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Let T be a polynomial of degree d > 2, and let T™ be the n-th iterate of T'. Recall the
following definitions [F], [B], [DH]:

Y

A(o0) = {2z : T"(2) — 0o, n — oo} is the basin of attraction to infinity,
J = 0A(occ) is the Julia set of T,

u(z) is the Green function of the domain A(oc) with the pole at infinity.
Define u = 0 outside A(cc), then

1
u(z) = lim — log™ [T"(2)|,z € C,

n—oo ™
and

uw(T(z)) =d-u(z).
Let B(z) be the Bottcher function of T,

i.e.

B(z) = lim [T"(z)]"/"",

n— oo

B(z) ~ z,2 = .

so u(z) = log |B(2)|.

Denote by C* the set of all critical points of T, contained in A(oco). If C* = () then
the Julia set .J is connected and the function B(z) gives the conformal map of the simply
connected domain A(oc) onto the exterior of the unit disk. If additionally the set .J
is locally connected, then, by the Caratheodory theorem, B(z) extends to the map of
boundaries, namely .J and T. This map semi-conjugates T'|; and ¢t — d - t(mod27) on
T. If J is connected, but not locally connected, B(z) can be extended to some points of
J = 0A(oc0), for example, to the points of repulsive cycles of T, and this fact is also useful
[D], [DH] [EL1].

The main purpose of this paper is to consider similar (and other) questions in the
situation when C* # () and, consequently, the domain A(oco) is infinitely connected.

The paper consists of two parts.

In the first part (Sects. 1-3) we investigate the Green map [AJ] of the domain A*(c0)
obtained from A(oco) by cutting along the Green lines going from critical points of the

function u(z) to the Julia set. This Green map is the extension of the Bottcher function,
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and the image of A*(oc) under this map is the domain with a hedgehog-like boundary. For
polynomials with real Julia set such a map was considered in [SY] (see also [BGM]).

In the second part (Sects. 4-5) we apply the map onto hedgehog in order to generalize
two known results. The first of them estimates multipliers of repulsive fixed points of poly-
nomials with connected Julia sets [P], [Y], [L], [EL1]. The second one concerns the sizes
of the parts of the Mandelbrot set, so-called “limbs”. The concept of the limb has been
introduced by Douady, Hubbard and Branner (see, for example, [GM]). Yoccoz [Y] esti-
mated diameters of the limbs using the first result (about multipliers). We give analogous
estimates for rational visible periodic points of quadratic polynomials with disconnected

Julia sets (see also [EL2]), and for diameters of neighborhoods of the limbs (we call them

by “shades” of the limbs).



1. The Bottcher Function and the Green Map

Introduce the following definitions:
C*={cy,--,c5}, 1 <s<d—-1,
a = max{u(c;): 1 < j < s},
K(r)={z:u(z) <r},
[(r)=0K(r)={z:u(z) =r},
G(r) =C\ K(r).
If r > a, the domain G(r) is simply connected. In this domain the Bottcher function
B(z) is well defined and gives a conformal map of G(r) onto {w : |w| > r}. The function

B(z) satisfies the functional equation

(1.1) B(T(2)) = [B(2)]".

This equation yields an analytic continuation of the function B(z) on the whole domain

A(o0). The continued function has branch points in the points of the set

C(oo) = U T7mC",

i.e. in the critical points of the Green function u(z), but the function | B(z)| is single-valued

To make the function B(z) single-valued we use the technique similar to [AJ]. Let us
generalize some definitions from [AJ] and [DH].

Fix positive direction on the level lines I'(r),so that K (r) stays on the left.If a curve
7 crosses I'(r) at a point z,define a positive direction on 7 in a neighbourhood of z in such
a way that the  passes I'(r) from G(r) to K (r).

Fix an angle (slope) 7 € (0, 7). The Green line of the slope 7 is a C'-curve 7 ,which
crosses any level line at the angle 7. The function u(z) is monotone along an arbitrary
Green line. The Green line v is maximal if v is not contained properly in any other Green
line. Thus if z € A(o0) \ C(o0) then exists a unique maximal Green line 47 (z), passing
through this point. So the origin of every maximal Green line is either oo or some point
from C'(oc0). In the former case the maximal Green line is the external radius of the slope

7, in the later case it is the cut(of the same slope).
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Let A%(c0) be a subset of A(oco) formed by points which belong to the external radii,
i.e. A¥(o0) is A(oc) with cuts deleted. Particularly, G(a) C A%(oc).

There exists a unique analytic continuation of the function B(z),z € G(a), along
arbitrary external radius R” of the slope 7.This defines the continued function BT in the
whole domain A¥(c0).

The image BT(RT) of an external radius R is a Cl-curve in D* = {z : 1 < |z| <
oo}, which crosses every circle |z| = r of large enough radius at the angle 7.If we consider
the extention L™ of B"(R") in D* ,which preserves this property,it is ended at a point with
an argument ¢ € [0, 1) of the unit circle.We will call the ¢ the external argument argpgr of
the radius R™ (and its points) in the dynamical plane or the argument arg, of the curve
L™ (and its points) in D*:

t=argpr(R") = arg, (L")
In particular,we have defined the arg,(z) of every point x € D* (of course,the arg,

coincides with the usual argument in the complex plane iff 7 = 7/2).

The continued function maps conformally the domain A%(cc0) onto some domain
U, Cc D*.

We set S, = 0U.,.
Let x € C, |z| > 1, I, ={(: 1 <|¢| < |z],arg,(() = arg-(z)}. We call this curve the
needle, the point exp(it),where t = arg,(x), is the base of this needle.

Consider the map
(1.2) ot — d.t(modl).

If argpr(2) = t, then argpr (T(2)) = o(t).
Every point ¢ € C* is the common end of a finite set of external radii. Denote by
A, (c) the set of the external arguments ¢ of the corresponding radii R with the end at c.

Note that, for every ¢ € A, (c),

o(t) = argpr (T(c)),
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and there exists

;L}I%B (2) = B" (¢, t)
ZGRZ

(this equality is just a notation).

Proposition 1.1. The following statements are true

1. T: A% (o0) — AX(o0).

2. The continued function BT (z) satisfies the functional equation (1.1), in other words,

the function

To=B"oTo(B") !z zt

maps U, into U.,.

oo
S;=T U U U U I
CECT tEAT () n=0 71 ()= BT (c1)

Proof. The map T takes every external radius to an external radius. This implies p.1 and,
then, p.2.

To prove p.3, let us introduce the set of critical arguments:

A= U U o™ A (c)).
r= U 0 eM(A(e)

If t is not such a critical value, then the corresponding external radius R] extends up
to the Julia set. Hence 2™t ¢ S.

On the other hand, if o™ (t) € A-(c) for some n > 0 and ¢ € C*, the radius R} joins

oo and a critical point ¢ of Green map u, so that

It completes the proof.

We will call the set S, the hedgehog (of the equal slope 7). The skin of this hedgehog is
the circle T minus bases of hedgehog’s needles. Let us note that the hedgehog S is uniquely
determined by the slope 7 and the set of limit values B (c,t), for all ¢ € C*,t € A, (c).

Define now the external rays as follows(cf.[GM]).It is just an external radius R = R ,if

R extends up to the Julia set(i.e. R is not ended at a point of C'(cc)).Let the end point of
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R be a point of C(c0).Then B™(R) lands at the top of some needle N,.The function B”
extends to two continuous functions By and B_ on two banks of N,.It allows us to define

the two external rays (of the slope 7) corresponding to the external radius R:

RS = Bi'({C: 1 < [¢] < 00,arg(C) = t}),

where t = arg,(z).

Let R(t) = {z € A*(c¢) : argpz = t} be some external radius. Such radius can walk
approaching to the Julia set J C dA*(00), but not ending to a definite point. Besides, the
Julia set can contain inaccessible from A*(oco) points. But, as it was proved in [DH, p. 70],
any external radius with a rational argument is sure to finish either in some point from
C(oc), or in some pre-image of the point from a repulsive or an indifferent rational cycle
of T. Moreover, if at least one rational external radius lands at a point of such cycle, then
there are finitely many external radii landing at this cycle, all are rational and the same

period (see [GM]). We will denote by N = N(a) the number of such external radii, which

land at point of the cycle («).

2. The Hyperbolic Case

In this Sect. we assume that the polynomial T is hyperbolic, i.e. there exists a

compact neighborhood V' of J and numbers L > 1,3 > 0 such that
(T (2)| < BL™"

for any z € V and for any branch T—".
We give without proofs two propositions concerning this case. The proofs of them are

quite similar to the proofs of corresponding propositions from [DH].

Proposition 2.1. Let T be the hyperbolic polynomial. Then all mazimal Green lines (i.e.

the external radii and the cuts) have their ends on the Julia set.
Define the set J* = dA*(o0). By the definition, J* is a continuum (i.e. connected
compact). In the hyperbolic case this set consists of the Julia set J and of the cuts, which

connect the points of C(oc0) and J.



Proposition 2.2. In the hyperbolic case J* is locally connected.

So in this case B(z) extends to the map of J* onto S which semi-conjugates T'|; and

T, on the skin of the hedgehog S.

Remark. These propositions remain valid in some other cases, for example, when the poly-
nomial 7' is semi-hyperbolic [DH], i.e. when all critical points, lying on J, are preperiodic,

and other critical points tend to attractive cycles.

3. The Dependence on Coefficients of the Polynomial 7.

Let T'(2) be a monic centered polynomial, i.e.
T(z)= 2P by 022+ bz + by

Parametrize such polynomials by points b € C?~2. Let H C C%~2 be the closure of
the set b = (bg, -, dg_2) of such polynomials with disconnected Julia set. We will use the

notations Ap(00), Af(00), up(2) and so on.

Theorem 3.1. Let (b,) C int(H),b, — b. Then the domains Azn(oo) are converging to
Ap(00), if b € OH and to Aj(co), if b € int(H). Here we mean the convergence as to the

kernel in the sense of Caratheodory.

Proof. We consider here only the case b € OH. The case b € int(H) is quite similar. We
use that the function uy(z) is the continuous function on (z,b) € C x C?~2 [DH].

We divide the proof into two steps.
Step 1. Let K C Ap(oo) be an arbitrary compact. We show that

K C Azn(oo), n > ng.

Choose such € > 0 that uy(2) > ¢, z € K.
Then

(3.1) up (2) >¢/2, z€ K, n>ng.

If ¢1,-++,¢cq4—1 are the critical points of the polynomial T3, then uy(c;) =0, 1 <j <d-1,

and, therefore,



(3.2) up, (Cjn) <€/2, n > ng,
where ¢; , are the critical points of Tp, . Let
an = max{up (cjn):1<j<d—1},
It follows from (3.1) and (3.2) that
K C Gy, (an) C Azn(oo), n > ng.

Step 2. Show that A,(occ) is the largest domain with the property mentioned in Step 1.
Assume that this is not true, and there exists a subsequence, which we also denote by

b,,, and a domain D 2 Ay (o00) such, that for any compact K C D it holds
K C Azn(oo), n > ng.
Then J, N D # (. Choose such a neighborhood V of z € J, N D that V C D, and take
K=V.Then V C Azn(oo), n > ng, SO
(3.3) Vndy, =0, n>ne.
On the other hand
(3.4) Jy CDr ={z: 2| < R},
for some R < oc. There exists a number N € N such that TQN(V) D Dog. In view of

TQJZ —)TQN, n — oo, we get,

(3.5) T,Y (V) D Dsgy2, n = no.

-n

By (3.4) and (3.5) it holds .J;, C TQZ (V), n > ng, and we can find such points y € J, ,z €V,
that T} (z) = y. Hence

(3.6) x € Jyp, NV, n > mng.

The relations (3.3) and (3.6) give the contradiction, and Theorem 3.1 is proved.

Let
®=B"1:U— A*(x).



Corollary 3.2. Under the conditions of the previous theorem we have ®p — ®p, uniformly
on every compact in C\ D in the case b € OH, and uniformally on every compact in UQ,
when b € int(H).

Proof. We use the theorem 3.1 and the Caratheodory theorem.

4. One Property of the Hedgehog

Consider exterior D* = {w : 1 < |w| < oo} of the unit disk and its universal covering

Cy ={¢: Im{ > 0} with a covering projection p: C; — D*,
p:w s exp(—2miw).

The pre-image H* = p~}(U) of the hedgehog’s exterior U = D* \ S is a universal
covering of U. Moreover,
H*=C, \Q,
where Q = p~1(S) is a one-periodic comb. The ground of this comb is the real axis, and

the ends of teeth of () are the points with coordinates
T+k i u(e)
— + N ,
dn 27 d”

Wer(n, k) =

where ¢ € C*, 7 € Ac),n >0 and k € Z.

A lifting 7* : w > dw of the map z — 2% z € U, acts in H* as well as in the ground
R of Q.

Let us fix t* € R. For every ¢ € C*, denote by dy)(t*) the distance between t* and
the point of the set A*(c) = {7+ k : 7 € A(¢),k € Z}, which is nearest to the point ¢*
and has a smaller value. Similarly, the number dg)(t*) is the distance between t* and the

nearest point of A*(c) bigger than ¢*. Set
(") (4% — (r) [ qn p*
D7 (t7) inf d, (d"t7),
() (+*) = inf d) (g*
D7 (t%) ;gfo di (d"t).

The following two numbers (") and v are uniquely defined by the conditions:

1 ule) T
tar® — max ) ) o0 T
gy = max o D£’“>(t*)’7 € (0, 5],

1 u(e) 7r

) — — T N Z
tgy o p® (t*)ﬂ € (0, 2].

[\
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Proposition 4.1. The angles

W(T)(t*) = t*+{weC, :,y(r) < argw < g}
W(E)(t*) =—t"+{weC;: g <argw < m™— 7(6)}

belong to H*, and they are the maximal open angles with this property.
Proof. If an angle

—t*+{w€(C+:7<argw<g}

is the maximal such an angle, which lies in H*, then
Imwe - (n, k) _

Rew, r(n, k) — (—t*)

u(c)/2m

drt* —t —k’

tgy = sup
sup

where supremum is taken over all points ¢ € C*, 7 € A(c), and over such values n, k, that
n > 0,k € Z, and the denominator is positive. Hence, v = 4("). The angle v® is found
similarly.

Remind, that 7t = dt(modl). Let t = {t*} be the fractional part of ¢*.

Corollary 4.1. The following conditions are equivalent:
(a) none point of the union % A(c) is a point of the closure of the orbit {T"t}22,,
ceC*

(b) there is some nonsingular open angle
W(t)=—t"+{weCi :y1 <argw <m— 72}

™
0<71772 < 5:

which lies within H*.
Let E be the set of the points ¢t* € R, for which such an angle exists. Note that
E+1=FE.

Introduce the Poincare metric p* in H* and the standard Poincare metric p in C, (dp =

|dw|
Imw

(p) ~ pN) within an open subset V' C V, iff, for some constants C’, C’”, 0<C < < 00,

). We will call two Riemannian metrics p’ and pH in a domain V C C are equivalent

" 1
C'dp' <dp < C dp inV’.
Let now t* € E, so that the nonsingular open angle W (t*) lies in H*.
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Proposition 4.2 The metrics p*(w) and p(w),w € H*, are equivalent whenever w belongs
to any smaller angle W1(t*), which is in W (t*) together with its sides.

Proof. On the one hand, dp < dp* in H*, since H* C C,.. On the other hand, if p;(w)
is the Poincare metric of the domain W (t*) C H*, then dp* < dp; and p; ~ p in Wy (t*).

Corollary 4.2 Let Ry C A*(oc) be an external radius at angle t, such thatt € E. If z9 € Ry
is fized, and a point z goes to the Julia set along Ry, then the length of the arc of R; joining
2o and z, measured in the Poincare metric of the domain A*(oc) C C, is equivalent to the
function logu(zg)/u(z).

5. BEstimates for Multipliers of Repulsive Cycles of Quadratic Polynomials

In this Sect. we consider the case, when T,.(z) = 2% + ¢, and the parameter c lies in
the exterior of so-called Mandelbrot set M = {c € C: Jr, is connected}.

Let o = (21, -, 24) be a repulsive cycle of the polynomial 7. for some ¢ € C\ M. We
suppose that there is an external radius with a rational argument landing at a point z of
the cycle (). Remind that in this case only finitely many, N = N(«), external radii finish
in z, and the map T'Y permutes them.

A number A = (T'7)'(z) does not depend on a point z € («) and is called the multiplier

of the cycle («).
Theorem 5.1

[ log AN |2 271qlog 2

1 Nlog |\ < ,
(5.1) og [A| < log [AN| — arcctg[(2N? — 1)a/7]’

where a = u(0) and u = u, is the corresponding Green function.

Remark. The following inequality (5.2) is related to (5.1). If z € J, then the value

X(2) = limsup~ log | (T™Y'(2)|

n— 00

is the characteristic exponent of the polynomial T' at the point z. In [EL2] the estimate

mlogd

ad
™

(5.2) x(z) <

arcctg
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was proved for an arbitrary point z € J and for an arbitrary hyperbolic polynomial
T,degT = d. Our method in the present paper is different.
Proof of theorem. Set p = Ngq. Instead of T' we will consider the polynomial TP, which

we again denote by T. This polynomial has the same hedgehog with tops of needles
2a + 2mi(t. + k)

on
where a = log|B(0)| = u(0), t. = arg B(c). So z is a repulsive fixpoint of T,degT =
2P, T'(2) = AN, and let (1, --,(n be the different fixpoints of Ty : ¢ — ¢?” such that
d((;) = 2.

We need two changes of variables.

z(n, k) = exp{ }, neN,

1. In the hedgehog’s plane we set w = i log (. After this the hedgehog S turns in to the
1-periodic comb @ with the ends of teeth (see Sec. 4)

tc+k+, 2a
- )
2n 2m - 2"

The map 7 : t — 2t(modl) acts in the ground of this comb and in H* = C, \ Q.

(5.3) w(n, k) =

+Z, neN.

2. Linearizing the function 7" in a neighborhood of the point z, we replace T' by f : z —
ANz, and the point z by the point z = 0.

Put u; = %log ¢j- Let V; be an upper half-neighborhood of the point u; without
points of the comb ). Then there exists a holomorphic univalent function A in Vj such

that
h(1?(u)) = AN h(u).
Let us assume that there exists such a sector

W;={weCy:|wl < 5,7(-”

(€)
G <argw < }

J

that W; + u; C V. Then after the obvious normalization we get the equation
h(2Pu) = AN h(u)

in this sector. Now we can apply the theorem from [L]. This theorem states that the

previous equation yields the inequality
| log AN |2 < 2Aj7r10g2p.

5.4
(5.4) gV = 7,

where

13



dxd
A = liminf // x—Qy,z:w—i-iy,
r—0 ]OgT' W )ﬁDr ‘Z‘

is the lower logarithmic density of the domain h(W;) and

r /
Ny =T — ( ) J( )
is the angle Of the sector ”’J

Now we claim that

2r —1
(5.5) vi > arcctgu

If this claim is correct, then the inequalities (5.4) yield
[ log AV |2 < 27qlog 2
log AN~ arcctgu ’

since Ay + Ag+ -+ Ay <1, and the required inequality (5.1) is proved.
Proof of Claim. Fix j € {1,---, N} and set ¢, = —u;. Let §£T) be the distance between

t. = argpc and the set

P = {tO,T(t0)7 s '7Tp_1(t0)}7

measured clockwise on the circumference of the unit length. By proposition 4.1,

tan™ — max 2a a
G TN 2m (27t — t. — k) ol
Similarly,
0 _ @
tgv, ;
J 7T(5££)
where 5&6) is the distance between t. and P measured counterclockwise on the circumference

of the unit length. Because of 6, = 5 15 > 1/(2F — 1), we have

(7“) 0 _
+v:7 = arctg— +arctg—-—= <
7r5£ r) 7r6(£)
s a s (2P — 1a
< =+ arctg < —+4arctg————,
2 . — 2

2F —1)a

and v; =7 — VJ(T) - 73('6) > arcclg

The claim and the theorem are proved.
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6. Sizes of “shades”.

If J is connected (i.e. a = 0), the Pommerenke-Yoccoz inequality [P], [Y], [L] states

3

| log AV |2

1 —_—
(61 log VY|

< 2q logd,

for every repulsive cycle of every polynomial T, degT = d. Our inequality (4.1), for a = 0
and d = 2, gives two times worse estimate.

Yoccoz [Y] derived from (6.1) a bound for diameters of the limbs in the set M. Fol-
lowing Yoccoz’s method, we obtain a generalization of his result.

Let us give definitions of a “limb” and a “wake”. Much more information can be found
in [GM].

Fix an integer N > 2 and consider a set W(N) of all points ¢ such that the corre-
sponding map T, has a repulsive fixed point and there exist precisely N external radii,
which land at this point (so they are permuted by T.).W(N) is an open set and it con-
sists of a finitely many components (W;(N)). Each component W;(N) is bounded by two
curves I?; and Rj', which are two external radii in the plane of the parameter ¢. The
external radii in the parameter plane can be described as the orthogonal trajectories with
respect to the family of “level curves” {c : u.(0) = a},a > 0. It is important, that, for
every component W;(N), the radii R;” and R;" unite in a common point ¢ = ¢;(N) € OM,
namely, for which 7, has a neutral fixed point with a multiplier A such that AN = 1. The
closure of every component W;(N) contains exactly one such point ¢;(N). It splits the set
M into two connected part. The first part is a central core My = {c : T, has a repulsive
or neutral fixed point }. The second part of M is called the limb M;(N). It is in W;(N).
The complement W;(N) \ M;(N) is a wake of this limb.

Now we want to define “shades” of the limbs. Fix a number a > 0 and a component
W;(N) (so we fix also a limb M;(N)). A set M;(a, N) = W;(N)Nn{c: u.(0) < a} is said to
be a-shade of this limb. Notice that

M,-(al,N) C MZ'(CLQ,N), if 0<ay<as,
and

0, M@ W) = My(N).
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Yoccoz [Y] proved that there is Coy > 0 such that the diameter of the limb M;(N) less
than Cy/N, for alli and N > 2.

Theorem 4.1 allows us to generalize slightly this result.

Theorem 5.1 There exists C > 0 such that

(6.2) diam M;(a, N) < i,
N

whenever

(6.3) (2N —1)a < marcctglog?2.

Proof. Let ¢ € OM;(a, N) and let A be a multiplier of a nonrepulsive fixed point of T..

Then
A A

6.4 — 2 _(2)?
(6.4) c=2-()
and (5.1) implies

D D
(6.5) log AV € {z: (o - 52 +97 < (5)°),
where

2N —1)a

D =2nlog2/arcctg

The condition (6.3) provides D < 2, and, together with (6.5), we obtain that log A
belongs to the one and only one among N mutually disjointed connected sets; each of
them has a diameter less than 27 /N and contains a point A such that AN = 1. Then the

inequality (6.2) follows from the explicit expression (6.4).
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