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Let T be a polynomial of degree d � 2; and let Tn be the n-th iterate of T: Re
all thefollowing de�nitions [F℄, [B℄, [DH℄:A(1) = fz : Tn(z)!1; n!1g is the basin of attra
tion to in�nity,J = �A(1) is the Julia set of T;u(z) is the Green fun
tion of the domain A(1) with the pole at in�nity.De�ne u = 0 outside A(1); thenu(z) = limn!1 1dn log+ jTn(z)j; z 2 C ;and u(T (z)) = d � u(z):Let B(z) be the Bott
her fun
tion of T;i.e. B(z) = limn!1[Tn(z)℄1=dn ;B(z) � z; z !1:so u(z) = log jB(z)j:Denote by C� the set of all 
riti
al points of T; 
ontained in A(1): If C� = ; thenthe Julia set J is 
onne
ted and the fun
tion B(z) gives the 
onformal map of the simply
onne
ted domain A(1) onto the exterior of the unit disk. If additionally the set Jis lo
ally 
onne
ted, then, by the Caratheodory theorem, B(z) extends to the map ofboundaries, namely J and T: This map semi-
onjugates T jJ and t ! d � t(mod2�) onT: If J is 
onne
ted, but not lo
ally 
onne
ted, B(z) 
an be extended to some points ofJ = �A(1); for example, to the points of repulsive 
y
les of T; and this fa
t is also useful[D℄, [DH℄ [EL1℄.The main purpose of this paper is to 
onsider similar (and other) questions in thesituation when C� 6= ; and, 
onsequently, the domain A(1) is in�nitely 
onne
ted.The paper 
onsists of two parts.In the �rst part (Se
ts. 1-3) we investigate the Green map [AJ℄ of the domain A�(1)obtained from A(1) by 
utting along the Green lines going from 
riti
al points of thefun
tion u(z) to the Julia set. This Green map is the extension of the Bott
her fun
tion,2



and the image of A�(1) under this map is the domain with a hedgehog-like boundary. Forpolynomials with real Julia set su
h a map was 
onsidered in [SY℄ (see also [BGM℄).In the se
ond part (Se
ts. 4-5) we apply the map onto hedgehog in order to generalizetwo known results. The �rst of them estimates multipliers of repulsive �xed points of poly-nomials with 
onne
ted Julia sets [P℄, [Y℄, [L℄, [EL1℄. The se
ond one 
on
erns the sizesof the parts of the Mandelbrot set, so-
alled \limbs". The 
on
ept of the limb has beenintrodu
ed by Douady, Hubbard and Branner (see, for example, [GM℄). Yo

oz [Y℄ esti-mated diameters of the limbs using the �rst result (about multipliers). We give analogousestimates for rational visible periodi
 points of quadrati
 polynomials with dis
onne
tedJulia sets (see also [EL2℄), and for diameters of neighborhoods of the limbs (we 
all themby \shades" of the limbs).
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1. The Bott
her Fun
tion and the Green MapIntrodu
e the following de�nitions:C� = f
1; � � � ; 
sg; 1 � s � d� 1;a = maxfu(
j) : 1 � j � sg;K(r) = fz : u(z) � rg;�(r) = �K(r) = fz : u(z) = rg;G(r) = C nK(r):If r � a; the domain G(r) is simply 
onne
ted. In this domain the Bott
her fun
tionB(z) is well de�ned and gives a 
onformal map of G(r) onto fw : jwj > rg: The fun
tionB(z) satis�es the fun
tional equation(1.1) B(T (z)) = [B(z)℄d:This equation yields an analyti
 
ontinuation of the fun
tion B(z) on the whole domainA(1): The 
ontinued fun
tion has bran
h points in the points of the setC(1) = 1[m=0T�mC�;i.e. in the 
riti
al points of the Green fun
tion u(z); but the fun
tion jB(z)j is single-valued. To make the fun
tion B(z) single-valued we use the te
hnique similar to [AJ℄. Let usgeneralize some de�nitions from [AJ℄ and [DH℄.Fix positive dire
tion on the level lines �(r),so that K(r) stays on the left.If a 
urve
 
rosses �(r) at a point z,de�ne a positive dire
tion on 
 in a neighbourhood of z in su
ha way that the 
 passes �(r) from G(r) to K(r).Fix an angle (slope) � 2 (0; �). The Green line of the slope � is a C1-
urve 
 ,whi
h
rosses any level line at the angle � . The fun
tion u(z) is monotone along an arbitraryGreen line. The Green line 
 is maximal if 
 is not 
ontained properly in any other Greenline. Thus if z 2 A(1) n C(1) then exists a unique maximal Green line 
� (z); passingthrough this point. So the origin of every maximal Green line is either 1 or some pointfrom C(1): In the former 
ase the maximal Green line is the external radius of the slope� , in the later 
ase it is the 
ut(of the same slope).4



Let A�� (1) be a subset of A(1) formed by points whi
h belong to the external radii,i.e. A�� (1) is A(1) with 
uts deleted. Parti
ularly, G(a) � A�� (1):There exists a unique analyti
 
ontinuation of the fun
tion B(z),z 2 G(a), alongarbitrary external radius R� of the slope � .This de�nes the 
ontinued fun
tion B� in thewhole domain A�� (1).The image B� (R� ) of an external radius R� is a C1-
urve in D � = fx : 1 < jxj <1g,whi
h 
rosses every 
ir
le jxj = r of large enough radius at the angle � .If we 
onsiderthe extention L� ofB� (R� ) in D � ,whi
h preserves this property,it is ended at a point withan argument t 2 [0; 1) of the unit 
ir
le.We will 
all the t the external argument argB� ofthe radius R� (and its points) in the dynami
al plane or the argument arg� of the 
urveL� (and its points) in D � : t = argB� (R� ) = arg� (L� ). In parti
ular,we have de�ned the arg� (x) of every point x 2 D � (of 
ourse,the arg�
oin
ides with the usual argument in the 
omplex plane i� � = �=2).The 
ontinued fun
tion maps 
onformally the domain A�� (1) onto some domainU� � D � :We set S� = �U� :Let x 2 C ; jxj > 1; Ix = f� : 1 � j�j � jxj; arg�(�) = arg�(x)g. We 
all this 
urve theneedle, the point exp(it),where t = arg� (x), is the base of this needle.Consider the map(1.2) � : t! d:t(mod1):If argB� (z) = t; then argB� (T (z)) = �(t):Every point 
 2 C� is the 
ommon end of a �nite set of external radii. Denote by�� (
) the set of the external arguments t of the 
orresponding radii R�t with the end at 
.Note that, for every t 2 �� (
), �(t) = argB� (T (
));5



and there exists limz!
z2R�tB� (z) = ~B� (
; t)(this equality is just a notation).Proposition 1.1. The following statements are true1. T : A�� (1)! A�� (1):2. The 
ontinued fun
tion B� (z) satis�es the fun
tional equation (1.1), in other words,the fun
tion T0 = B� Æ T Æ (B� )�1 : x 7! xdmaps U� into U� :3. S� = T [
2C� [t2�� (
) 1[n=0 [ IxTn0 (x)= ~B� (
;t):Proof. The map T takes every external radius to an external radius. This implies p.1 and,then, p.2.To prove p.3, let us introdu
e the set of 
riti
al arguments:��� = [
2C� 1[n=0 ��n(�� (
)):If t is not su
h a 
riti
al value, then the 
orresponding external radius R�t extends upto the Julia set. Hen
e e2�i t 2 S.On the other hand, if �n(t) 2 �� (
) for some n � 0 and 
 2 C�, the radius R�t joins1 and a 
riti
al point q of Green map u, so thatu(q) = u(
)dn :It 
ompletes the proof.We will 
all the set S� the hedgehog (of the equal slope �). The skin of this hedgehog isthe 
ir
le T minus bases of hedgehog's needles. Let us note that the hedgehog S� is uniquelydetermined by the slope � and the set of limit values ~B� (
; t), for all 
 2 C�; t 2 �� (
).De�ne now the external rays as follows(
f.[GM℄).It is just an external radius R = R� ,ifR extends up to the Julia set(i.e. R is not ended at a point of C(1)).Let the end point of6



R be a point of C(1).Then B� (R) lands at the top of some needle Nx.The fun
tion B�extends to two 
ontinuous fun
tions B+ and B� on two banks of Nx.It allows us to de�nethe two external rays (of the slope �) 
orresponding to the external radius R:R�t = B�1� (f� : 1 < j�j <1; arg�(�) = tg);where t = arg� (x).Let R(t) = fz 2 A�(1) : argBz = tg be some external radius. Su
h radius 
an walkapproa
hing to the Julia set J � �A�(1); but not ending to a de�nite point. Besides, theJulia set 
an 
ontain ina

essible from A�(1) points. But, as it was proved in [DH, p. 70℄,any external radius with a rational argument is sure to �nish either in some point fromC(1); or in some pre-image of the point from a repulsive or an indi�erent rational 
y
leof T: Moreover, if at least one rational external radius lands at a point of su
h 
y
le, thenthere are �nitely many external radii landing at this 
y
le, all are rational and the sameperiod (see [GM℄). We will denote by N = N(�) the number of su
h external radii, whi
hland at point of the 
y
le (�).2. The Hyperboli
 CaseIn this Se
t. we assume that the polynomial T is hyperboli
, i.e. there exists a
ompa
t neighborhood V of J and numbers L > 1; � > 0 su
h thatj(T�n)0(z)j � �L�nfor any z 2 V and for any bran
h T�n:We give without proofs two propositions 
on
erning this 
ase. The proofs of them arequite similar to the proofs of 
orresponding propositions from [DH℄.Proposition 2.1. Let T be the hyperboli
 polynomial. Then all maximal Green lines (i.e.the external radii and the 
uts) have their ends on the Julia set.De�ne the set J� = �A�(1): By the de�nition, J� is a 
ontinuum (i.e. 
onne
ted
ompa
t). In the hyperboli
 
ase this set 
onsists of the Julia set J and of the 
uts, whi
h
onne
t the points of C(1) and J: 7



Proposition 2.2. In the hyperboli
 
ase J� is lo
ally 
onne
ted.So in this 
ase B(z) extends to the map of J� onto S whi
h semi-
onjugates T jJ andTo on the skin of the hedgehog S:Remark. These propositions remain valid in some other 
ases, for example, when the poly-nomial T is semi-hyperboli
 [DH℄, i.e. when all 
riti
al points, lying on J; are preperiodi
,and other 
riti
al points tend to attra
tive 
y
les.3. The Dependen
e on CoeÆ
ients of the Polynomial T:Let T (z) be a moni
 
entered polynomial, i.e.T (z) = zd + bd�2zd�2 + � � �+ b1z + b0:Parametrize su
h polynomials by points b 2 C d�2 : Let H � C d�2 be the 
losure ofthe set b = (b0; � � � ; dd�2) of su
h polynomials with dis
onne
ted Julia set. We will use thenotations Ab(1); A�b(1); ub(z) and so on.Theorem 3.1. Let (bn) � int(H ); bn ! b: Then the domains A�bn(1) are 
onverging toAb(1); if b 2 �H and to A�b(1); if b 2 int(H ): Here we mean the 
onvergen
e as to thekernel in the sense of Caratheodory.Proof. We 
onsider here only the 
ase b 2 �H : The 
ase b 2 int(H ) is quite similar. Weuse that the fun
tion ub(z) is the 
ontinuous fun
tion on (z; b) 2 C � C d�2 [DH℄.We divide the proof into two steps.Step 1. Let K � Ab(1) be an arbitrary 
ompa
t. We show thatK � A�bn(1); n � n0:Choose su
h " > 0 that ub(z) > "; z 2 K:Then(3.1) ubn(z) � "=2; z 2 K; n � n0:If 
1; � � � ; 
d�1 are the 
riti
al points of the polynomial Tb; then ub(
j) = 0; 1 � j � d� 1;and, therefore, 8



(3.2) ubn(
j;n) < "=2; n � n0;where 
j;n are the 
riti
al points of Tbn : Letan = maxfubn(
j;n) : 1 � j � d� 1g:It follows from (3.1) and (3.2) thatK � Gbn(an) � A�bn(1); n � n0:Step 2. Show that Ab(1) is the largest domain with the property mentioned in Step 1.Assume that this is not true, and there exists a subsequen
e, whi
h we also denote bybn; and a domain D �6= Ab(1) su
h, that for any 
ompa
t K � D it holdsK � A�bn(1); n � n0:Then Jb \ D 6= ;: Choose su
h a neighborhood V of z 2 Jb \ D that �V � D; and takeK = �V : Then V � A�bn(1); n � n0; so(3.3) V \ Jbn = ;; n � n0:On the other hand(3.4) Jb � D R = fz : jzj < Rg;for some R < 1: There exists a number N 2 N su
h that TNb (V ) � �D 2R : In view ofTNbn ! TNb ; n!1; we get(3.5) TNbn(V ) � �D3R=2; n � n0:By (3.4) and (3.5) it holds Jb � TNbn(V ); n � n0; and we 
an �nd su
h points y 2 Jbn ; x 2 V;that TNbn(x) = y: Hen
e(3.6) x 2 JbN \ V; n � n0:The relations (3.3) and (3.6) give the 
ontradi
tion, and Theorem 3.1 is proved.Let � = B�1 : U ! A�(1):9



Corollary 3.2. Under the 
onditions of the previous theorem we have �bn ! �b uniformlyon every 
ompa
t in C n �D in the 
ase b 2 �H ; and uniformally on every 
ompa
t in �Ub;when b 2 int(H ):Proof. We use the theorem 3.1 and the Caratheodory theorem.4. One Property of the HedgehogConsider exterior D � = f! : 1 < j!j <1g of the unit disk and its universal 
overingC + = f� : Im� > 0g with a 
overing proje
tion p : C + ! D � ,p : ! 7! exp(�2�i!):The pre-image H� = p�1(U) of the hedgehog's exterior U = D � n S is a universal
overing of U . Moreover, H� = C + nQ;where Q = p�1(S) is a one-periodi
 
omb. The ground of this 
omb is the real axis, andthe ends of teeth of Q are the points with 
oordinates!
;� (n; k) = �� + kdn + i2� u(
)dn ;where 
 2 C�; � 2 �(
); n � 0 and k 2 Z.A lifting �� : ! 7! d! of the map z 7! zd; z 2 U , a
ts in H� as well as in the groundR of Q.Let us �x t� 2 R. For every 
 2 C�, denote by d(r)
 (t�) the distan
e between t� andthe point of the set ��(
) = f� + k : � 2 �(
); k 2 Zg, whi
h is nearest to the point t�and has a smaller value. Similarly, the number d(`)
 (t�) is the distan
e between t� and thenearest point of ��(
) bigger than t�. SetD(r)
 (t�) = infn�0 d(r)
 (dnt�);D(`)
 (t�) = infn�0 d(r)
 (dnt�):The following two numbers 
(r) and 
(`) are uniquely de�ned by the 
onditions:tg
(r) = max
2C� 12� u(
)D(r)
 (t�) ; 
(r) 2 (0; �2 ℄;tg
(`) = max
2C� 12� u(
)D(`)
 (t�) ; 
(`) 2 (0; �2 ℄:10



Proposition 4.1. The anglesW (r)(t�) = �t� + f! 2 C + : 
(r) < arg! < �2 g;W (`)(t�) = �t� + f! 2 C + : �2 < arg! < � � 
(`)gbelong to H�, and they are the maximal open angles with this property.Proof. If an angle �t� + f! 2 C + : 
 < arg! < �2 gis the maximal su
h an angle, whi
h lies in H�, thentg
 = sup Im!
;� (n; k)Re!
;� (n; k)� (�t�) =sup u(
)=2�dnt� � � � k ;where supremum is taken over all points 
 2 C�; � 2 �(
), and over su
h values n; k, thatn � 0; k 2 Z, and the denominator is positive. Hen
e, 
 = 
(r). The angle 
(`) is foundsimilarly.Remind, that �t = dt(mod1). Let t = ft�g be the fra
tional part of t�.Corollary 4.1. The following 
onditions are equivalent:(a) none point of the union [
2C��(
) is a point of the 
losure of the orbit f�ntg1n=0,(b) there is some nonsingular open angleW (t�) = �t� + f! 2 C + : 
1 < arg! < � � 
2g0 < 
1; 
2 < �2 ;whi
h lies within H�.Let E be the set of the points t� 2 R, for whi
h su
h an angle exists. Note thatE + 1 = E.Introdu
e the Poin
are metri
 �� inH� and the standard Poin
are metri
 � in C +(d� =jd!jIm! ). We will 
all two Riemannian metri
s �0 and �00 in a domain V � �C are equivalent(�0 � �00) within an open subset V 0 � V , i�, for some 
onstants C 0; C 00 ; 0 < C 0 < C 00 <1,C 0d�0 < d�00 < C 00d�0 inV 0:Let now t� 2 E, so that the nonsingular open angle W (t�) lies in H�.11



Proposition 4.2 The metri
s ��(!) and �(!); ! 2 H�, are equivalent whenever ! belongsto any smaller angle W1(t�), whi
h is in W (t�) together with its sides.Proof. On the one hand, d� < d�� in H�, sin
e H� � C + . On the other hand, if �1(!)is the Poin
are metri
 of the domain W (t�) � H�, then d�� < d�1 and �1 � � in W1(t�).Corollary 4.2 Let Rt � A�(1) be an external radius at angle t, su
h that t 2 E. If z0 2 Rtis �xed, and a point z goes to the Julia set along Rt, then the length of the ar
 of Rt joiningz0 and z, measured in the Poin
are metri
 of the domain A�(1) � C , is equivalent to thefun
tion logu(z0)=u(z).5. Estimates for Multipliers of Repulsive Cy
les of Quadrati
 PolynomialsIn this Se
t. we 
onsider the 
ase, when T
(z) = z2 + 
; and the parameter 
 lies inthe exterior of so-
alled Mandelbrot set M = f
 2 C : JT
 is 
onne
tedg.Let � = (z1; � � � ; zq) be a repulsive 
y
le of the polynomial T
 for some 
 2 C nM: Wesuppose that there is an external radius with a rational argument landing at a point z ofthe 
y
le (�): Remind that in this 
ase only �nitely many, N = N(�); external radii �nishin z; and the map T q permutes them.A number � = (T q)0(z) does not depend on a point z 2 (�) and is 
alled the multiplierof the 
y
le (�):Theorem 5.1(5.1) N log j�j � j log�N j2log j�N j � 2�q log 2ar

tg[(2Nq � 1)a=�℄ ;where a = u(0) and u = u
 is the 
orresponding Green fun
tion.Remark. The following inequality (5.2) is related to (5.1). If z 2 J; then the value�(z) = lim supn!1 1n log j(Tn)0(z)jis the 
hara
teristi
 exponent of the polynomial T at the point z: In [EL2℄ the estimate(5.2) �(z) � � log dar

tg ad�12



was proved for an arbitrary point z 2 J and for an arbitrary hyperboli
 polynomialT; deg T = d: Our method in the present paper is di�erent.Proof of theorem. Set p = Nq: Instead of T we will 
onsider the polynomial T p; whi
hwe again denote by T: This polynomial has the same hedgehog with tops of needlesx(n; k) = expf2a+ 2�i(t
 + k)2n g; n 2 N ;where a = log jB(0)j = u(0); t
 = argB(
): So z is a repulsive �xpoint of T; deg T =2p; T 0(z) = �N ; and let �1; � � � ; �N be the di�erent �xpoints of T0 : � ! �2p su
h that�(�i) = z:We need two 
hanges of variables.1. In the hedgehog's plane we set w = i2� log �: After this the hedgehog S turns in to the1-periodi
 
omb Q with the ends of teeth (see Se
. 4)(5.3) w(n; k) = � t
 + k2n + i 2a2� � 2n + Z; n 2 N :The map � : t! 2t(mod1) a
ts in the ground of this 
omb and in H� = C + nQ.2. Linearizing the fun
tion T in a neighborhood of the point z; we repla
e T by f : z !�Nz; and the point z by the point z = 0:Put uj = i2� log �j: Let Vj be an upper half-neighborhood of the point uj withoutpoints of the 
omb Q. Then there exists a holomorphi
 univalent fun
tion h in Vj su
hthat h(�p(u)) = �Nh(u):Let us assume that there exists su
h a se
torWj = fw 2 C + : jwj < "; 
(r)j < arg w < 
(`)j g;that Wj + uj � Vj : Then after the obvious normalization we get the equationh(2pu) = �Nh(u)in this se
tor. Now we 
an apply the theorem from [L℄. This theorem states that theprevious equation yields the inequality(5.4) j log�N j2log j�nj � 2�j� log 2p
j ;where 13



�j = lim infr!0 1log r ZZh(Wj)\Dr dxdyjzj2 ; z = x+ iy;is the lower logarithmi
 density of the domain h(Wj) and
i = � � 
(r)j � 
(`)jis the angle of the se
tor Wj :Now we 
laim that(5.5) 
i � ar

tg (2p � 1)a�If this 
laim is 
orre
t, then the inequalities (5.4) yieldj log�N j2log j�N j � 2�q log 2ar

tg (2p�1)a� ;sin
e �1 +�2 + � � �+�N � 1; and the required inequality (5.1) is proved.Proof of Claim. Fix j 2 f1; � � � ; Ng and set t0 = �uj : Let Æ(r)
 be the distan
e betweent
 = argB
 and the set P = ft0; �(t0); � � � ; �p�1(t0)g;measured 
lo
kwise on the 
ir
umferen
e of the unit length. By proposition 4.1,tg
(
)j = maxn;k 2a2�(2ntj � t
 � k) = a�Æ(r)
 :Similarly, tg
(`)j = a�Æ(`)
 ;where Æ(`)
 is the distan
e between t
 and P measured 
ounter
lo
kwise on the 
ir
umferen
eof the unit length. Be
ause of Æ
 = Æ(`)
 + Æ(r)
 � 1=(2P � 1); we have
(r)j + 
(`)j = ar
tg a�Æ(r)
 + ar
tg a�Æ(`)
 �� �2 + ar
tg a�Æ
 � �2 + ar
tg (2P � 1)a� ;and 
j = � � 
(r)j � 
(`)j � ar

tg (2P � 1)a� :The 
laim and the theorem are proved.14



6. Sizes of \shades".If J is 
onne
ted (i.e. a = 0); the Pommerenke-Yo

oz inequality [P℄, [Y℄, [L℄ states(6.1) j log�N j2log j�N j � 2q logd;for every repulsive 
y
le of every polynomial T; degT = d: Our inequality (4.1), for a = 0and d = 2; gives two times worse estimate.Yo

oz [Y℄ derived from (6.1) a bound for diameters of the limbs in the set M: Fol-lowing Yo

oz's method, we obtain a generalization of his result.Let us give de�nitions of a \limb" and a \wake". Mu
h more information 
an be foundin [GM℄.Fix an integer N � 2 and 
onsider a set W (N) of all points 
 su
h that the 
orre-sponding map T
 has a repulsive �xed point and there exist pre
isely N external radii,whi
h land at this point (so they are permuted by T
):W (N) is an open set and it 
on-sists of a �nitely many 
omponents (Wi(N)): Ea
h 
omponent Wi(N) is bounded by two
urves R�i and R+i ; whi
h are two external radii in the plane of the parameter 
: Theexternal radii in the parameter plane 
an be des
ribed as the orthogonal traje
tories withrespe
t to the family of \level 
urves" f
 : u
(0) = ag; a > 0: It is important, that, forevery 
omponent Wi(N); the radii R�i and R+i unite in a 
ommon point 
 = 
i(N) 2 �M;namely, for whi
h T
 has a neutral �xed point with a multiplier � su
h that �N = 1: The
losure of every 
omponent Wi(N) 
ontains exa
tly one su
h point 
i(N): It splits the setM into two 
onne
ted part. The �rst part is a 
entral 
ore M0 = f
 : T
 has a repulsiveor neutral �xed point g: The se
ond part of M is 
alled the limb Mi(N): It is in Wi(N):The 
omplement Wi(N) nMi(N) is a wake of this limb.Now we want to de�ne \shades" of the limbs. Fix a number a > 0 and a 
omponentWi(N) (so we �x also a limb Mi(N)): A set Mi(a;N) =Wi(N)\f
 : u
(0) < ag is said tobe a-shade of this limb. Noti
e thatMi(a1; N) �Mi(a2; N); if 0 < a1 < a2;and \a>0Mi(a;N) = Mi(N):15



Yo

oz [Y℄ proved that there is C0 > 0 su
h that the diameter of the limb Mi(N) lessthan C0=N; for all i and N � 2:Theorem 4.1 allows us to generalize slightly this result.Theorem 5.1 There exists C > 0 su
h that(6.2) diamMi(a;N) < 
N ;whenever(6.3) (2N � 1)a < �ar

tg log 2:Proof. Let 
 2 �Mi(a;N) and let � be a multiplier of a nonrepulsive �xed point of T
:Then(6.4) 
 = �2 � (�2 )2and (5.1) implies(6.5) log�N 2 fz : (x� D2 )2 + y2 � (D2 )2g;where D = 2� log 2=ar

tg (2N � 1)a� :The 
ondition (6.3) provides D < 2�; and, together with (6.5), we obtain that log�belongs to the one and only one among N mutually disjointed 
onne
ted sets; ea
h ofthem has a diameter less than 2�=N and 
ontains a point � su
h that �N = 1: Then theinequality (6.2) follows from the expli
it expression (6.4).A
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