throw light

23If maternal resources are too large compared to the male resources, men will have no incentive to supply
food, and this will lead to a corner solution.
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on the remarkable fact that many of the major religions center around the monogamous

fidelity family even though history has witnessed all kinds of different sexual organizations

(Knight 2008).

With the rules of the game set up, it is hard to affect individual choices further. Yet

religions generate moral systems that try to affect equilibrium outcomes also at the margin,

by building norms and beliefs that are evolutionarily advantageous and ruling out alternative

goals and beliefs that are not (Csikszentmihalyi 1990; Wilson 2002). Our model provides

a simple explanation as to why proscribing casual sex does lead to a successful group level

adaptation. Reducing casual sex, in fact, has not only the direct effect of freeing up resources

for food provision but also the indirect effect of reducing the need for guarding. Both such

effects increase survivorship. On the contrary, forbidding mate guarding, independently of

the difficulty of its actual implementation, will give rise to increased cheating. Interestingly,

almost all major world religions have openly condemned a wide range of sexual sins, including

adultery and fornication, and stigmatized the product of casual sex, illegitimate children

(Browning, Green, and Witte 2006).

The notion of religion (both as a group selection mechanism and as the convention itself)

that promotes fidelity within life long monogamous families is therefore powerfully aligned

with the forces underpinning our theoretical insights. Indeed, recent empirical research

has documented that, in the last fifty years and across a large cross-section of countries,

economic growth has responded positively to religious beliefs (Barro and McCleary 2003)

and that greater religious beliefs instill stronger work ethics (McCleary and Barro 2006).

Some studies, however, find no evidence of an effect of religion on growth (e.g., Acemoglu,

Johnson and Robinson 2001), while others stress the importance of an indirect effect of

religion on economic growth through greater human capital accumulation (Botticini and

Eckstein 2007; Becker and Woessmann 2009). With its emphasis on moral beliefs about the

fidelity monogamous family, our model is likely to bring a new perspective to this important

debate.

7. Conclusion

This paper presents a new evolutionary model with uncertain paternity and parental invest-

ment in overlapping cohorts of children to explain why life long monogamy is the dominant

form of sexual organization among humans as opposed to other family types, such as serial

monogamy, polygyny, and cenogamy.

A distinctive feature of the model is that men have food provision responsibilities while

women (and only women) have allocative responsibilities of the food among their children.

Allowing women to provide part of the food to their children does not change our main results.
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The efficiency difference between monogamy and serial monogamy (as well as cenogamy)

relies on the observation that, if a serially monogamous or cenogamous woman receives

resources from multiple men, there is a free-rider problem in which each man realizes that

his contribution to his official children will be shared with other children who are most

likely not his. In a polygynous environment instead a man must defend his fatherhood

claims against the competition of unmatched men who will spend their entire resources on

cheating.

Despite its simplicity the model delivers a rich set of insights about the monogamous

family and its stability. Here we highlight three. First, we use an interesting notion of

evolutionary stability based on group deviations. Looking at stability when deviators interact

with incumbents, we can also underpin a powerful notion of cultural transmission according

to which official parents serve as role models for their children. Second, altruism between

siblings can only emerge with the monogamous family because a man, who is uncertain

about his paternity and yet cares about his reproductive success, values his siblings in part

because they provide him with the assurance that some of his genes will survive into future

generations. Third, by specifying the guarding protocol, a convention essentially sets the

norms which individuals follow in equilibrium. A convention is then equivalent to a religion.

This insight allows us to construe the striking fact that most of the world religions by and

large promote monogamy. We view this paper as a first cut at these three exciting issues

and expect that much new work will be done in each of such areas.

Some caution, of course, should be taken before been tempted to use our results to

interpret the contemporary family. With the aid of reliable DNA paternity testing, the issue

of fatherhood uncertainty might have become less pressing than what it used to be among

our ancestral predecessors.24 Similarly, parental investment in children, albeit remaining

crucial (e.g., Cunha and Heckman 2010), has been supplemented or replaced by the state

(Becker 1991; Lundberg and Pollak, 2007). Another dimension of caution refers to the

increased labor force participation of mothers (Goldin 2006). The market, the state, and

the greater economic independence of women might have influenced the nature of exchange

within families in ways that our model cannot capture (Laitner, 1997).

24Anderson (2006) and the works cited therein, however, seem to suggest the opposite.
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Appendix

Proofs

We begin with the proof of three technical results that will be used to prove the propositions stated
in the paper. Throughout the Appendix, the notation Fi, i=1, 2, indicates the first derivative of F
with respect to its i-th argument; similarly, Fij , with i, j=1, 2, indicates the derivative of Fi with
respect to the j-th argument.

Lemma 1. F1(x1, x2) = F2(x2, x1).

Proof. The symmetry condition on F , so that F (x1, x2) = F (x2, x1), implies that

F1(x1, x2) = lim
h→0

F (x1 + h, x2)− F (x1, x2)

h

= lim
h→0

F (x2, x1 + h)− F (x2, x1)

h
= F2(x2, x1). �

Lemma 2. If F1(x1, x2)=F2(x1, x2), then x1 =x2.

Proof. Strict concavity of F implies that for any two points X=(x1, x2) and Y =(y1, y2) we have

F (x1, x2) > F (y1, y2) + (y1 − x1, y2 − x2)∇F (x1, x2)

whenever X 6= Y . Assume x1 6= x2 and let Y =(y1, y2)=(x2, x1). Then

F (x1, x2)>F (x2, x1)+(x2 − x1, x1 − x2)∇F (x1, x2)=F (x2, x1)+(x2−x1)[F1(x1, x2)−F2(x1, x2)]

which is impossible because F (x1, x2) = F (x2, x1) and because of the assumption F1(x1, x2) =
F2(x1, x2). Then x1 =x2. �

Lemma 3. If x1+x2>y1+y2, then either F1(x1, x2)<F1(y1, y2), or F2(x1, x2)<F2(y1, y2), or both
inequalities are true.

Proof. Because x1 + x2 > y1 + y2, then x1−y1>0 and/or x2−y2>0. Let:

Φ(x1, x2) = F1(x1, x2)

Ψ(x1, y2) = F2(x1, x2).

An infinitesimal increase in the value of the images of Φ and Ψ, denoted by ∆Φ and ∆Ψ, corre-
sponding to an increase ∆1 in x1 and ∆2 in x2 can be written as[

∆Φ
∆Ψ

]
=

[
F11 F12

F21 F22

] [
∆1

∆2.

]
By contradiction, assume[

F11 F12

F21 F22

] [
∆1

∆2

]
>

[
0
0

]
.

We now consider the three possible cases.
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Case 1. ∆1 > 0,∆2 > 0.

The system of equations

F11∆1 + F12∆2 > 0

F21∆1 + F22∆2 > 0

implies that

F12∆2 > −F11∆1

F21∆1 > −F22∆2.

Because all terms are positive, term-wise multiplication of the two equations leads to (F12)2 >
F11F22, which contradicts the assumption that F is concave.

Case 2. ∆1 > 0,∆2 < 0.

Since Assumption 2(iv) guarantees that F12 > 0, the inequality F12∆2 > −F11∆1 can never be
satisfied because the left-hand term is negative and the right-hand term positive.

Case 3. ∆1 < 0,∆2 > 0.

The inequality F21∆1 > −F22∆2 can never be satisfied because the left-hand term is negative and
the right hand term positive.

Notice the supermodularity condition F12 > 0 is sufficient but not necessary. In addition,
the inequalities obtained are for infinitesimal increments ∆1 and ∆2. However, because they hold
everywhere, the effect of a change from x1 to y1 and from x2 to y2 can be obtained by integrating
∆Φ and ∆Ψ over the path from (x1, x2) to (y1, y2). The corresponding changes Φ(y1, y2)−Φ(x1, x2)
and Ψ(y1, y2)−Ψ(x1, x2) keep the same signs as those implied by the infinitesimal increments ∆Φ
and ∆Ψ. Hence, the contradiction holds. �

Proof of Proposition 1 (Monogamy)

Adult woman. The monogamous woman’s problem is to choose z2 to maximize

1

2
[F (x̂1, z2) + F (R̂− z2, ŷ3)]

subject to 0 ≤ z2 ≤ R̂, where z2 is the amount of food she gives to her first period children in
period 2 and the terms denoted by a ‘hat’ are exogenous to her decision problem. Because of strict
concavity of F the solution is unique. The first order necessary condition associated to an interior
solution is

F2(x̂1, z2) = F1(R̂− z2, ŷ3) (A.1)

For x̂1 > 0 and ŷ3 > 0 this condition is necessary and sufficient. In this case we denote the solution
as z2 = mR̂, where 0<m<1. Now, Lemma 1 guarantees that if x̂1 = ŷ3, then m = 1/2.

Adult man. The monogamous man’s problem is to choose x1, g1, k1, R, g2, k2, y3 to maximize his
payoff function φ given by

1

2

{
Π(g1, k̂1)F (x1, m̂R) + [1−Π(ĝ1, k1)]F (x̂1, m̂R̂)

+Π(g2, k̂2)F ((1− m̂)R, y3) + [1−Π(ĝ2, k2)]F ((1− m̂)R̂, ŷ3)
}
,
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subject to ω=x1 + R + y3 + g1 + g2 + k1 + k2 and 0≤x1, R, y3, g1, g2, k1, k2, and where, for now,
0 < m̂ < 1. As before, the terms with a ‘hat’ are exogenous. The following first order conditions
are necessary but not sufficient for an interior maximum:

∂φ

∂x1
≡ F1(x1, m̂R)Π(g1, k̂1) + λ = 0 (A.2)

∂φ

∂R
≡ m̂F2(x1, m̂R)Π(g1, k̂1) + (1− m̂)F1((1− m̂)R, y3)Π(g2, k̂2) + λ = 0 (A.3)

∂φ

∂g1
≡ F (x1, m̂R)Πg(g1, k̂1) + λ = 0 (A.4)

∂φ

∂k1
≡ −F (x̂1, m̂R̂)Πk(ĝ1, k1) + λ = 0 (A.5)

∂φ

∂y2
≡ F2((1− m̂)R, y3)Π(g2, k̂2) + λ = 0 (A.6)

∂φ

∂g2
≡ F ((1− m̂)R, y3)Πg(g2, k̂2) + λ = 0 (A.7)

∂φ

∂k2
≡ −F ((1− m̂)R̂, ŷ3)Πk(ĝ2, k2) + λ = 0. (A.8)

Next, let us evaluate (A.2)–(A.8) at the fixed point, which we denote with f∗ = (x∗1, g
∗
1, k
∗
1, R

∗, y∗3,
g∗2, k

∗
2). Now, equations (A.4) and (A.5) together with (A.7) and (A.8) imply that Πg(g

∗
1, k
∗
1) =

−Πk(g
∗
1, k
∗
1) and Πg(g

∗
2, k
∗
2) =−Πk(g

∗
2, k
∗
2). Assumption 1 implies that g∗1 = k∗1 and g∗2 = k∗2, which

then lead to Π(g∗1, k
∗
1)=Π(g∗2, k

∗
2). From (A.1) we obtain

F2(x∗1,m
∗R∗) = F1((1−m∗)R∗, y∗3), (A.9)

and expression (A.3) becomes

F2(x∗1,m
∗R∗)Π(g∗1, k

∗
1) + λ = 0. (A.10)

From (A.2) and (A.6) evaluated at the fixed point and (A.10) we obtain

F1(x∗1,m
∗R∗) = F2(x∗1,m

∗R∗) = F2((1−m∗)R∗, y∗3). (A.11)

Combining (A.9) and (A.11) we get

F1(x∗1,m
∗R∗) = F2(x∗1,m

∗R∗) = F2((1−m∗)R∗, y∗3) = F1((1−m∗)R∗, y∗3).

Using Lemma 2 we find x∗1 = mR∗ and (1 −m)R∗ = y∗3, while Lemma 3 applied to F1(x∗1, x
∗
1) =

F2(x∗1, x
∗
1) = F2(y∗3, y

∗
3) = F1(y∗3, y

∗
3) yields

x∗1 = y∗3.

With (A.9) this solution leads to

m∗ = 1/2 and x∗1 = mR∗ = (1−m)R∗ = y∗3.

The unique symmetric fixed point of the first order conditions (A.2)–(A.8) is then characterized by
x∗1 = y∗3 = R∗/2, m∗ = 1/2, g∗1 = k∗1 = g∗2 = k∗2 = g∗ and ω = 2R∗ + 4g∗.

Existence of equilibrium. To establish that the fixed point σ∗ is an equilibrium we need to show
that, after fixing the strategies of all players but agent j at σ∗ = (m∗, x∗1, R

∗, y∗3, g
∗
1, g
∗
2, k
∗
1, k
∗
2), σ∗
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is in fact the best response for j. This is not trivial because the problem is not concave. Before
getting into the proof, two remarks are in order. First, the allocation implied by σ∗ is the only
interior solution for (A.2)–(A.8) for player j. This implies that σ∗ is the only candidate for an
interior equilibrium. Second, we stress that the constraints of the optimization problem define a
compact set for each player i and the objective is continuous. As the exogenous parameters, the
terms denoted with a ‘hat’, are fixed at the ∗-values and k̂∗t >0 and ĝ∗t >0, the ratios g/(g+ k̂) and
ĝ/(ĝ + k) are well behaved. The optimization problem then must admit a solution. This is either
the interior solution σ∗ or a corner solution in m, which we now rule out but which we shall turn
to at the end of this proof. Below we consider all other possible non-interior alternatives.

(a) x1 = R = y3 = 0 and g1 > 0 and/or g2 > 0 is suboptimal because it yields a payoff which is
lower than x1 = R = y3 = g1 = g2 = 0 and kt = ω

2 , t = 1, 2.

(b) x1 = R = y3 = g1 = g2 = 0 and ki = ω
2 is suboptimal because it yields a payoff of 2[1−

Π(k∗t ,
w
2 )]F (x∗1, x

∗
2) which is lower than the payoff obtained following the strategy σ∗, which

is 2F (x∗1, x
∗
2).

(c) R = 0 and x1 > 0 and/or y3 > 0 is suboptimal because x1 = y3 = R = 0 will yield higher
utility (recall that by assumption F (u, 0) = F (0, v) = 0).

(d) R > 0 and x1 = 0 and/or y3 = 0 is suboptimal because limx→0 F
′
1(x,R/2) =∞.

(e) From (a)–(d), we infer that as a best response to σ∗ each individual must set x1 > 0; R >
0; y3 > 0.

(f) Recall that, by Assumption 1(iv), Π(0, k̂t) = 0, with k̂t≥ 0. Point (e) implies that in man’s
j’s best response to σ∗ we must have gt≥0, t = 1, 2.

(g) Assumption (iv), which imposes Πkt(ĝt, kt) =−∞ for ĝt > 0, rules out the possibility that
kt = 0, t = 1, 2. Indeed, for kt small enough and for all x1, R, y3, g1, g2, kt > 0, the value of
−Πk(gt, k̂t) is large enough so that increasing kt (and decreasing some of the other variables)
increases individual j’s payoff.

(h) Finally, as x∗1 = y∗3 the optimal response of the mother is m∗ = 1/2.

(i) Choosing σ∗ is male j’s best response when all other individuals (men and women) choose
σ∗. The same argument holds true for a woman’s best response.

From (a)–(i) we conclude that σ∗ is an equilibrium. QED

As mentioned before, there are always two other equilibria in which m is on the boundary.
Consider the case in which the mother sets m=0. It is easy to verify that the best response of each
man is x1 =g1 =k1 =0. Likewise m=0 is the best response to x1 =g1 =k1 =0. Similarly, m=1 and
x2 = g2 = k2 = 0 deliver an equilibrium. As emphasized in the text, these equilibria are such that
parents provide food only to one cohort of children, starving the other cohort to death. Given the
purpose of the paper, we ignore such equilibria.

Proof of Proposition 2 (Serial Monogamy)

Adult woman. The first order condition associated to the woman’s problem is

F2(x̂1,m(x̂2 + ŷ2)) = F1((1−m)(x̂2 + ŷ2), ŷ3).

26



For x̂1 > 0 and ŷ3 > 0, this condition is necessary and sufficient. Let z2 be the amount of food a
mother gives to her first period children. Then her optimal response is

z2 = m(x̂2 + ŷ2),

where 0<m<1.

Adult man. Assuming 0< m̂<1, the serially monogamous man’s problem is to choose x1, g1, k1, x2, y2,
y3, g2, k2 to maximize his payoff function ϕ given by

1

2

{
Π(g1, k̂1)F (x1, m̂(x2 + ŷ2)) + [1−Π(ĝ1, k1)]F (x̂1, x̂2)

+Π(g2, k̂2)F ((1− m̂)(x̂2 + y2), y3) + [1−Π(ĝ2, k2)]F (ŷ2, ŷ3)
}
,

subject to ω=x1+x2+y2+y3+g1+g2+k1+k2 and 0≤x1, g1, k1, x2, y2, y3, g2, k2.
The first order conditions of this problem are:

∂ϕ

∂x1
≡ F1(x1, m̂(x2 + ŷ2))Π(g1, k̂1) + λ = 0 (A.12)

∂ϕ

∂x2
≡ m̂F2(x1, m̂(x2 + ŷ2))Π(g1, k̂1) + λ = 0 (A.13)

∂ϕ

∂g1
≡ F (x1, m̂(x2 + ŷ2))Πg(g1, k̂1) + λ = 0 (A.14)

∂ϕ

∂k1
≡ −F (x̂1, m̂(x2 + ŷ2))Πk(ĝ1, k1) + λ = 0 (A.15)

∂ϕ

∂y2
≡ (1− m̂)F1((1− m̂)(x̂2 + y2), y3)Π(g2, k̂2) + λ = 0 (A.16)

∂ϕ

∂y3
≡ F2((1− m̂)(x̂2 + y2), y3)Π(g2, k̂2) + λ = 0 (A.17)

∂ϕ

∂g2
≡ F ((1− m̂)(x̂2 + y2), y3)Πg(g2, k̂2) + λ = 0 (A.18)

∂ϕ

∂k2
≡ −F ((1− m̂)(x̂2 + y2), ŷ3)Πk(ĝ2, k2) + λ = 0. (A.19)

Let the fixed point of this problem be denoted by σ∗∗ = (m∗∗, x∗∗1 , g
∗∗
1 , k

∗∗
1 , x

∗∗
2 , y

∗∗
2 , y

∗∗
3 , g

∗∗
2 , k

∗∗
2 ).

From (A.12) and (A.13), owing to the symmetry of F , it can be verified that

F1(x∗∗1 ,m
∗∗(x∗∗2 + y∗∗2 )) = m∗∗F2(x∗∗1 ,m

∗∗(x∗∗2 + y∗∗2 )) = m∗∗F1(m∗∗(x∗∗2 + y∗∗2 ), x∗∗1 ).

Provided m∗∗<1, we obtain F1(x∗∗1 ,m
∗∗(x∗∗2 + y∗∗2 )) < F1(m∗∗(x∗∗2 + y∗∗2 ), x∗∗1 ), which leads to

x∗∗1 6= m∗∗(x∗∗2 + y∗∗2 ).

Assumption 2 guarantees that F11(u, v) < 0 and F12(u, v) > 0 for all (u, v). This implies F1(u, v)
is decreasing in the first argument and increasing in the second and thus

m∗∗(x∗∗2 + y∗∗2 ) < x∗∗1 .

Similarly, from (A.16) and (A.17) we find that

(1−m∗∗)(x∗∗2 + y∗∗2 ) < y∗∗3 .
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Expressions (A.14) and (A.15) lead to F (x∗∗1 ,m
∗∗(x∗∗2 + y∗∗2 ))Πg(g

∗∗
1 , k

∗∗
1 ) = −F (x∗∗1 ,m

∗∗(x∗∗2 +
y∗∗2 ))Πk(g

∗∗
1 , k

∗∗
1 ), which implies g∗∗1 and k∗∗1 are such that Πg(g

∗∗
1 , k

∗∗
1 ) = −Πk(g

∗∗
1 , k

∗∗
1 ). Similarly,

equations (A.18) and (A.19) yield Πg(g
∗∗
2 , k

∗∗
2 ) = −Πk(g

∗∗
2 , k

∗∗
2 ). Using Assumption 1, it is easy to

verify that

g∗∗1 = k∗∗1 and g∗∗2 = k∗∗2 ,

which leads to

Π(g∗∗1 , k
∗∗
1 ) = Π(g∗∗2 , k

∗∗
2 ).

Finally, equations (A.13) and (A.16) give m∗∗F2(x∗∗1 ,m
∗∗(x∗∗2 + y∗∗2 )) = (1 − m∗∗)F1(m∗∗(x∗∗2 +

y∗∗2 ), y∗∗3 ). Since in equilibrium the mother choosesm so that F2(x∗∗1 ,m
∗∗(x∗∗2 +y∗∗2 )) = F1(m∗∗(x∗∗2 +

y∗∗2 ), y∗∗3 ), then m∗∗ = 1/2.
Thus, the fixed point σ∗∗ is characterized by x∗∗1 = y∗∗3 , m∗∗ = 1/2, g∗∗1 = k∗∗1 = g∗∗2 = k∗∗2 . The

existence proof proceed exactly as that used for Proposition 1. Therefore, there exists a unique
equilibrium in which 0 < m < 1 and in which all men use the same strategy and all women use
the same strategy. In this equilibrium children are treated in a semi-symmetric fashion. As in the
monogamous convention, also here there are two equilibria in which x∗∗t = g∗∗t = k∗∗t = 0, t = 1, 2.
As in the previous convention, we ignore such equilibria. QED

Proof of Proposition 3 (Stability Without Interactions)

Let σ∗ denote the equilibrium values in the monogamy convention and σ∗∗ the equilibrium values in
the serial monogamy convention. By contradiction, assume F (x∗1, x

∗
2)+F (y∗2, y

∗
3) < F (x∗∗1 ,m

∗∗(x∗∗2 +
y∗∗2 )) + F ((1−m∗∗)(x∗∗2 + y∗∗2 ), y∗∗3 ) or equivalently

F (x∗1, x
∗
1) < F (x∗∗1 , x

∗∗
2 ). (A.20)

Inequality (A.20) would imply that the total resources devoted to food provision are larger in the
CS convention, i.e., 2x∗1 < x∗∗1 + x∗∗2 . As a result, CS is stable while CM is not. We show that this
leads to a contradiction. Indeed, the symmetric allocation (x∗1, x

∗
1) is the most efficient way to use

the amount of resources 2x∗1. Since g∗∗1 = k∗∗1 = g∗∗2 = k∗∗2 = g∗∗ and g∗1 = k∗1 = g∗2 = k∗2 = g∗, it
follows that, under (A.20), g∗∗ < g∗.

Using Assumption 1 we obtain that Πg(g
∗∗, k∗∗) > Πg(g

∗, k∗). Consequently F1(x∗∗1 , x
∗∗
2 )Π(g∗∗1 ,

k∗∗1 ) = F (x∗∗1 , x
∗∗
2 )Πg(g

∗∗
1 , k

∗∗
1 ) > F (x∗1, x

∗
1)Πg(g

∗
1, k
∗
1) = F1(x∗1, x

∗
1)Π(g∗1, k

∗
1) and 1

2F2(x∗∗1 , x
∗∗
2 )Π(g∗∗1 ,

k∗∗1 ) = F (x∗∗1 , x
∗∗
2 )Πg(g

∗∗
1 , k

∗∗
1 ) > F (x∗1, x

∗
1)Πg(g

∗
1, k
∗
1) = F1(x∗1, x

∗
1)Π(g∗1, k

∗
1). Since Π(g∗∗1 , k

∗∗
1 ) =

Π(g∗∗2 , k
∗∗
2 ) we obtain

F1(x∗∗1 , x
∗∗
2 ) > F1(x∗1, x

∗
2) = F1(x∗1, x

∗
1)

F2(x∗∗1 , x
∗∗
2 ) > 2F2(x∗1, x

∗
2) > F2(x∗1, x

∗
2) = F2(x∗1, x

∗
1).

Lemma 3 implies that x∗∗1 + y∗∗1 < 2x∗1. A contradiction. QED

Proof of Proposition 4 (Evolutionary Stability With Interactions)

The proof in in two parts. In part 1 we show that deviations from serial monogamy to monogamy
increase survivorship of deviators while in part 2 we show that deviations from monogamy to serial
monogamy reduce survivorship of the deviators.

1. Deviations to monogamy in the CS convention
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The problem of a man who deviates to monogamy in the CS convention (and thus faces an almost
entirely serially monogamous population) is to choose x1, g1, k1, R, g2, k2, y3 to maximize his payoff
function θ given by

1

2

{
Π(g1, ĝ)F (x1,mR)+[1−Π(ĝ, k1)]F (x̂1, x̂2)+Π(g2, ĝ)F ((1−m)R, y3)+[1−Π(ĝ, k2)]F (ŷ2, ŷ3)

}
,

subject to ω = x1 + R + y3 + g1 + g2 + k1 + k2 and 0 ≤ x1, R, y3, g1, g2, k1, k2, and where the
terms with a ‘hat’ indicate quantities that are set at the serial monogamy equilibrium values (in
particular, k̂1 = k̂2 = ĝ1 = ĝ2 = ĝ), while m is the food allocation chosen by the woman. Because
all the ‘hat’ quantities are symmetric in first and second period children as in Proposition 1, then
m = 1

2 and the optimal strategies do not depend on whether we consider first period or second
period children.

We therefore focus on first period children only, denoting the corresponding problem with θ[1].
Define the endowment corresponding to this program as w = 1

2ω. We further decompose the
problem θ[1] into two subprograms. First, we solve the optimization problem given a fixed amount
of resources devoted to food provision. Second, given that solution, we look for the optimal amount
of resources to be devoted to food provision. Thus, let the function V : R+×R+→R+ be defined
by

V (w0, z) ≡ Max{g,k}
1

2

{
Π(g, ĝ)z + [1−Π(ĝ, k)]F (x̂1, x̂2)

}
, (A.21)

subject to w0 = g + k and 0 ≤ g, k. Let BM ⊂ R2
+ be the budget set corresponding to program

θ[1], that is

BM =
{

(w0, z) ∈ R2
+|z ≤ F (R/2, R/2), w =

ω

2
= w0 +R, 0 ≤ R

}
.

The second subprogram is then defined by

θ[1] ≡ Max{w0,z}V (w0, z)

(w0, z) ∈ BM .

We also consider the program of the incumbent (i.e., the serial monogamist), which is to choose
w0, z to maximize the payoff function ψ given by

ψ[1] ≡ Max{w0,z}V (w0, z)

(w0, z) ∈ BS

where BS =
{

(w0, z) ∈ R2
+|z ≤ F

(
x1,

x2+ŷ2
2

)
, w = w0 + x1 + x2, 0 ≤ x1, x2

}
is the budget set

corresponding to program ψ[1] and ŷ2 is the food provided to the mother of first period children
by her second period partner. Note that the function V (w0, z) is the same in both subprograms,
while the budget set is different.

The solution to each of the two subprograms θ[1] and ψ[1] is a point (w0, z) that belongs to the
relevant budget set and that lies on the highest indifference curve associated with V . A necessary
condition for (w0, z) to be an interior solution is that the tangent to the indifference curves and
the boundary of the budget sets coincides at this point. The strategy of the proof is to consider

the output zS = F (xS , x
S+yS

2 ) associated with the serial monogamy equilibrium and show that the
point

(
wM0 , zM

)
, for which the tangent to BM and the tangent to indifference curves of V coincide,

lies above the serial monogamy output, that is zM > zS . For this to be true it is sufficient to show
that the tangent to BM at

(
wM0 , zM

)
is steeper than the tangent to the indifference curve of V at

the same point
(
wM0 , zM

)
and that BM is convex.
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Because we know that at the serial monogamy equilibrium the tangent to BS(w0, z) at
(
wS0 , z

S
)

is also the tangent to the indifference curve of V , we need to prove two properties. First, the slope
of the indifference curves associated with V decreases as z remains constant at a given value zP

but w0 increases. Second, the slope of the tangent to BM at
(
wM0 , zM

)
is steeper than the slope to

BS at the original serial monogamy equilibrium
(
wS0 , z

S
)
. These two properties are shown in the

following two lemmas.

Lemma 4. The budget sets BM and BS are both strictly convex. Furthermore, the slope of the
tangent to BM at

(
wM0 , zM

)
is steeper than the slope of the tangent to BS at the original serial

monogamy equilibrium
(
wS0 , z

S
)
.

Proof. The point
(
wM0 , zM

)
satisfies zM = zM

(
wM0

)
where zM (w0) maximizes F

(
R
2 ,

R
2

)
with respect

to R subject to w0 +R ≤ w and 0 ≤ R, or equivalently

zM (w0) = F
(w − w0

2
,
w − w0

2

)
.

At wM0 we have

∂zM

∂w0
= −1

2
F1 −

1

2
F2 = −F1,

where the arguments are as above and the last equality holds because of the symmetry of F (see
Lemma 1). It is also easy to verify that the boundary of BM is strictly convex. Indeed,

∂2zM

∂w0
=

1

2
F11 +

1

2
F12 < 0,

since F is strictly concave, i.e., |F11| > |F12|.
The serial monogamy equilibrium

(
wS0 , z

S
)

satisfies zS = zS
(
wS0 , ŷ2

)
with zS

(
w0, ŷ2

)
being the

solution of the maximization of F
(
x1,

x2+ŷ2
2

)
with respect to x1 and x2 subject to w0 +x1 +x2 ≤ w

and 0 ≤ x1, x2, or equivalently

zS(w0, ŷ2) = Maxx2F
(
w − w0 − x2,

x2 + ŷ2

2

)
. (A.22)

By the envelope theorem we establish that

∂zS

∂w0
= −F1

(
w − wS0 − x2,

x2 + ŷ2

2

)
.

The set BS is strictly convex. Indeed,

∂2zS

∂w0
= F11 + F11

∂x2

∂w0
+

1

2
F12

∂x2

∂w0
= F11 +

(
F11 +

1

2
F12

)
∂x2

∂w0
.

The first order condition associated with (A.22)

Θ(x2, w0) = −F1

(
w − w0 − x2,

x2 + ŷ2

2

)
+

1

2
F2

(
w − w0 − x2,

x2 + ŷ2

2

)
= 0

implicitly defines x2 as a function of w0 and ŷ2. The implicit function theorem then implies that

∂x2

∂w0
= −

∂Θ
∂w0

∂Θ
∂x2

= −
F11 − 1

2F12

F11 − 1
2F12 − 1

2F21 + 1
4F22

= −(< 0)

(< 0)
< 0.
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Furthermore, because of the supermodularity of F , i.e., F21 > 0, we have that
∣∣∣ ∂x2∂w0

∣∣∣ < 1. Therefore,∣∣∣∣F11 +
1

2
F12

∣∣∣∣ < |F11| .

In sum then

∂2zS

∂w0
= F11 +

(
F11 +

1

2
F12

)
∂x2

∂w0
< 0.

The level of w0 associated with the level of output zS depends on whether we consider BM or BS .
Imposing the same level of output, the relevant relationship is

F

(
w − wS0 − x2,

x2 + ŷ2

2

)
= F

(
w − wFM0

2
,
w − wFM0

2

)
= zS ,

which, by concavity of F , implies

w − wM0
2

+
w − wM0

2
< w − wS0 − x2 +

x2 + ŷ2

2
.

Now Lemma 3 implies that

F1

(
w − wS0 − x2,

x2 + ŷ2

2

)
< F1

(
w − wM0

2
,
w − wM0

2

)
(A.23)

and/or

F2

(
w − wS0 − x2,

x2 + ŷ2

2

)
< F2

(
w − wM0

2
,
w − wM0

2

)
. (A.24)

From both (A.23) and (A.24), it is straightforward to see that∣∣∣∣∂zM∂w0

∣∣∣∣ > ∣∣∣∣∂zS∂w0

∣∣∣∣ . �

Lemma 5. The absolute value of slope of the indifference curves associated with V decreases with
w0 as z is kept constant at z = zS .

Proof. Consider the program (A.21) that defines V . Letting k = w0 − g, the associated first order
condition is

∂

∂g
[[Π(g, ĝ)z + [1−Π(ĝ, w0 − g)]F (x̂1, x̂2)] = Πg(g, ĝ)z + Πk(ĝ, w0 − g)]F (x̂1, x̂2).

Applying the implicit function theorem to

Λ(z, w0) = Πg(g, ĝ)z + Πk(ĝ, w0 − g)F (x̂1, x̂2) = 0

we obtain

∂g

∂w0
= −

∂Λ
∂w0

∂Λ
∂g

= − Πkk(ĝ, w0 − g)F (x̂1, x̂2)

Πgg(g, ĝ)z −Πkk(ĝ, w0 − g)F (x̂1, x̂2)
> 0
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Each indifference curve associated to V is defined by a real number c ∈ R+ and the equation

V (w0, z) = c.

Consider a point (w0, z) ∈ R2
+. Let sT denote the slope of the tangent to the indifference curve

passing through (w0, z) and evaluated at this point. Using the envelope theorem this is given by

sT = −
∂V
∂w0

∂V
∂z

= −−Πk(ĝ, w0 − g)F (x̂1, x̂2)

Π(g, ĝ)
.

At the maximum it must be the case that

Πk(ĝ, w0 − g)F (x̂, ŷ) = −Πg(g, ŵ0 − ĝ)z.

Therefore

sT = −Πg(g, ŵ0 − ĝ)z

Π(g, ĝ)

As we have shown above, g increases with w0. Thus, Π(g, ĝ) increases with w0. Furthermore,
Πg(g, ŵ0 − ĝ)z decreases with g since Π is concave in g. Hence, the absolute value of sT decreases
as w0 increases, keeping z constant. �

Lemmas 4 and 5 imply that zM > zS . QED

2. Deviations to serial monogamy in the CM convention

We now analyze the opposite exercise, i.e., a deviation to serial monogamy. Consider the point(
wM0 , zM

)
such that the tangent to BM and the tangent to the indifference curve associated with

V coincide. Of course, the ‘hat’ quantities in V now denote the monogamous equilibrium values.
Because of concavity of F , the w0 associated to the zM is such that w0 < wM0 . From Lemma 4
we know that the absolute value of slope of the tangent to BM decreases as w0 is reduced from
wM0 . On the other hand, Lemma 5 implies that the indifference curves become steeper as w0 falls,
keeping z at zM . This means that at the point (w0, z

M ) ∈ BM the tangent to BS is flatter than
the tangent to the indifference curves. Because of the convexity of the set BS , the point (wS0 , z

S),
where the tangent to the set BS and the tangent to the indifference curves coincide, must lie below
zM , i.e., zS < zM . QED

Proof of Proposition 5 (Polygyny)

Men have an incentive to cheat. We prove Proposition 5 by assuming that polygynists are not
allowed to cheat. The result is thus stronger than what stated in Proposition 5. The program of an
unmatched man is simple, as he spends his entire resource endowment on casual sex. A (matched)
polygyny man who spend g on guarding faces a probability Π(g, ω/4) that the children he feeds are
his. His problem is then to choose x1, g1, R, g2, y3 to maximize his payoff ϑ given by

1

2

{
Π(g1, ω/4)F (x1, m̂R) + Π(g2, ω/4)F ((1− m̂)R, y3)

}
subject to ω/2 = x1 +R+y3 + g1 + g2 and 0 ≤ x1, R, y3, g1, g2, where we assume 0 < m̂ < 1 and, as
usual, the ‘hat’ denotes exogenous parameters. The following first order conditions are necessary
but not sufficient for an interior maximum.

∂ϑ

∂x1
≡ F1(x1, m̂R)Π(g1, ω/4) + λ = 0 (A.25)
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∂ϑ

∂R
≡ m̂F2(x1, m̂R)Π(g1, ω/4) + (1− m̂)F1((1− m̂)R, y3)Π(g2, ω/4) + λ = 0 (A.26)

∂ϑ

∂g1
≡ F (x1, m̂r)Πg(g1, ω/4) + λ = 0 (A.27)

∂ϑ

∂y3
≡ F2((1− m̂)R, y3)Π(g2, ω/4) + λ = 0 (A.28)

∂ϑ

∂g2
≡ F ((1− m̂)R, y3)Πg(g2, ω/4) + λ = 0 (A.29)

∂ϑ

∂λ
≡ x1 +R+ y3 + g1 + g2 − ω/2 = 0 (A.30)

Using F2(x1, m̂R) = F1((1−m̂)R, y3) from the first order condition of the mother’s problem, (A.26)
becomes

F2(x1, m̂R)[m̂Π(g1, ω/4)) + (1− m̂)Π(g2, ω/4)] + λ = 0.

From now on we focus on fixed point values and, as in the monogamous case, we consider only
interior equilibria so that x1 = y3, m = 1/2, g1 = g2 = g, and x1 = x2 = y2 = y3 = R/2. Using
these values, the system (A.25)–(A.30) allows us to solve for the equilibrium value of R given by

F1(R/2, R/2)Π(ω/4−R,ω/4)− F (R/2, R/2)Πg(ω/4−R,ω/4) = 0. (A.31)

Recall that the relevant expression determining RM for monogamous males is

F1(RM/2, RM/2) Π(ω/4−RM/2, ω/4−RM/2)−F (RM/2, RM/2)Πg(ω/4−RM/2, ω/4−RM/2) = 0.

(A.32)

Assume by contradiction that F (RM/2, RM/2) < F (R/2, R/2), or equivalently RM < R. Under
this inequality, using (A.31) and (A.31) we conclude

F1(RM/2, RM/2)Π(ω/4−RM/2, ω/4−RM/2)

Πg(ω/4−RM/2, ω/4−RM/2)
<
F1(R/2, R/2)Π(ω/4−R,ω/4)

Πg(ω/4−R,ω/4)
.

Assumption 1(v) implies that Πg(g, k) = P ′
(

g
g+k

)
k

(g+k)2
. Then Π(ω/4−RFM/2, ω/4−RFM/2) =

P
(

1
2

)
> P

(
ω/4−R
ω/2−R

)
, as P is increasing. This, together with the concavity of F , implies

F1(RM/2, RM/2)Π(ω/4−RM/2, ω/4−RM/2) > F1(R/2, R/2)Π(ω/4−R,ω/4).

Therefore, we must have Πg(ω/4 − RFM/2, ω/4 − RFM/2) > Πg(ω/4 − R,ω/4). Provided P is

concave in the region
[
ω/4−R
ω/2−R ,

1
2

]
, then

1

ω − 2RF
>

ω/4

(ω/2−R)2 =
ω

(ω − 2R)2 .

Recalling that by assumption R > RF , we obtain 2ω > 4ω − R which implies R > 2ω. A
contradiction. QED

Proof of Proposition 6 (Kinship)
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We adopt the use functional specifications as those used in the example reported in subsection 4B.
We begin with the characterization of the problems in the monogamy convention and then turn to
the serial monogamy convention. The comparison is for such two conventions only.

Monogamy

Adult Woman. Taking into account that her second period children may receive food from their
older brothers, denoted by b̂, a woman chooses m to maximize

x̂α1 (m(x̂2 + ŷ2))α + E
{

[(1−m)(x̂2 + ŷ2)]α (ŷ3 + b̂)α
}
. (A.33)

The expectation operator E[·] in (A.33) arises because older brothers might not survive to adult-
hood, and this means b̂ = 0. Letting x̂2+ŷ2 = ẑ2, the woman’s objective is to choose m to maximize

mα(x̂1ẑ2)α + (1−m)αẑα2 E
[
(ŷ3 + b̂)α

]
. (A.34)

As food can be supplied only by men, the sex of a child matters. In order to keep a balanced sex
ratio and avoid useless complications, every couple is assumed to give birth to an equal number
of boys and girls in each period. Siblings’ birth order also matters now, so that the optimization
problem faced by older males will differ from that faced by their younger brothers. This is because
older children, when adult, can support their younger siblings but not vice versa. Rearranging
(A.34), the female’s problem becomes that of choosing m∈(0, 1) to maximize

mα(x̂1ẑ2)α + (1−m)αẑα2

[
mαx̂α1 ẑ

α
2 (ŷ3 + b̂)α + (1−mαx̂α1 ẑ

α
2 )ŷα3

]
.

The first order necessary condition for an interior solution is then(
m

1−m

)α−1

x̂α1 − ŷα3 −mα−1(2m− 1)
{
x̂α1 (x̂2 + ŷ2)α

[
(ŷ3 + b̂)α − ŷα3

]}
= 0. (A.35)

The implicit equation (A.35) gives all equilibrium candidates to interior maxima. As in the case
without kin ties, however, there are always two other inefficient non-interior solutions, in which
males and females choose x1 = 0 and m= 0 or y3 = 0 and m= 1, which are ignored. Finally, we
numerically checked that for the values of the exogenous variables evaluated at the fixed point,
i.e., the candidate Nash equilibrium, the solution to (A.35) delivers the global maximum for the
mother.

Elder Male. Taking account of the possibility that his younger children might receive food transfers
from his older children and letting x2+y2 =z2, the elder male’s program is to choose g1, k1,g2, k2, x1, z,
y3 and b to maximize

1

2
Π(g1, k̂1)(x1m̂z2)α +

1

2
Π(g2, k̂2) [(1− m̂)z2]α

[
x̂1m̂z(y3 + b̂)

]α
+

1

2
Π(g2, k̂2) [(1− m̂)z2]α (1− x̂α1 m̂αzα2 ) yα3 +

1

2
[1−Π(ĝ1, k1)] (x̂1m̂ẑ2)α

+
1

2
[1−Π(ĝ2, k2)] [(1− m̂)ẑ2]α (x1m̂z2)α(ŷ3 + b̂)α (A.36)

+
1

2
[1−Π(ĝ2, k2)] [(1− m̂)ẑ2]α [1− x̂α1 m̂αẑα] ŷα3

+
1

4

[
(1 + Π(ĝ1, k̂1)Π(ĝ2, k̂2)

]α
[(1− m̂)ẑ2]α (ŷ3 + b)α
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subject to 2 = g1 +x1 + g2 + z2 +y3 +k1 +k2 + b and 0 ≤ x1, z2, g1, g2, k1, k2, y2, y3, b and taking
ĝ1, ĝ2, k̂1, k̂2, ẑ2, ŷ3, m̂ and b̂ as given. Note that the transfer b only appears in the budget constraint
and in the last term of the objective function (A.36). The problem faced by younger males is similar
to that discussed in Sections 2 and 3.

We first ignore the sign constraints on all the control variables, allowing us to focus on interior
solutions, and check afterward that these are positive. Here we focus on the first order conditions
relative to the kin transfer. Eliminating g1 and letting A= 2 − (x1 + g2 +z2 +y3 +k1 +k2 +b), the
first order condition with respect to b is

αyα1 (m̂ẑ2)α
(

A

A+ k̂1

)α−1 k̂1

(A+ k̂1)2
=
α

2

[
1 + Π(ĝ1, k̂1)Π(ĝ2, k̂2)

]
(1− m̂)α(ŷ3 + b)α−1 (A.37)

The issue is to evaluate the sign of the transfer b the agent would like to make at the fixed point.
As a preliminary step, consider (A.37) and evaluate this expression at the equilibrium without kin
transfers, as derived in subsection 4B. As this fixed point is characterized by g1 = g2 = k1 = k2 =
1/6, x1 =y3 =1/3, z2 =x2+y2 =2/3 and m=1/2, we obtain(

1

3

)α(1

2

)α( 1/6

1/6 + 1/6

)α−1 1/6

(1/6 + 1/6)2
=

1

2

[
1 +

(
1

2

)2α
](

1

2

)α(1

3
+ b

)α−1

It can be verified that, for b = 0, the right-hand is larger than the left-hand term for any α∈(0, 1
2).

Therefore, we expect the unconstrained interior fixed point to be characterized by b > 0 and
consequently the kin transfers to be operative even in the original constrained model.

The full characterization of the equilibrium with positive kin transfers is analytically not pos-
sible. We perform a numerical analysis using a two-step optimization procedure. Codes of the
algorithms are in C++ and are available at <http://privatewww.essex.ac.uk/ ∼cghig/#material>.
The first step consists of a constrained optimization algorithm associated with the maximization
problem faced by each agent. The elder man solves his problem taking ĝ1, ĝ2, k̂1, k̂2, x̂1, ẑ2, ŷ3, m̂
and b̂ as given. The solution is a vector {g∗1, x∗1, g∗2, k∗1, k∗2, z∗2 , y∗3, b∗} in which each component is

a function of {ĝ1, ĝ2, k̂1, k̂2, x̂1, ẑ2, ŷ3, m̂, b̂}. The mother’s optimal allocation rule, m∗, is instead
obtained using the secant algorithm, as a root of the implicit equation (A.35). The second step
uses an evolutionary algorithm which iteratively finds the fixed point in actions of the problem
by minimizing the difference between the proposed solution to the problem and the other agents’
actions. More precisely, the second step consists of minimizing the Euclidean distance between
{ĝ1, x̂1, ĝ2, k̂1, k̂2, ẑ2, ŷ3, b̂, m̂} and {g∗1, x∗1, g∗2, k∗1, k∗2, z∗2 , y∗3, b∗,m∗}, by choosing the ‘hat’ variables.

The equilibrium is a fixed point, which occurs when ĝ1 = g∗1, x̂1 = x∗1, ĝ2 = g∗2, k̂1 = k∗1, k̂2 = k∗2,

ẑ2 = z∗2 , ŷ3 = y∗3, b̂= b∗, and m̂=m∗, with the equilibrium allocations depending on the parameter
α. Finally, we checked numerically that the solution to the first order conditions is the global
maximum of the problem with sign constraints. Therefore, the ∗ fixed point is the unique interior
Nash equilibrium.

Serial Monogamy

In this configuration second-born children may receive transfers from the older half-brothers on the
maternal side, denoted by bM , as well as from the older half-brothers on the paternal side, bF . Let
b =bM+bF .

Adult Woman. As a mother can only affect survivorship of her own children, and not that of her
nieces and nephews, her choice of m can only affects the probability of her second period children
receiving a transfer from her first period children, bM . Her objective is then to maximize

mα(x̂1ẑ2)α + m̂αx̂α1 ẑ
α
2 (1−m)αẑα2

[
mαx̂α1 ẑ

α
2 (ŷ3 + b̂M + b̂F )α + (1−mαx̂α1 ẑ

α
2 )(ŷ3 + b̂F )α

]
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+[1− m̂αx̂α1 ẑ
α
2 ](1−m)αẑα2

[
mαx̂α1 ẑ

α(ŷ3 + b̂M )α + (1−mαx̂α1 ẑ
α
2 )(ŷ3)α

]
A solution to this optimization exists and is a function of the parameters exogenous to the mother’s
decision.

Elder Male. Taking account of the possibility that his younger children might receive food transfers
from their older brothers, his problem is to choose g1, x1, k1,g2, x2, y2, k2, y3, bM and bF to maximize

1

2
Π(g1, k̂1)xα1 (m̂(x2 + ŷ2))α +

1

2
Π(g2, k̂2) [(1− m̂)(x̂2 + y2)]α x̂α1 m̂

α(x̂2 + y2)α(y3 + b̂M + b̂F )α

+
1

2
Π(g2, k̂2) [(1− m̂)(x̂2 + y2)]α [1− x̂α1 m̂α(x̂2 + y2)α]y3

α +
1

2
[1−Π(ĝ1, k1)] x̂α1 [m̂(x̂2 + ŷ2)]α

+
1

2
[1−Π(ĝ2, k2)] [(1− m̂)(x̂2 + ŷ2)]α xα1 [m̂(x̂2 + ŷ2)]α (ŷ3 + b̂M + b̂F )α

+
1

2
[1−Π(ĝ2, k2)] [(1− m̂)(x̂2 + ŷ2)]α [1− x̂α1 m̂α(x̂2 + ŷ2)α] ŷα3

+
1

4
[(1− m̂)(x̂2 + ŷ2)]α (ŷ3 + bM + b̂F )α

+
1

4
Π(ĝ1, k̂1)Π(ĝ2, k̂2) [(1− m̂)(x̂2 + ŷ2)]α (ŷ3 + b̂M + bF )α

subject to 2=g1+x1+g2+x2+y2+y3+k1+k2+bM+bF and 0≤x1, x2, g1, g2, k1, k2, y2, y3, bM , bF . The
first order conditions for this problem are formally identical to those without kin ties, except those
relative to bM and bF . Eliminating g1 and letting A=2− (x1+ g2+x2+y2+y3+k1+k2+bM+bF ),
the first order conditions with respect to bM and bF are respectively given by

Q =
α ((1− m̂)(x̂2 + ŷ2))α

2

(
ŷ3 + bM + b̂F

)α−1
(A.38a)

Q =
1

2
αΠ(ĝ1, k̂1)Π(ĝ2, k̂2) ((1− m̂)(x̂2 + ŷ2))α (ŷ3 + b̂M + bF )α−1, (A.38b)

whereQ=αxα1 [m̂(x2+ŷ2)]α
(

A

A+k̂1

)α−1
k̂1

(A+k̂1)2
. Proceeding as in the monogamous case, we evaluate

(A.38a) and (A.38b) at the equilibrium without kin transfers, which is g1 =g2 =k1 =k2 =1/5, x1 =
y3 =2/5, x2+y2 =2/5 and m=1/2 (see subsection 4B), and obtain(

2

5

)α( 1/5

1/5 + 1/5

)α−1 1/5

(1/5 + 1/5)2
=

1

2

(
2

5
+ bM + b̂F

)α−1

and (
2

5

)α( 1/5

1/5 + 1/5

)α−1 1/5

(1/5 + 1/5)2
=

1

2

(
1/5

1/5 + 1/5

)2α(2

5
+ b̂M + bF

)α−1

.

It easy to verify that at b̂M + bF = bM + b̂F = 0 the right-hand terms of these last two expressions
are both smaller than the left-hand side term. Therefore, the optimal transfers that the older male
would like to make is negative, at least when everybody else behaves as in the equilibrium without
kinship. Hence, kin transfers are never positive. In fact, we checked numerically that the solution
to the first order conditions when bM = bF = 0 is a global maximum of the problem with sign
constraints. Hence, the unique interior Nash equilibrium is as stated. QED

Proof of Proposition 7 (Food Provision by the Mother)
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A key feature of the model is that the mother has full control over distribution of resources to her
children. As long as this feature is retained, whether or not she has resources of her own does
not matter. Assume the woman has a given stream of food endowment in her three adult periods,
denoted by µ1, µ2 and µ3 respectively. The optimization program of the mother is then to choose
z2 to maximize

1

2

[
F (x̂1 + µ1, z2) + F (W − z2, ŷ3 + µ3)

]
,

subject to 0 ≤ z2 ≤ W = R̂ + µ2, where (x̂1, R̂, ŷ3) are the amounts of food she receives from
her official partner(s) and z2 is the amount of food she distributes to her first period children in
the period 2. Because of strict concavity of F , the solution is unique. The first order necessary
condition associated to an interior solution is

F2(x̂1 + µ1, z2) = F1(W − z2, ŷ3 + µ3).

In this case we denote the solution as z2 = m(R̂ + µ2), where 0 < m < 1. Now, because of the
symmetry of F , if x̂1 + µ1 = ŷ3+µ3 then m = 1/2.

Let the food allocations that take account of the mother’s contribution be denoted by x̃1 =x1+µ1,
µ̃=R+µ2, and ỹ3 =y3+µ3. Let also µ =

∑3
t=1 µt. The budget constraint of the monogamous man

becomes

ω + µ = g1 + k1 + x̃1 + µ̃+ ỹ3 + g2 + k2,

while that of the serial monogamous males is

ω + µ = g1 + k1 + x̃1 + x2 + y2 + µ2 + ỹ3 + g2 + k2

Allowing the mother to be food provider modifies the original problems for CM , CS , CP , and CG
only through additive changes in the variables. Hence, the first order conditions do not change. As
an example, consider CS . For this case, we have

m∗∗F2(x̃∗∗1 ,m
∗∗(x∗∗2 + y∗∗2 + µ2)) = (1−m∗∗)F1(m∗∗(x∗∗2 + y∗∗2 + µ2), ỹ∗∗3 )

and

F2(x̃∗∗1 ,m
∗∗(x∗∗2 + y∗∗2 + µ2)) = F1(m∗∗(x∗∗2 + y∗∗2 + µ2), ỹ∗∗3 ),

which, as in the original problem, leads to m∗∗ = 1/2. Similar results hold for the other family
conventions. Therefore, the results and properties reported in the text carry over with ω being
replaced by the total resources allocated to food, ω + µ, and provided the solution is interior.
Focusing on interior solutions means not only that 0 < m < 1 but also ensure that all transfers
from the father(s) are positive. A sufficient condition for this to hold is that the mother’s own
endowments are small relative to ω. Importantly, in CS , as long as R̂>0 there will always be free
riding between two competing men and, although the solution might be such that children from
different cohorts are not treated symmetrically in equilibrium, the results here are qualitatively the
same as those found earlier. QED

A Class of Functions Satisfying Assumption 1

The set of functions Π : R+×R+ → R+ that satisfy Assumption 1 is non-empty and contains open
and dense subsets in the appropriate topology. For example, consider

P (z) =
1

2

[
zα − (1− z)α + 1

]
where α ∈ (0, 1/2). In this case, it is easily verified that Π satisfies Assumption 1 for all α ∈ (0, 1/2).
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