ITERATION OF A POLYNOMIAL, BASIS, AND THE OPERATOR
OF MULTIPLICATION BY 2z

G. M. Levin UDC 517.53/57

Let T(z) be an arbitrary polynomial of degree p > 2, and let D be its region of attrac-
tion to infinity. 1In this article, we construct natural bases in the space of functions
which are holomorphic on ¢ \ D, and in the conjugate space. We describe the set of eigen-
values of the operator of multiplication by =z.

1. Thus, let T(z) = zP + a,2P~! + ... +a,, let Ty be the kth iteration of T, T,(z) =
z, Tk(B) = {y|Tx(y) € B}, k € N, Bc C. The following objects are related to this poly-
nomial [1]: J = 8D, its Julia set; F = C\ D; u, the equilibrium measure (relative to the
logarithmic potential) on the compact set F; C, the set of critical points of T; Cyx =
kgﬂr;k (€), Cy=C, N D.

We define the dual systems of functions Ej, E:, n > 0.
First, for k=1, 2, ..., p — 1, we put

cr = § ukdp (u),
Es(d=E;, (=1, Ex (@ =25 —cx,
PHL g P2 g

p-F-1
T'(2) :

E(®)=p

Now let n = D e()p' be the p-adic expansion of the natural number n. We define

i=p
E, &) =[] E,uyr, 0, Efx=]] B2 (T, 0D
i=0 =)

Clearly E,(z) is a polynomial of degree n and Ez(z) = 0(z™M), z > », For example, Epn(z) =
Tp(2) — c;.

Proposition 1.

(g, 0En@a@=3,,

(8pm is the Kronecker symbol).

Remark 1. If T'(z) = 0 at a point z € J, then the integrand might not be summable, and
the integral is understood as

1 1
kl_if: 3 Z E ()Ey () =57 § E, (3) Ey, (2) 0 (2) ds,
Tk(z)=a.

where a is an arbitrary point of D \ C,, T is an arbitrary smooth contour which encloses
F, and

o(x)=1lim T, &)("T, ), zeD.

2. Let G be the Green's function of the region D with a pole at o, GlF = 0. We intro-
duce the function spaces X and Y: f € X if f is holomorphic in the region B.(f) = {z|G(z) <
€}, where € > 0 may be different for each f; g € Y if g is holomorphic in (D \ C,) U {=} and

has poles of order not greater than 1 at points of C,.
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THEOREM 1. The function f belongs to X (Y, respectively) if and only if there exists

a unique sequence (@n)pser 3n =€ , such that lim |a, M > 1 (<1, respectively) and f(z) =
n-+0

S apEn(z) (Eﬁ(z), respectively), where z € B.(f) (D \ Cyx, respectively).

n=0

Proof. The proof is based on the following expansion of the Cauchy kernel:

1 -]
7 =50 ) E, @) L (),
n==0

which holds for G(z) < G(A), A € D \ Cg, and the estimates

IntE_(A In|E¥
lim iuﬁ—':-—um ——n—l——'(—)—l—=a(x), A ez DNC,.

N—>00 n N0 n

Remark 2. The estimate for E, can be strengthened on the set F: for some constant
c = c(F)

12,0 <™, zeF, neN,

where Sp(n) is the sum of the digits in the p-adic expansion for n.

Remark 3. From Proposition 1 and Theorem 1 there follow criteria for the expansion of
functions in X into series in the iterations (Tp)p>o-

Remark 4. If g € Y, then the function og is holomorphic in D and equal to zero at in-
finity. We introduce the topology on Y induced by uniform convergence on compact sets in
the space of functions {g, = og, g € Y}, and on X the standard topology of
functions which are locally analytic on F [2]. Then the conjugate of X is isomorphic to Y.
The isomorphism is given by the relation:

1
r

3. We define the matrix Z = (ai,n)i,nzo by the expansion
E ()= Do E (), n=0,1... (@ ,=0 for i>n+t1).
=0

The transposed matrix corresponds to the identity
p'1 _ .
zE':= Z a, iE:(z), Is1, 1£n<2p —1, z&D\C(,.
i=n—1 ’
Let A be the set of eigenvalues of Z.
THEOREM 2. The set A consists of those A for which A € J and

(T (M
Im>0: lim "(,’:’(» = 00,
n-+co p

Exactly one eigenvector & () = (as (Mrse corresponds to each X € A.
Remark 5. If, for example, A € A \ Cx, then a,(M)=Er(A).

Proposition 2. Either A is dense in J or A is empty; J is a circle and T(z) is linear-
ly conjugate to zP.

Remark 6, From the ergodic theorem it follows that w(A) = 1 if J is not connected. If
J is connected, then we apply the iterated logarithm law {3], from which u(A) = 0.

4. In the case T(z) = z2 — t, the matrix Z.is given by
) ord (n-+1)
ZEn (z) = En+1 (z) + t EI En+1—2k (z),
k=1

where ord (m) is the number of zeros up to the first unity in the binary expansion of m (the

binary order of m). A knowledge of Z gives a linear algorithm for the calculation of the
moments of .
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SPECIAL VECTORS IN VERMA MODULES OVER AFFINE ALGEBRAS

F. G. Malikov UDC 519.46

1. Let 4 be an affine Lie algebra, p its Cartan subalgebra, Ay the set of positive
roots, A1® (a}™) the set of positive real (imaginary) roots, g, the root subspace correspond-
to the root a. Consider the Verma module M{(A), X € (m*.

A vector w € M(}) is called special if for each a € Ay 3w = 0.

A family of hyperplanes H, , < ()* indexed by pairs (n, o), where n € N, a € Ay, has been
constructed in [1]; it has been shown there that M(A) is reducible if and only if X €

neJ%eA H, o . If a e Aie and A is a common position point of the hyperplane H, o, then
) +

M(A) has a unique special vector. The formula for it has been found in [2].

Ifaxe Ai@, then the hyperplane Hp o does not depend on n and o, this fact allows us
to abbreviate the notation to Hyp; it is defined by the equation

Af)+g=0, (1)

where ¢ is a generator of the center of § and g is a number (if 4§ is an extended algebra
of currents and ¢ a standard generator of the center, then g is Coxeter's dual number of the
corresponding finite-dimensional algebra). In this note we exhibit a construction of a fam-
ily of special vectors in M(}A) for A € Hj, whose existence was conjectured in [2]. As a
corollary, we obtain a formula for the character of the irreducible module L(A) if A is a
common position point of the hyperplane Hy,. This formula was conjectured in [1].

Let ¢ be a simple finite-dimensional Lie algebra, ¢ an automorphism of order d of the
algebra ¢ induced by an automorphism of its Dynkin diagram. Each affine algebra has the

form ig;@0%3>®t§<50-c for some 8 and o, where resgi is the residue of the number i modulo

d, ¢"¢" is the eigensubspace relative to ¢ corresponding to the eigenvalue exp (2m/=1i/d).
For all n, k € N consider series of the form

e QL ey L QK
Rydroee FoL =N, Ko aRy, *
$ ¥ £ * AySe e Il

where x = (%;, ..., Xg), e, § € 8",  Such series define operators in M(1) and generate
the completion {i(g) of the universal enveloping algebra U(g).

We denote e ®tfte.. . .op @ £ 1= egyy @ "M oL .. vy @ ") , where T is a permutation of min-
imal length satisfying the condition X¢(j) € X¢(j), if i < j. Let T(Q==m<§%_lT(®“) be the

TR

tensor algebra of the space 8 written as a sum of eigensubspaces relative to o. For each
n € N we will define a linear map WR:Z‘@f"”f“—’v(&. To this end, we choose in T(mﬁa%m

a basis consisting of tensors of the form e; e ... ® eg, where e; € ¢ and j, + ... + ik =
n. Put

T (1®... Q)= 3 () 2oy @ .. e, @K

RyteeFRp=n, X =iy

M. V. Lomonosov Moscow State University. Translated from Funktsional'nyi Analiz i Ego
Prilozheniya, Vol. 23, No. 1, pp. 76-77, January-March, 1989. Original article submitted
December 22, 1987.

66 0016-2663/89/2301-0066$12.50 ¢ 198% Plenum Publishing Corporation



