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Abstract

Citation indices are regularly used to inform critical decisions about promotion,
tenure, and the allocation of billions of research dollars. Despite their importance,
a systematic development is lacking. Instead, most indices (e.g., the h-index) are
motivated by intuition and rules of thumb, often leading to undesirable conclusions.
We take an axiomatic approach and are led to an essentially unique new index that
has a simple functional form and avoids several critical shortcomings of the h-index
and its successors. Our analysis includes a consistent methodology for adjusting for
differences in field, ages of papers, scientific age, and the number of authors.

Keywords: citation indices, axiomatic, scale invariance

1. Introduction

Citation indices attempt to provide useful information about a researcher’s publication record

by summarizing it with a single numerical score. They provide government agencies, de-

partmental committees, administrators, faculty, and students with a simple and potentially

informative tool for comparing one researcher to another, and are regularly used to inform

critical decisions about funding, promotion, and tenure. With decisions of this magnitude

on the line, it is surprising that a systematic development of such indices is almost entirely

lacking. We provide such a development here, one that, surprisingly perhaps, leads to an

essentially unique new index.1

∗We wish to thank Pablo Beker, Faruk Gul, Glenn Ellison, Sergiu Hart, Andrew Oswald, Herakles Pole-
marchakis, and Debraj Ray for helpful comments and we gratefully acknowledge financial support as follows:
Perry, from the ESRC (ES/K006347/1) and Reny, from the National Science Foundation (SES-0922535,
SES-1227506).
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1Clearly, reducing a research record to a single index number entails a loss of information. Consequently,

no single index number is intended to be sufficient for making decisions about funding, promotion etc. It is
but one tool among many for such purposes. But it is enough to hold the view that no tool should move one
toward unsound or inconsistent decisions and it is this principle that forms the basis of our analysis.



Perhaps the best-known citation index beyond a total citation count is the h-index, see

Hirsh (2005). A researcher’s h-index is defined to be the largest number, h, of his/her

papers, each of which has at least h citations. By design, the h-index limits the effect of a

small number of highly cited papers, a feature which, though well intentioned, can produce

intuitively implausible rankings. For example, consider two researchers, one with 10 papers,

each with 10 citations (h-index = 10), and another with 8 papers, each with 100 (or even

1000) citations (h-index = 8).

Improvements to the h-index have been suggested. Consider, for example, the g-index

(Egghe 2006a, 2006b), which is the largest number of papers, g, whose total sum of citations

is at least g2. The g-index is intended to correct for the insensitivity of the h-index to the

number of citations received by the h papers with the most citations. Many other variations

have been suggested since. Yet, like the h-index, they are ad hoc measures based almost

entirely on intuition and rules of thumb with insufficient justification given for choosing them

over the infinitely many other unchosen possibilities. But for a novel empirical approach to

selecting among a new class of h-indices, see Ellison (2012, 2013).2

A formal way to find a good index is to take an axiomatic approach. The methodology of

this approach is to first select, with care, a number of basic properties that any acceptable

index must have. Restricting attention only to indices that satisfy all of these properties

is a systematic way of narrowing down the set of potential indices. The advantage of this

approach is that it focuses attention on the properties that an index should possess rather

than the functional form that it should take. After all, it is the properties we desire an index

to possess that should determine its functional form, not the other way around.

The approach adopted here is distinct from the literature’s common exercise of axioma-

tizing a given pre-existing index function (e.g, Queseda, 2001; Woeginger, 2008a and 2008b;

and Marchant, 2009a).3 The aim of this latter exercise is to begin with a previously known

index function, e.g., the h-index, and identify a set of properties that only that index can

satisfy. The given index is then characterized by these properties. While this exercise can

usefully identify an index’s previously unknown properties, both good and bad, it is not de-

signed to correct any inherent flaws. To find a good index one should instead first begin with

well-chosen properties and then allow those properties to lead one to the index, whatever it

may turn out to be.

Our goal is to provide a method for comparing one citation list to another in the most

2Ellison (2013) introduces the following class of generalized Hirsch indices. For any a, b > 0 and for
any citation list, h(a,b) is defined to be the largest number h such that at least h papers have at least ahb

citations. Ellison estimates a and b so that h(a,b) gives the best fit in terms of ranking economists at the top
50 U.S. universities in a manner that is consistent with the observed labor market outcome.

3An exception is Marchant (2009b) where the consequences of a number of axioms are nicely worked out,
even though most are not put forward as necessary for a good index.
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basic sense of determining which list among any two is “better” than the other. Thus, the

index theory developed here is ordinal. In particular, we do not attempt to say how much

better one citation list is than another.

Also, our index is intended to judge an individual’s record as it stands. It is not intended

as means to predict future output. If a prediction of future output is important to the

decision at hand (as in tenure decisions, for example) then separate methods must first be

used to obtain a predicted citation list to which our index can then be applied (see also the

discussion in Section 6.1).4

An important issue to consider for any index, is how it should be adjusted to adequately

compare individuals with different characteristics, e.g. differences in field of study, scien-

tific age, etc. A variety of adjustment methods have been proposed for the various indices

within the literature (e.g., Hirsch, 2005; Van Noorden, 2013; and Kaur et. al., 2013). When

an index provides only ordinal information, such adjustments, if not carried out very care-

fully, can lead to inconsistencies. Take, for example the online tool called “Scholarometer”

(http://scholarometer.indiana.edu/). The purpose of this tool is to make it simple and con-

venient for practitioners to correct for disciplinary biases when conducting citation analyses

whose objective is to rank scholars across fields. This tool relies on queries made through

Google Scholar and normalizes a given scholar’s h-index by dividing it by the average h-index

within this scholar’s field. This normalized h-index is then used to compare any two scholars,

regardless of their field. In Section 4 we illustrate why such an approach is problematic and

offer a more consistent methodology for correcting for differences in characteristics (such as

field of study).

Related to the issue of ranking scholars is the issue of ranking scholarly journals (e.g.,

Palacios-Huerta and Volij, 2004 and 2014). But there is an important distinction. Because

journal indices are typically used to translate citations and/or publications from distinct

journals into a common currency, such indices must be cardinal in nature to be useful. In

contrast, most indices that rank scholars are ordinal in nature because there is no funda-

mental distinction between them and any of their monotonic transformations. We expand

upon these points in Section 4.

A matter of some technical interest is that the theory we develop here takes seriously the

fact that citation lists are vectors of integers. Consequently, the space on which our index is

defined is not connected and so otherwise standard results on when a binary relation has a

representation with a particular functional form (e.g., results on additive separability as in

Debreu (1960) are not directly applicable).

We next list four basic properties that, in our view, every good index should possess. It

4We thank Glenn Ellison for helpful discussions on this point.
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is best to think of these basic properties as pertaining to citation lists whose cited papers

differ only in their number of citations but otherwise have common characteristics, e.g., are

published in the same year, in the same field of study, even in the same journal, and have

the same number of authors, etc. One of the four properties, “scale invariance,” is motivated

with an eye toward the adjustments for differences in characteristics that will be considered

in Section 4.

There is an essentially unique index that possesses the properties below. This new index

has a simple functional form and is distinct from the h-index and all its successors.

2. Four Properties for Citation Indices

Citation indices work as follows. First, an individual’s record is summarized by a finite list

of citations, typically ordered from highest to lowest, so that the i-th number in the list is

the number of citations received by the individual’s i-th most highly cited paper. The list of

citations is then operated upon by some function to produce the individual’s index number.

In Section 4.2, we argue that one must sometimes rescale one individual’s citation list to

adequately compare it to another individual’s list (for example, when the two individuals

are from different fields).5 Consequently, one must be prepared to consider noninteger lists.

Moreover, because the scaling factors will always be rational numbers, our domain of study

is the set L consisting of all finite lists of nonnegative rational numbers ordered from highest
to lowest. Any element of L is called a citation list.6

A citation index is any continuous function, ι : L→ R, that assigns to each citation list
a real number, where continuity means that for any citation list x, if a sequence of citation

lists x1, x2, ... each of whose length is the same as the finite length of x, converges to x — in

the Euclidean sense — then ι(x1), ι(x2), ... converges to ι(x).7

Consider now the following four properties. A short discussion of them follows.

1. Monotonicity (MON) For any citation list there is a positive integer m — which can

depend on the list — such that the value of the index does not decrease if either, a new

paper with m citations is added to the list, or any existing paper in the list receives

any number of additional citations.

5And we also explain (in Section 4.1) why any adjustments should be made to the citation lists themselves
and not to the index function.

6No non-singleton subset of L is connected. While this presents some difficulties, the end result is a
theory that takes seriously the integer nature of citations.

7Note that the index is continuous only on the rationals — it is not even defined on the reals. In general,
such functions cannot be extended from the rationals to the reals in a continuous manner without additional
assumptions.
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2. Independence (IND) The index’s ranking of two citation lists must not change if a new

paper is added to each list and each of the two new papers receives the same number

of citations.

3. Depth Relevance (DR) There exist a citation list and a positive integer k such that,

starting from that list, the index increases by more if one paper with k citations is

added than if k papers with one citation each are added.

4. Scale Invariance (SI) The index’s ranking of two citation lists must not change when

each entry of each list is multiplied by any common positive rational scaling factor.

The first property, monotonicity, is self-explanatory and hardly seems to require further

justification. Indeed, as far as we are aware, it is satisfied by all indices.

The second property, independence, is natural given that our index is intended to compare

the records — as they currently stand — of any two individuals. It says, in particular, that a

tie between two records cannot be broken by adding identical papers to each record.8 The

h-index fails to satisfy independence since its ranking of two citation lists can be reversed

after adding identically cited papers to each of the two lists.

The third property, depth relevance, is satisfied by the vast majority of indices that we are

aware of with the exception, of course, of the total citation count. When it is not satisfied,

then for any total number of citations, one maximizes the value of one’s index by spreading

those citations as thinly as possible across as many publications as possible.

When comparing individuals in fields whose average numbers of citations differ, one must

rescale the citation lists so that they can be compared (see Section 4.2). The fourth property,

scale invariance, ensures that the final ranking of the population is independent of whether

the lists are scaled down relative to the disadvantaged field or scaled up relative to the

advantaged field. Because the h-index is not scale invariant it can, in particular, reverse the

order of individuals in the same field when their lists are adjusted to account for differences

across fields (see Example 4.2 in Section 4.3).

3. The main result

Call two citation indices equivalent if they always agree on the ranking of any two citation

lists. For example, any index is equivalent to the index that assigns to each citation list the

cube of the value assigned by the original index. We can now state our main result, whose

proof is in the appendix.

8If one’s aim were instead to use the current record to predict future output, then, as Glenn Ellison
pointed out to us, adding identical papers can easily break a tie. See Section 6.1 for an example of how our
index should be used when future output is of interest.
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Theorem 3.1. A citation index satisfies properties 1-4, if and only if it is equivalent to the

index that assigns to each citation list (x1, ..., xn), the number,#
n[
i=1

xσi

$1/σ
,

where σ is some fixed number strictly greater than one.9

According to the theorem, properties 1-4 determine the index (more precisely, its equiv-

alence class) up to the single parameter σ > 1. For a rationale for restricting σ to values no

greater than 2 see Section 5. Next, we discuss the interpretation of this important parameter.

The value of our index can increase in two different ways: when an existing paper receives

more citations — in which case we will say that the list becomes deeper — and when a new

paper is added to the list — in which case we will say that the list becomes longer. The

parameter σ measures the extent to which depth is considered more important than length.

At the one extreme in which σ approaches its lower bound of 1, depth and length are

equally important and citation lists are ranked according to their total citation count. At

the other extreme in which σ becomes unboundedly large, citation lists are ranked according

to which list is lexicographically higher and depth becomes infinitely more important than

length.

In general, changes in both the depth and the length of a citation list affect its index value

and the parameter σ determines the depth/length trade-off. Specifically, each σ% decrease

in a citation list’s length (i.e., for each k, a σ% decrease in the number of papers with k

citations) requires a 1% increase in its depth (i.e., a 1% increase in each paper’s number of

citations) to restore the index to its original value. That is, σ is the elasticity of substitution

of length for depth.10 In particular, the higher is σ the more weight the index places on

depth.

Additional intuition for σ is obtained by noting that it is characterized by the answer to

the following question.

“For what value of λ ∈ (1, 2) would two papers, each with k citations, be considered
equivalent to one paper with λk citations?”

9This index, being in units of citations and homogeneous of degree one, may be more convenient in
practice than the equivalent index,

Sn
i=1 x

σ
i . Moreover, as defined, our index coincides with the lσ norm

from classical mathematical analysis, which is certainly an interesting happenstance.
10For any citation list x, define v(d, l) := (l

S
i(dxi)

σ)
1
σ . Then, changes in d correspond to changes in the

list’s depth and changes in l correspond to changes in the list’s length. The index’s elasticity of substitution
of length for depth is dl

∂v/∂d
∂v/∂l = σ.
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The answer, of course can be different for different decision-makers. However, if λ∗ is

one’s answer to this question, then the implied value of σ is ln 2/ lnλ∗. So, for example if two

papers each with 100 citations are considered equivalent to one paper with 140 citations, then

the implied value of σ is approximately 2, while if they are instead equivalent to one paper

with 160 citations, the implied value of σ is approximately 3/2. Thus, a value of σ between

3/2 and 2may be suitable for most applications (again, see Section 5 for an argument leading

to a value of σ no greater than 2).

3.1. An Implied Property

Properties 1 through 4 alone completely determine, up to the parameter σ > 1, the ordi-

nal properties of the index. However, we wish now to point out a particularly interesting

subsidiary property that holds as a consequence.

Consider two individuals, X and Y whose respective citations lists are x1 ≥ ... ≥ xn

and y1 ≥ ... ≥ yn, where we have added 0’s if necessary to make the lists equal in length.
Suppose that the two lists are related as follows.

x1 ≥ y1
x1 + x2 ≥ y1 + y2

...

x1 + ...+ xn ≥ y1 + ...+ yn

(1)

That is, individual X’s most cited paper has at least as many citations as Y ’s most cited

paper, and X’s two most cited papers have at least as many total citations as Y ’s two most

cited papers, ..., and X has at least as many total citations as Y. It would seem rather

difficult to argue that individual Y should be ranked above individual X. Yet, with the h-

index, individual Y can easily be ranked above X (e.g., if X has one paper with 100 citations

and Y has two papers each with 2 citations). In contrast, we have the following result.

If the citation lists of two individuals, X and Y are related as in (1), then any index

satisfying properties 1-4 must rank individual X at least as high as individual Y, and must

rank X strictly above Y if any of the inequalities in (1) is strict.

Note well that the result makes no mention of any particular value of σ. Indeed, in view

of our Theorem, an equivalent way to state the result is to say that, for any value of σ > 1,#
n[
i=1

xσi

$1/σ
≥
#

n[
i=1

yσi

$1/σ
, (2)

whenever (1) holds, and the inequality is strict if any of the inequalities in (1) is strict (see
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Hardy et al., 1934). Thus, whenever two candidate’s lists are ranked as in (2), decision-

makers who wish to satisfy properties 1-4 can safely rank X above Y without settling on a

particular value of σ.

4. Adjusting for different characteristics

It is well understood that it can be inappropriate to compare the citation index values of

two individuals who differ in important characteristics such as field of study, scientific age,

ages of papers, the number of authors, etc. To make such comparisons meaningful, their

indices should be adjusted. In this section, we provide a consistent method for making such

adjustments and we apply this method to our index. But before doing so, we must discuss

the problems that can arise, due to the ordinal nature of the index, if one is not sufficiently

careful in how the adjustments are made. This point is important because many widely

adopted adjustment procedures have not been created with sufficient care.

4.1. Problems with adjusting any ordinal index

If one’s index is ordinal, then there is no distinction between that index and any of its

monotone transformations. Consequently, if some procedure is used to adjust the index in

order to rank individuals with different characteristics, then, absent an argument tying the

procedure to that particular index, applying the procedure instead to a monotone transfor-

mation of the index should produce the same ranking of the population. But commonly used

practical methods fail to satisfy this important principle.

For example, consider the online citation analysis tool “Scholarometer”

(see http://scholarometer.indiana.edu), whose popularity for computing and comparing the

h-indices of scholars across disciplines seems to be growing. Scholarometer implements the

h-index adjustment in Kaur et. al. (2013), who suggest dividing a scholar’s h-index by the

average h-index in his/her field. This produces, for each scholar, an adjusted h-index, called

the hs-index, that is then used to compare any two scholars in the population, regardless

of field. The following example shows, however, that the final ranking of the population

depends on the particular representation of the h-index that is employed.

Example 4.1. There are two mathematicians, M1 and M2, and two biologists, B1 and

B2, with each individual representing half of his field. Their h-indices are 2, 8, 7 and 27,

respectively so that their ranking according to the raw h-index is

M1 ≺ B1 ≺M2 ≺ B2,
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where ≺ means “is ranked worse than.” To compare mathematicians to biologists using

Scholarometer’s method, we must divide each of the mathematician’s indices by their field’s

average ((2 + 8)/2 = 5) and we must divide each of the biologist’s h-indices by their field’s

average ((7+ 27)/2 = 17). The resulting adjusted indices, hs, are respectively, 0.4, 1.6, 0.41,

and 1.58, producing the final adjusted ranking,

M1 ≺ B1 ≺ B2 ≺M2. (4.1)

But suppose that, instead of starting the exercise with the h-index, we start with the

monotonic transformation h∗ = h +
√
h. The h∗-indices of M1,M2, B1, and B2 are, respec-

tively, 2 +
√
2, 8 +

√
8, 7 +

√
7, and 27 +

√
27, i.e., 3.4, 10.8, 9.6, and 32.2. Hence, their

ranking according to the raw h∗-index is,

M1 ≺ B1 ≺M2 ≺ B2,

which is, of course, the same as the ranking from h because h∗ is ordinally equivalent.

However, if for h∗ we apply Scholarometer’s adjustment procedure and divide each indi-

vidual’s h∗-index by the average h∗ in his/her field (i.e., divide the mathematicians’ h∗-indices

by 7.1 and divide the biologists’ by 20.9), then the final adjusted ranking becomes,

B1 ≺M1 ≺M2 ≺ B2. (4.2)

Comparing (4.1) with (4.2), we see that the ranking of M1 and B1 and of M2 and B2
depend on which of the ordinally equivalent indices h or h∗ that one begins with. Absent a

compelling argument for choosing one over the other, one must conclude that this adjustment

procedure is not well-founded.

Pushing the example a little further shows in fact that the general procedure of rescaling

indices to adjust for different fields — and not merely Scholarometer’s particular rescaling

method — is not well-founded. This is because rescaling the indices in one field relative

to those in another can produce a ranking that is impossible to obtain with an ordinally

equivalent index no matter how the fields’ equivalent indices are rescaled relative to one

another.11

The adjustment employed in the example is typical of those employed in practice and in

the large literature on citation indices when comparisons between individuals with distinct

characteristics are desired. Such adjustments tend to be applied to a particular index without
11Indeed, the ranking in (4.1) is impossible to obtain through any relative rescaling of the mathematicians’

and the biologists’ h∗ indices because there is no λ > 0 such that λ(2 +
√
2) < (7 +

√
7) < (27 +

√
27) <

λ(8 +
√
8).
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regard to whether that adjustment would produce a different ranking were it applied to

an ordinally equivalent index. What is required is a general methodology for making the

necessary adjustments while respecting the ordinal nature of the index.

Fortunately, there is a simple way to ensure ordinally consistent adjustments, namely,

by adjusting the citation lists, not the index. If one adjusts the citation lists to account for

differences in characteristics, then the final ranking of any two individuals will be the same

whether to those adjusted citation lists one applies a given index or any one of its monotonic

transformations.

In the remaining subsections, we discuss how to adjust individual citation lists to take

into account differences in a variety of characteristics.

4.2. Differences in fields and in the ages of papers

It is well-known that some fields are cited significantly more often than others (even within

the same discipline), and that older papers typically have more citations than younger papers.

It is therefore important to adjust the lists to take these differences into account.

In Radicchi et al. (2008), a convincing case is made that the appropriate way to adjust

for these differences is to divide, for any given year t, each entry in an individual’s citation

list that was published in year t — call this a year-t paper — by the average number of citations

of all the year-t papers in that individual’s field.

In Figure 1 below, we reproduce Figure 1 in Radicchi et. al. (2008), showing normalized

(relative to the total number of citations) histograms of unadjusted citations received by

papers published in 1999 within each of 5 fields out of 20 considered. The main point of

this figure is to show that the distributions of unadjusted citations differ widely across fields.

For example, in Developmental Biology, a publication with 100 citations is 50 times more

frequent than in Aerospace Engineering. However, after adjusting each citation received by

a year-1999 paper by dividing it by the average number of citations of all the year-1999

papers in the same field, the distinct histograms in Figure 1, remarkably, align to form

single histogram, shown in Figure 2 (in both Figures, the horizontal axis is on a logarithmic

scale).12

We encourage the reader to consult the Radicchi et. al. paper for details, but let us

point out that several statistical methods are used there to verify what seems perfectly clear

12A consequence of this alignment is that the suggested adjustment is unique in the following sense.
Restricting to papers published in 1999, let c̃j denote the random variable describing the distribution of
citations in field j, and let c̄j denote its expectation. The suggested adjustment is to divide any field j
paper’s number of citations, c, by c̄j, giving the adjusted entry c/c̄j. If any increasing functions φ1,φ2, ...
align the distributions across fields — i.e., are such that the adjusted random variables φ1(c̃1),φ2(c̃2), ... all

have the same distribution — then there is a common increasing function f such that φj(c) = f
�
c
c̄j

�
for

every j.
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form the figures, namely, that dividing by the average number of citations per paper in one’s

field corrects for differences in citations across fields in the very strong sense that, after the

adjustment, the distributions of citations are virtually identical across fields.13

In fact, Radicchi et. al. show that the adjustment yields again that same distribution

when carried out for years 1990 and 2004. So, as noted in their paper, this adjustment

corrects not only for differences in field, but also for differences in the ages of papers (see

Figure 3 in Radicchi et. al. (2008).

Let us now apply this adjustment to our index.
13In Radicchi et al. (2008), the common histogram in Figure 2 is estimated as being log normal with

variance 1.3 (the mean must be 1 because of the rescaling).
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Consider a raw citation list (x1, ..., xn). For each paper i = 1, ..., n, let ai denote the

average number of citations of all papers published in both the same year and field as paper

i; and so each ai is a rational number. Note that this permits an individual to have papers

in more than one field.

To correct for field and paper-age differences, the requisite adjustment is to divide each

xi by ai, producing the adjusted citation list (x1/a1, ..., xn/an); so each entry i is rational,

being an integer xi divided by a rational ai.We then simply apply our index to this adjusted

list. Consequently, any citation list (x1, ..., xn) is given the adjusted index value,#
n[
i=1

�
xi
ai

�σ
$1/σ

.

4.3. Scale Invariance

Clearly, the above rescaling for field and paper-age that aligns the otherwise disparate dis-

tributions of citations across fields and paper-ages is arbitrary up to any positive scal-

ing factor. In particular, a common distribution of citations across fields and paper-ages

would also have obtained had Radicchi et. al. (2008) divided any citation list entry

xi, not by ai, but instead by 2ai. Consequently, if after rescaling, one’s index ranks the

adjusted list (x1/a1, ..., xn/an) above the adjusted list (x�1/a
�
1, ..., x

�
n/a

�
n), then it should

also rank (x1/2a1, ..., xn/2an) above (x�1/2a
�
1, ..., x

�
n/2a

�
n). Indeed, it should similarly rank

(x1/λa1, ..., xn/λan) above (x�1/λa
�
1, ..., x

�
n/λa

�
n) for any (rational) λ > 0.14 But this is pre-

cisely what is ensured by our property 4, scale invariance.15

When scale invariance is violated, as it is with the h-index, serious difficulties can arise.

For instance, within a biology department, biologist B1 may be ranked above biologist B2
according to the h-index, but when B1 and B2 are each compared to a mathematician, M,

where rescaling is required to compare across the two fields, applying the h-index to the

rescaled citation lists can result in B2 being ranked first,M second, and B1 third! Moreover,

the final ranking can depend on whether one field’s lists are scaled up or the other field’s

lists are scaled down. A typical example follows.

Example 4.2. Suppose that B1 has 15 papers, each with 15 citations; and B2 has 10 papers,

each with 30 citations. Hence, B1 has an h-index of 15 which is above B2’s h-index of 10.

Suppose that M has 8 papers, each with 7 citations and that to compare biologists to

14This alignment argument holds of course also for irrational λ. However, there is never any need to
consider irrational lists.
15Of course, once rescaling has aligned all the distributions, any subsequent common-across-fields increas-

ing transformation applied to each citation list entry will maintain that alignment (and these are the only
increasing transformations that can do so — see fn. 12). But the only such transformations compatible with
properties 1-4 are linear.
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mathematicians one must scale down the biologists’ citations by a factor of 3. Hence, B1’s

rescaled citation list contains 15 papers with 5 citations each and B2’s rescaled citation

list contains 10 papers with 10 citations each. Consequently, when comparing all three

individuals, B2 is ranked first (h = 10), M second (h = 7) and B1 third (h = 5). On the

other hand, had we instead scaled up the mathematician’s list by a factor of 3, the final

ranking would be B1 first (h = 15), B2 second (h = 10) and M third (h = 8).

4.4. Other differences and group rankings

We now show how to adjust individual citation lists to also account for differences in the

scientific ages of individuals and the number of authors, and we also show how our index can

be used to rank groups of individuals such as departments, universities, or even countries.16

Suppose that an individual’s raw citation list is (x1, ..., xn) and that ai denotes, as above,

the average number of citations received by all of the papers published in the same field and

in the same year as the i-th paper in the list. Let ki denote the total number of authors

associated with paper i and let t denote the scientific age of the individual.

To take into account all of these differences, the individual’s citation list should be ad-

justed by dividing the i-th entry by ai(kit)1/σ, where σ > 1 is the elasticity parameter of our

index. Consequently, this individual’s adjusted index value is,

#
n[
i=1

�
xi

ai(kit)1/σ

�σ
$1/σ

. (4.3)

We now explain why. Since we have already argued above that one must divide each xi
by ai to account for differences in fields and the ages of papers, it remains only to adjust for

scientific age and number of coauthors. We begin with scientific age.

Suppose that two individuals, X and X � have citation lists x = (x1, ..., xn) and x� =

(x�1, ..., x
�
n) and that they differ in fields, ages of papers, and scientific age. Let us first

eliminate the differences in fields and the ages of their papers by dividing each xi by ai, and

dividing each x�i by a
�
i, as above. This first adjustment gives

�
x1
a1
, ..., xn

an

�
as X’s list and�

x1
a1
, ..., xn

an

�
as X �’s list, and in particular renders all papers the same age.17 It remains to

account for the different scientific ages of X and X �.

Assume that for each individual and for any given number of citations, the number of

papers written per year by that individual and with that number of citations is roughly

constant. Hence, if X’s (scientific) age is t, then under this assumption, over the next t years

we would expect X to match his/her performance of the first t years and so we should append

16Ellison (2012) uses Hirsch-like indices to compare computer science departments.
17The entries as written here may no longer be in decreasing order.
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to his/her (paper-age and field adjusted) citation list the n entries
�
x1
a1
, ..., xn

an

�
. Consequently,

at age 2t, X’s (paper-age and field adjusted) citation list would be
�
x1
a1
, ..., xn

an
; x1
a1
, ..., xn

an

�
,

and at age 3t it would be
�
x1
a1
, ..., xn

an
; x1
a1
, ..., xn

an
; x1
a1
, ..., xn

an

�
, etc. Similarly, we can derive the

(paper-age and field adjusted) citation lists of both X and X � when each of them reaches

the common scientific age of t× t�, at which point X is t� times as old as currently, and X �

is t times as old as currently. This yields the following lists which adjust for both differences

in the ages of papers and differences in the scientific ages of the individuals.

X’s adjusted list =
�x
a
, ...,

x

a

�
� ~} �
t copies of x

a

, where x
a
:=
�
x1
a1
, ..., xn

an

�

X �’s adjusted list =
�
x�

a�
, ...
x�

a�

�
� ~} �
t copies of x

a

, where x
a
=
�
x1
a1
, ..., xn

an

�

Since these adjusted lists are such that fields have been adjusted for, all papers are the same

age of one year, and both individuals have the same scientific age of t× t�, we can apply our
index to them. Doing so, we would rank X above X � if#

t�
n[
i=1

�
xi
ai

�σ
$1/σ

>

#
t

n[
i=1

�
x�i
a�i

�σ
$1/σ

,

or equivalently if #
1

t

n[
i=1

�
xi
ai

�σ
$1/σ

>

#
1

t�

n[
i=1

�
x�i
a�i

�σ
$1/σ

.

Finally, let us consider adjusting the index for the number of authors. So, assume now

that, in addition, the lists of X and X � differ in the number of authors on their papers.

We make the simple assumption that more authors have the effect of increasing the number

of papers that one can write in proportion to the number of authors. Hence, a list x =

(x1, ..., xn) of single-authored papers would have been (x1, ..., xn; x1, ..., xn) had this author

instead always coauthored his papers with one more author.

Let k = k1k2...kn and let k� = k�1k
�
2...k

�
n. If X had instead always had kk� total authors

on each of paper, then for each paper i he/she could have produced kk�/ki papers like it.

Hence, for each i, his list would have contained kk�/ki papers with xi/(ait1/σ) citations (after

adjusting for fields, paper-ages, and scientific age). And similarly for X �. Hence, if we adjust

both X and X �’s lists so that they each have kk� authors on all papers, we would rank X

14



above X � if #
n[
i=1

kk�

ki

�
xi
ait1/σ

�σ
$1/σ

>

#
n[
i=1

kk�

k�i

�
x�i

a�i(t�)1/σ

�σ
$1/σ

,

or equivalently if #
n[
i=1

�
xi

ai(kit)1/σ

�σ
$1/σ

>

#
n[
i=1

�
x�i

a�i(k
�
it
�)1/σ)

�σ
$1/σ

.

Taken altogether, we obtain the criterion in (4.3).

Consider now the problem of ranking groups of individuals. Because our approach is

to first adjust individual lists to eliminate differences in important characteristics, it is not

unreasonable after doing so to append all of the adjusted lists within a group to obtain a

single citation list that represents that group. After adjusting for the size of the group (much

like the adjustment for number of authors), our index is applied to the adjusted list.

For example, for each of a number of academic departments (which might be from differ-

ent disciplines) a department citation list is obtained by stringing together all the adjusted

citation lists of all of its members. Our index is then applied to this list.

Specifically, if the department has m members and member j is of scientific age tj, has

citation list (x1j, ...xnj), and aij is the average number of citations received by all of the

papers published in the same field and in the same year as j’s i-th paper, and kij is the

number of authors associated with j’s i-th paper, then our index assigns this department

the index number, #
m[
j=1

n[
i=1

�
xij

aij(mkijtj)1/σ

�σ
$1/σ

.

5. On the choice of σ

While any value of σ that is greater than 1 is consistent with properties 1-4, the following

additional, though less basic, property provides a rationale for restricting the value of σ

to be no greater than 2.18 This property, called “balancedness,” states in particular that

when two given lists are equally ranked, the index’s value of a new citation list that is a

weighted average of the two given lists, is larger when the average is formed by placing the

higher, rather than the lower, weight on the more balanced of the two given lists. The formal

statement is as follows.

Balancedness For any two citation lists x = (x1, ..., xn) and y = (y1, 0, ..., 0) of equal

18We are grateful to Faruk Gul and Debraj Ray for discussions that led us to this property.

15



length, if ι(x) ≥ ι(y), then ι(βx + αy) ≥ ι(αx + βy) for all rational α, β such that

β ≥ α ≥ 0 and α+ β = 1.

As the next proposition states, in order for our index to satisfy balancedness, it is neces-

sary and sufficient that the value of σ be no greater than 2.

Proposition 5.1. If σ > 1, the index (
Sn

i=1 x
σ
i )
1/σ displayed in Theorem 3.1 satisfies bal-

ancedness if and only if σ ≤ 2.

6. Ranking Journals

Related to the topic of this paper is the issue of ranking scholarly journals. However, while

the reason for ranking individuals is clear (limited resources must somehow be allocated),

the reason for ranking journals is less clear. One possible view, and the view taken here,

is that ranking journals is useful only in so far as it provides information on how to rank

individuals.

6.1. Impact factors

Consider, for example the problem of assessing young scholars whose papers have not had

sufficient time to collect citations. In such cases, one must form an estimate of the impact

that their papers will have, i.e., one must estimate, for each paper, its expected number of

future citations. This is, in fact, easily done by using a journal’s so-called “impact factor,”

which is the average number of citations received per year by papers published in that journal.

Once an estimate of the number of citations has been obtained for each paper, our citation

index can be applied. This is perhaps one of the most useful roles that impact factors can

play in practice.19

6.2. Endogenously-weighted citations

Palacios-Huerta and Volij (2004) provide an axiomatization of a cardinal index that assigns

a numerical score to each journal. A journal’s score is a weighted sum of all of the citations

it receives from all journals, where the weights are endogenous in the sense that the weight

placed on any given citation is proportional to the score of the journal from which it came.

19One might take this a step further if citations from higher-impact journals lead to more citations — due
to the increased visibility they generate — than citations from lower impact journals. Thus, one might weight
citations from different journals differently, and perhaps simply in proportion to journal impact factors, if this
leads to a better prediction of future citations — something that is presumably testable. Being proportional
to impact factors, the weights here are not “endogenously determined” in the sense of the next section. We
thank Pablo Beker for suggesting this additional potential use of journal impact factors.
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One might wonder whether a similarly endogenous approach to assigning weights to cita-

tions is possible/desirable when the objective is to rank individuals. While this is certainly

an interesting question, we have only two small remarks. First, the endogenous approach

allows the potential for over-weighting. For example, suppose that when individual A — with

many citations — cites a paper, then that paper’s expected number of additional citations is

greater than when individual B — with fewer citations — cites that paper. Then, even with

equally-weighted citations, a paper cited by A will receive a higher “score” than a paper

cited by B because it will receive more citations. There then seems no need/reason to give

citations received from A more weight than those from B. And if papers cited by A receive

fewer citations than those cited by B, then it is perhaps even less reasonable to give higher

weight to citations from A. Of course, what the endogenous-weight approach presumes is

that being cited by a highly cited individual is better, for its own sake, than being cited by

a less-cited individual. The rationale for this, not uncommon, presumption is not entirely

clear to us in the context of evaluating a record as it currently stands.

Second, and more important, is the problem of the ordinality of the index for ranking

individuals. Without a cardinal index there is no hope of producing a unique set of endoge-

nous weights, since each new monotone transformation of the index can change the weights.

Moreover, under ordinality, the trivial set of uniform weights is itself endogenously consistent

at least as a limiting solution. And with uniform weights, we are back to a standard index.

A. Appendix

It is well-known that welfare (or utility) functions defined on various subsets of Rn that are
continuous, increasing, additively separable and scale invariant must be equivalent to our
index, or a closely related functional form (see Bergson, 1936; Roberts, 1980; and Blackorby
and Donaldson, 1982). The difficulty in our case is that our domain L is quite fragmented in
that no non-singleton subset is connected. Thus, the thrust of the proof is to show that our
index (or, more precisely, one that is equivalent to it) can be extended to an index that (i)
for each n, is continuous on Rn+, and (ii) satisfies all four of our properties. Once this is done
we apply the standard results. For the reader’s convenience, we restate our main result.

Theorem 3.1. A citation index satisfies properties 1-4 if and only if it is equivalent to the
index that assigns to each citation list (x1, ..., xn), the number,#

n[
i=1

xσi

$1/σ
,

where σ is some fixed number strictly greater than one.

Proof. Sufficiency is clear so we focus only on necessity and suppose that the index function
ι satisfies properties 1-4. For any natural number n, and to any n nonnegative rational
numbers x1 ≥ x2 ≥ ... ≥ xn, ι assigns the real number, ι(x1, ..., xn). For every n, it will be
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convenient to extend ι to all of Qn+ by defining ι(x1, ..., xn) := ι(X1,X2, ...,Xn), where Xi is
i-th order statistic of x1, ..., xn. Thus ι is now defined on the extended domain L∗ := ∪nQn+ in
such a way that it is symmetric; i.e., if x ∈ L∗ is a permutation of x� ∈ L∗, then ι(x) = ι(x�).
Clearly, the extended function ι satisfies the associated extensions to L∗ of properties 1-4.
We work with the extended index ι from now on.
Let us first show that, for every n > 0, ι is strongly increasing on Qn+ i.e.,

ι(x�i, x−i) > ι(xi, x−i), ∀x ∈ Qn+, ∀i, and ∀rational x�i > xi. (A.1)

By IND, it suffices to show that ι(x�i) > ι(xi), or by SI, that ι(1) > ι
�
xi
xi

�
. Since x�i > xi,

it suffices to show that ι(1) > ι(λ) for all rational λ ∈ [0, 1).We shall argue by contradiction.
If not, then there is a nonnegative rational λ < 1 such that ι(λ) ≥ ι(1). Applying scale

invariance k times, each time using the scaling factor λ, gives ι(λk) ≥ ι(λk−1). Since this
holds for any positive integer k, we have ι(λk) ≥ ι(λk−1) ≥ ... ≥ ι(λ) ≥ ι(1). For any positive
rational r < 1, we may choose k such that λk < r since λ < 1. Hence, ι(r) ≤ ι(1) ≤ ι(λk) ≤
ι(r), where the first and last inequalities are by MON. Hence, ι(1) = ι(r) for every positive
rational r < 1. But then, by SI, also ι(1) = ι(1

r
) (use the scaling factor 1/r). Hence, ι is

constant on Q++ and, by continuity, on Q+. We next show inductively that, for each n, ι is
constant on Qn+, from which we will eventually derive a contradiction.
So, suppose that ι is constant on Qn+.We must show that ι is constant on Qn+1+ . But this

will follow if we can show that for all (x1, ..., xn+1) ∈ Qn+1+

ι(1n+1) = ι(x1, ..., xn, 1) = ι(x1, ..., xn+1),

where, for each m, 1m denotes the vector (1, ..., 1) ∈ Qm+ . But the first equality follows
by IND because ι(1n) = ι(x1, ..., xn) by the induction hypothesis, and the second equality
follows by IND because ι(x2, ..., xn, 1) = ι(x2, ..., xn+1) by the induction hypothesis. Hence,
ι is constant on Qn+ for every n. We next derive the desired contradiction.
By DR there is a positive integer k̄ and there is x̄ ∈ L∗ such that ι(k̄, x̄) > ι(1k̄, x̄),where

1k̄ = (1, ..., 1) is of length k̄. Hence, by IND, ι(k̄) > ι(1k̄). By MON, there exists m2 large
enough so that ι(k̄,m2) ≥ ι(k̄) > ι(1k̄). Applying MON once again, there exists m3 large
enough so that ι(k̄,m2,m3) ≥ ι(k̄,m2) ≥ ι(k̄) > ι(1k̄).After k̄−1 such successive applications
of MON, we obtain m2, ...,mk̄ such that ι(k̄,m2, ...,mk̄) ≥ ι(k̄) > ι(1k̄), implying that ι is
not constant on Qk̄+. This contradiction establishes (A.1).
We can now prove the following claim.

Claim. There is a continuous function ι̂ : Rn+ → R that is equivalent to ι on Qn+ — i.e.,
∀x, y ∈ Qn+, ι̂(x) ≥ ι̂(y) iff ι(x) ≥ ι(y).

Proof of Claim. Since n is fixed, we write 1 instead of 1n. Define a nondecreasing function
d : Qn+ → R+ as follows. For every x ∈ Qn+,

d(x) := inf{r ∈ Q+ : ι(r1) ≥ ι(x)}.

Then d is nondecreasing because ι is nondecreasing.
Let us show that,

d is equivalent to ι on Qn+. (A.2)
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Since it is obvious that ι(x) = ι(y) implies d(x) = d(y), it suffices to show that ι(x) > ι(y)
implies d(x) > d(y).
First note that SI implies that d is homogeneous of degree 1 (since SI implies that for any

positive rational λ, {r� ∈ Q+ : ι(r�1) ≥ ι(λx)} = λ{r ∈ Q+ : ι(r1) ≥ ι(x)}). In particular,
d(r1) = r for any nonnegative rational r (d(0) = 0, clearly).
Second, note that for x 9= 0, (A.1) implies that ι(x) > ι(0). By continuity there is a

rational ε ∈ (0, 1) such that ι(x) > ι(ε1n) and hence, d(x) ≥ ε > 0.
Suppose now that ι(x) > ι(y). Then, by continuity, there is a positive rational δ < 1 such

that ι(y) < ι(δx), and so d(y) ≤ d(δx). But, by 1-homogeneity d(δx) = δd(x) < d(x) since
d(x) > 0. Hence, d(y) ≤ d(δx) < d(x), which proves (A.2).
Let xm, ym ∈ Qn+ be sequences converging to the same point x ∈ Rn+. We will next

establish that,
lim
m
d(xm) = lim

m
d(ym). (A.3)

That is, the limits exist and are equal.
Let us first dispense with the case in which the common limit point is x = 0. Then,

for any positive rational, r, xm << r1 for all m large enough. Since d is nondecreasing,
0 ≤ d(xm) ≤ d(r1) = r for all m large enough. Since r is arbitrary, we conclude that
limm d(xm) = 0; and similarly for limm d(ym). So (A.3) holds for x = 0 and we henceforth
assume that x 9= 0.
Evidently, d(xm) is bounded because, for any z ∈ Qn+ satisfying z >> x, we have d(0) ≤

d(xm) ≤ d(z) for m large enough since d is nondecreasing. Similarly, d(ym) is bounded.
Hence, if either limit fails to exist or if the limits exist but are not equal, the sequences
xm and ym would admit subsequences along which d(xm) converges, to a say, and d(ym)
converges, to b say, and a 9= b. Restricting attention to these subsequences, reindexing, and
supposing that a < b, this would mean that,

lim
m
d(xm) = a < b = lim

m
d(ym). (A.4)

Thus, to establish (A.3) it suffices to assume (A.4) and derive a contradiction.
Choose rationals q, q� ∈ (a, b) such that q < q� and recall that d(r1) = r for any nonneg-

ative rational r. Hence,

lim
m
d(xm) = a < q = d(q1) < d(q

�1) = q� < b = lim
m
d(ym),

and so d(xm) < d(q1) < d(q�1) < d(ym) for all sufficiently large m. Consequently, since d
and ι are equivalent, letting w := q1 and w� := q�1, we have

ι(xm) < ι(w) < ι(w�) < ι(ym), (A.5)

for all sufficiently large m. Without loss, we may assume that (A.5) holds for all m.
Choose any rational δ ∈ (0, 1). Scale invariance applied to (A.5) implies in particular

that,
ι(δw�) < ι(δym), for all m. (A.6)

Choose z�, z ∈ Qn+ so that δxi < z�i < zi < xi holds for every i such that xi > 0, and such
that z�i = zi = 0 for every i such that xi = 0. Then both z

� and z are nonzero (because x
is nonzero) and so ι(z�) < ι(z) by (A.1). By continuity, there is a rational ε ∈ (0, 1) such
that ι(z� + ε1) < ι(z). For each i, define z��i = z

�
i if zi > 0 and z

��
i = ε if zi = 0. The resulting
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vector z�� ∈ Qn++ is such that all coordinates are positive and z�� ≤ z� + ε1. Consequently,
by MON, ι(z��) ≤ ι(z� + ε1) < ι(z). Moreover, (i) δxi < z��i = z

�
i < zi < xi holds for every i

such that xi > 0, and (ii) z��i = ε and zi = 0 holds for all i such that xi = 0. Consequently,
δx << z�� and z ≤ x, with equality in the latter only for coordinates i such that xi = 0.
Since xm and ym converge to x, there must be m� large enough so that δym << z�� and

z ≤ xm . Applying MON to these two vector inequalities and using ι(z��) < ι(z) gives,

ι(δym ) ≤ ι(z��) < ι(z) ≤ ι(xm ).

Combined with (A.5) and (A.6), we obtain ι(δw�) < ι(δym ) < ι(xm ) < ι(w) < ι(w�) which,
in particular implies,

ι(δw�) < ι(w) < ι(w�).

But since δ is an arbitrary rational in (0, 1), this contradicts the continuity of ι, and we
conclude that (A.3) holds.
A consequence of (A.3) is that we may extend d to all of Rn+ by defining its extension

ι̂ : Rn+ → R+ as follows. For every x ∈ Rn+,

ι̂(x) := lim
xm→x

d(xm),

where the limit is taken over any sequence xm ∈ Qn+ converging to x.
The proof of the claim will be complete if we can show that ι̂ is continuous on Rn+ and

equivalent to ι on Qn+. For the latter, suppose that x ∈ Qn+. Since the limit defining ι̂(x) is
independent of the sequence xm ∈ Qn+ converging to x that is chosen, we can in particular
choose the constant sequence xm = x (since x ∈ Qn+). Therefore ı̂(x) = d(x) for every x ∈ Qn+
(and so ι̂ is indeed an extension of d). Since d is equivalent to ι on Qn+ so too is ι̂.
For continuity on Rn+, suppose that xm ∈ Rn+ converges to x ∈ Rn+. For every m, by the

definition of ι̂(xm) we may choose ym ∈ Qn+ such that nxm − ymn ≤ 1
m
and |̂ι(xm)− d(ym)| ≤

1
m
. Hence, ym → x, and limm(̂ι(xm) − d(ym)) = 0. But because ym ∈ Qn+ converges to x,

ι̂(x) = limm d(ym), by the definition of ι̂(x). Hence, limm ι̂(xm) = limm(̂ι(xm) − d(ym) +
d(ym)) = limm(̂ι(xm) − d(ym)) + limm d(ym) = 0 + ι̂(x) = ι̂(x), proving continuity, and
completing the proof of the claim.

Let us now establish some additional properties of the continuous function ι̂ : Rn+ → R.
Since ι̂ is equivalent to ι on Qn+, ι̂ is a symmetric and strongly increasing function on Qn+
and satisfies all four of our properties, MON, IND, SI, and DR on Qn+.We also note that ι̂ is
nondecreasing on Rn+, a fact that is immediate from the definition because d is nondecreasing
on Qn+. We will use these facts, as well as the continuity of ι̂, freely.
Fact 1. (Symmetry on Rn+) If x ∈ Rn+ is a permutation of the coordinates of x�, then

ι̂(x) = ι̂(x�) follows from the observation that for any x�m ∈ Qn+ converging to x, we have also
that xm converges to x, where xm is obtained from x�m by applying the same permutation as
performed on x� to obtain x. But since ι̂ is a symmetric function onQn+,we have ι̂(xm) = ι̂(x�m)
for every m. Hence, ι̂(x) = limm ι̂(xm) = limm ι̂(x�m) = ι̂(x�).
Fact 2. (Scale Monotonicity on Rn+). If x ∈ Rn+\{0} and δ ∈ (0, 1) we wish to show that

ι̂(δx) < ι̂(x). Choose z, z� ∈ Qn+ such that δxi < zi < z�i < xi for every i such that xi > 0
and set zi = z�i = 0 otherwise. Then z and z

� are distinct (since x 9= 0) and δx ≤ z ≤ z� ≤ x.
Therefore, ι̂(δx) ≤ ι̂(z) < ι̂(z�) ≤ ι̂(x), where the two weak inequalities follow because ι̂ is
nondecreasing and the strict inequality follows because ι̂, is strongly increasing on Qn+.
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Fact 3. (Scale Invariance on Rn+ with positive real scalars). Suppose that x, y ∈ Rn+,
λ ∈ R++ and ι̂(x) > ι̂(y). Therefore, in particular, x 9= 0. By the continuity of ι̂ there exist
x�, y� ∈ Qn+ and a rational δ ∈ (0, 1) such that x� ≤ x, y� ≥ y and ι̂(δx�) > ι̂(y�). Since ι̂
satisfies SI on Qn+, ι̂(λ

�δx�) > ι̂(λ�y�) holds for any positive rational λ�. Taking the limit as
x� → x, y� → y, and λ� → λ implies ι̂(λδx) ≥ ι̂(λy). By Fact 2, ι̂(λx) > ι̂(λδx) ≥ ι̂(λy).
Hence, we have shown that ι̂(x) > ι̂(y) implies ι̂(λx) > ι̂(λy) and so ι̂ is scale invariant.
Fact 4. (Independence on Rn+) We will show that for every x0, x1 ∈ Rn+ and every

coordinate i, ι̂(x0i , x
0
−i) > ι̂(x0i , x

1
−i) implies ι̂(x

1
i , x

0
−i) > ι̂(x1i , x

1
−i).Without loss of generality,

we may assume that x1i is rational. For if it is not rational, then it is strictly positive. In
that case, by Fact 3, we may rescale all four of the vectors (x0i , x

0
−i), (x

0
i , x

1
−i), (x

1
i , x

0
−i) and

(x1i , x
1
−i) by the factor 1/x

1
i (and so x

1
i is rescaled to be 1, a rational), without affecting any

of their pairwise rankings according to ι̂. Thus, assume that x1i ∈ Q+. If the first inequality
holds, then by the continuity of ι̂, there are rational vectors z−i ≤ x0−i, w−i ≥ x1−i, and
a rational number r0i , such that ι̂(r

0
i , z−i) > ι̂(r0i , w

1
−i). Since ι̂ satisfies IND on Qn+, and

because x1i is rational, we have ι̂(x
1
i , z−i) > ι̂(x1i , w−i). And since ι̂ is nondecreasing on Rn+,

ι̂(x1i , x
0
−i) ≥ ι̂(x1i , z−i) > ι̂(x1i , w−i) ≥ ι̂(x1i , x

1
−i), as desired.

Fact 5. (Strongly Increasing on Rn+). Suppose that x ∈ Rn+ and that x�i > xi. We will
show that ι̂(x�i, x−i) > ι̂n(x). Choose rationals r� and r such that x�i > r

� > r > xi. Then, for
every nonnegative rational vector z−i, ι̂(x�i, z−i) ≥ ι̂(r�, z−i) > ι̂(r, z−i) ≥ ι̂(xi, z−i), where the
weak inequalities follow because ι̂ is nondecreasing, and the strict inequality follows because
ι̂ is strongly increasing on Qn+. Fact 4 (applied successively to each coordinate j of z−i and
x−i) implies that ι̂(x�i, x−i) > ι̂(xi, x−i).

Because the continuous function ι̂ : Rn+ → R (which of course can depend on n) satisfies
the properties given in Facts 1-5, we may apply Theorem 2, part (i), in Blackorby and
Donaldson (1982) (see also Theorem 6 in Roberts, 1980) to conclude, using also that ι̂ is
symmetric, that for all n ≥ 3, there exists an ∈ R and there exists a strictly increasing
φn : R++ → R such that,

ι̂(x) = φn

#[
i

xani

$ 1
an

 , for all x ∈ Rn++,
where we adopt the convention that (

S
i x

an
i )

1
an := Πixi if an = 0. From this we may conclude

that ι̂ is equivalent to (
S

i x
an
i )

1
an on the strictly positive orthant Rn++.

Let us first argue that an > 0. If not, then let w(α) = (α, 1, ..., 1) ∈ Rn+ and observe that,
for an ≤ 0, limα→0+ (

S
i(wi(α))

an)
1
an = 0. Consequently, because by MON ι̂(1, 0, ..., 0) ≤

ι̂(α, 1, ..., 1), we have ι̂(1, 0, ..., 0) ≤ limα→0+ ι̂(w(α)) = limα→0+ φn
�
(
S

i(wi(α))
an)

1
an

�
<

φn(λn
1
an ) = ι̂(λ1n) = λ holds for any λ > 0, where the strict inequality follows because

φn is strictly increasing and limα→0+ (
S

i(wi(α))
an)

1
an = 0 < λn

1
an . We conclude, since ι̂ is

nonnegative, that ι̂(1, 0, ..., 0) = 0, which is a contradiction since ι̂(0, ..., 0) ≥ 0 (since ι̂ is
nonnegative) and ι̂ is strongly increasing on Rn+ (Fact 5).
Hence, for every n ≥ 3, an > 0 and ι̂ is equivalent to

Sn
i=1 x

an
i on Rn++. But since both ι̂

and
Sn

i=1 x
an
i are continuous on Rn+ we may conclude that ι̂ is equivalent to

Sn
i=1 x

an
i on Rn+.

In particular, because ι is equivalent to ι̂ on Qn+, we have that ι is equivalent to
Sn

i=1 x
an
i on

Qn+.
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Let us now show that an = an+1 for all n ≥ 3. For any x, y ∈ Rn+,
Sn

i=1 x
an
i ≥

Sn
i=1 y

an
i

iff ι̂(x) ≥ ι̂(y) which by Fact 4 (independence on Rn+) is iff ι̂(x, 0) ≥ ι̂(y, 0), which holds
iff
Sn

i=1 x
an+1
i ≥ Sn

i=1 y
an+1
i . But then

Sn
i=1 x

an
i is equivalent to

Sn
i=1 x

an+1
i on Rn+ from

which we conclude (because for every i, j, the marginal rates of substitution (xi/xj)
an+1−1

and (xi/xj)
an−1 must then be identically equal on Rn++) that an = an+1 for every n ≥ 3.

Letting σ > 0 denote the constant value of an, we have shown for all n ≥ 3 that, on Qn+,
ι is equivalent to

Sn
i=1 x

σ
i .We next show that adding a paper with zero citations must leave

the index unchanged.
By MON, for every x1 ∈ Q+, there exists a positive integer m such that ι(x1) ≤ ι(x1,m).

By SI, ι(λx1) ≤ ι(λx1,λm) for every positive rational λ, and so by IND, ι(z,λx1) ≤
ι(z,λx1,λm) for every z ∈ L∗. Taking the limit as λ → 0+ gives, by continuity, that
ι(z, 0) ≤ ι(z, 0, 0) from which IND implies that ι(z) ≤ ι(z, 0) for every z ∈ L∗. It remains to
establish the reverse inequality.
As we have seen above, DR implies the existence of a positive integer k̄ such that ι(k̄) >

ι(1k̄); observe then that k̄ ≥ 2. By SI, ι(λk̄) > ι(λ1k̄) for every positive rational λ, and so by
IND, ι(z,λk̄) > ι(z,λ1k̄) for every z ∈ L∗. Taking the limit as λ→ 0+ yields, by continuity,
that ι(z, 0) ≥ ι(z, 0, ..., 0) ≥ ι(z, 0, 0), where the second inequality follows because k̄ ≥ 2 and
because, as shown in the previous paragraph, the index cannot fall when a paper with zero
citations is added. But IND together with ι(z, 0) ≥ ι(z, 0, 0) implies that ι(z) ≥ ι(z, 0) for
every z ∈ L∗, as desired. Hence, adding a paper with zero citations leaves the value of the
index unchanged.
We can now characterize the manner in which the index compares citation lists of different

lengths.
Consider any x, y ∈ L∗. Then x ∈ Qm+ and y ∈ Qk+ for somem, k ≥ 1. Assume without loss

that m ≥ k. By IND, MON, and the fact that adding papers with zero citations leaves the
index unchanged, ι(x) ≥ ι(y) iff ι(x, 0, 0) ≥ ι(y, 0, 0,0m−k), which (since the common length
n of the two lists (x, 0, 0) and (y, 0, 0,0m−k) satisfies n ≥ m + 2 ≥ 3) is iff

S
i x

σ
i ≥

S
i y

σ
i .

Hence, we may conclude that ι is equivalent to the index that assigns to any citation list
(x1, ..., xn) ∈ L∗ of any length n the number

Sn
i=1 x

σ
i .

It remains only to show that σ > 1. But this follows from DR because σ > 1 implies that
the index is strictly convex, and so DR will hold (for all k and x, in fact), while 0 < σ ≤ 1
implies that the index is concave, and DR will fail.

Proposition 5.1: If σ > 1, the index (
Sn

i=1 x
σ
i )
1/σ displayed in Theorem 3.1 satisfies

balancedness if and only if σ ≤ 2.

Proof. It suffices to work with the equivalent index
Sn

i=1 x
σ
i .

Suppose first that
Sn

i=1 x
σ
i satisfies balancedness. Then, in particular, setting n = 2 and

y1 = 1, we have that ∀α, x1, x2 ∈ Q+ s.t. x1 ≥ x2 and α ∈ [0, 1/2],

if xσ1 + x
σ
2 ≥ 1, then ((1− α)x1 + α)σ + (αx2)

σ ≥ (αx1 + 1− α)σ + ((1− α)x2)
σ.

Since all of the functions in the above display are continuous, the implication must also
hold when all of the variables are real. Hence, ∀α ∈ [0, 1/2] and ∀x1, x2 ∈ R+ such that
x1 ≥ x2 and xσ1 + xσ2 ≥ 1,

((1− α)x1 + α)σ + ((1− α)x2)
σ ≥ (αx1 + 1− α)σ + (αx2)

σ.

22



In particular, fix any x1, x2 ∈ (0, 1) such that x1 ≥ x2 and xσ1+xσ2 = 1. Then ∀α ∈ [0, 1/2],
we must have

((1− α)x1 + α)σ + ((1− α)x2)
σ − (αx1 + 1− α)σ − (αx2)σ ≥ 0. (A.7)

Because, xσ1 + x
σ
2 = 1, the left-hand side of (A.7) is zero when α = 0. Hence, if the

inequality is to hold for all α ∈ [0, 1/2], the derivative of the left-hand side of (A.7) with
respect to α must be nonnegative at α = 0. Since its derivative is

σ((1−α)x1+α)σ−1(1−x1)−σ((1−α)x2)
σ−1x2+σ(αx1+1−α)σ−1(1−x1)− σ(αx2)

σ−1x2,

we must have, after evaluating at α = 0 (recall that σ > 1),

σxσ−11 (1− x1)− σxσ2 + σ(1− x1) ≥ 0.

But, because xσ1 + x
σ
2 = 1, this is equivalent to

σx1(x
σ−2
1 − 1) ≥ 0,

which, because x1 ∈ [(1/2) 1σ , 1) (recall x2 ≤ x1 < 1), implies that σ ≤ 2. We turn next to
the converse.
For the converse, we must show that if σ ∈ (1, 2], then ∀α, β, y1, x1, ..., xn ∈ Q+ s.t.

x1 ≥ ... ≥ xn, α ≤ β and α+ β = 1,

if xσ1+...+x
σ
n ≥ yσ1 then (βx1+αy1)σ+(βx2)σ+...+(βxn)σ ≥ (αx1+βy1)σ+(αx2)σ+...+(αxn)σ.

(A.8)
We will in fact show that (A.8) holds ∀α,β, y1, x1, ..., xn ∈ R+ s.t. α ≤ β.
If y1 = 0, then the conclusion follows trivially so we may assume that y1 > 0. Dividing

the expressions in (A.8) by yσ1 > 0, we may assume without loss that y1 = 1. So we have
reduced the problem to the following.
We must show that ∀α, β ∈ R+ s.t. α ≤ β, and ∀x1, ..., xn ∈ R+ s.t. xσ1 + ...+ xσn ≥ 1,

(βx1 + α)σ + (βx2)
σ + ...+ (βxn)

σ ≥ (αx1 + β)σ + (αx2)
σ + ...+ (αxn)

σ. (A.9)

If xσ1+...+x
σ
n > 1, then we may reduce one or more of x1, x2, ..., xn, without making any of

them negative, until the strict inequality, xσ1+ ...+x
σ
n > 1, becomes an equality. Since β ≥ α,

this operation tightens the inequality in (A.9). Hence, if (A.9) holds after the operation it
must have held initially. It therefore suffices to prove (A.9) when xσ1 + ...+ x

σ
n = 1.

But if xσ1 + ...+ x
σ
n = 1, we may rewrite (A.9) as

(βx1 + α)σ + βσ(1− xσ1) ≥ (αx1 + β)σ + ασ(1− xσ1),

or equivalently as,

(βx1 + α)σ + βσ(1− xσ1)− (αx1 + β)σ − ασ(1− xσ1) ≥ 0. (A.10)

Fix any α, β ∈ R+ s.t. α ≤ β. Since xσ1 + ...+ x
σ
n = 1 and all the xk are nonnegative, we

have x1 ∈ [0, 1]. Hence, it suffices to show that for all x1 ∈ [0, 1], the function f defined by
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the left-hand side of (A.10), i.e.,

f(x1) = (βx1 + α)σ + βσ(1− xσ1)− (αx1 + β)σ − ασ(1− xσ1) (A.11)

is nonnegative for all x1 ∈ [0, 1].
Since f(0) = f(1) = 0, it is enough to show that f(x1) ≥ 0 whenever f �(x1) = 0 since, in

this case, the minimum value attained by f on [0, 1] cannot be negative (since if it is negative,
this negative minimum value is attained at an interior point at which the derivative must be
zero). The derivative of f is,

f �(x1) = σβ(βx1 + α)σ−1 − σβσxσ−11 − σα(αx1 + β)σ−1 + σασxσ−11 ,

and setting this to zero gives (after division by σ and multiplication by x1),

ασxσ1 − βσxσ1 = αx1(αx1 + β)σ−1 − βx1(βx1 + α)σ−1. (A.12)

It suffices therefore to show that f(x1) ≥ 0 whenever (A.12) holds. Substituting (A.12)
into (A.11) yields,

f(x1) = (βx1 + α)σ + βσ − (αx1 + β)σ − ασ + αx1(αx1 + β)σ−1 − βx1(βx1 + α)σ−1

= (βx1 + α)σ−1(βx1 + α− βx1)− (αx1 + β)σ−1(αx1 + β − αx1) + βσ − ασ

= (βx1 + α)σ−1α− (αx1 + β)σ−1β + βσ − ασ.

To see that the last expression on the right-hand side is nonnegative, note first that its
value is zero when x1 = 0. It therefore suffices to show that it is nondecreasing in x1. It’s
derivative with respect to x1 is,

(σ − 1)αβ[(βx1 + α)σ−2 − (αx1 + β)σ−2],

which is nonnegative because 0 ≤ α ≤ β, x1 ∈ [0, 1], and σ ∈ (1, 2]. Q.E.D.
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