ITERATION OF A POLYNOMIAL, BASIS, AND THE OPERATOR OF MULTIPLICATION BY Z

G. M. Levin UDC 517.53/57

Let T(z) be an arbitrary polynomial of degree $p \ge 2$, and let D be its region of attraction to infinity. In this article, we construct natural bases in the space of functions which are holomorphic on C \ D, and in the conjugate space. We describe the set of eigenvalues of the operator of multiplication by z.

1. Thus, let $T(z) = z^p + a_1 z^{p-1} + \ldots + a_p$, let T_k be the kth iteration of T, $T_0(z) \equiv z$, $T^{-k}(B) = \{y | T_k(y) \in B\}$, $k \in N$, $B \subset C$. The following objects are related to this polynomial [1]: $J = \partial D$, its Julia set; $F = C \setminus D$; μ , the equilibrium measure (relative to the logarithmic potential) on the compact set F; C, the set of critical points of T; $C_{\infty} = \bigcup_{k \geqslant 0} T^{-k}(C)$, $C_* = C_{\infty} \cap D$.

We define the dual systems of functions E_n , E_n^* , $n \ge 0$.

First, for $k = 1, 2, \ldots, p - 1$, we put

$$c_{k} = \int u^{k} d\mu \ (u),$$

$$E_{0}(z) \equiv E_{0}^{*}(z) \equiv 1, \quad E_{k}(z) = z^{k} - c_{k},$$

$$E_{k}^{*}(z) = p \frac{z^{p-k-1} + a_{1}z^{p-k-2} + \dots + a_{p-k-1}}{T'(z)}.$$

Now let $n = \sum_{i=0}^{\infty} \epsilon(i)p^i$ be the p-adic expansion of the natural number n. We define

$$E_n\left(z\right) = \prod_{i=0}^{\infty} E_{\varepsilon(i)}\left(T_i\left(z\right)\right), \quad E_n^* = \prod_{i=0}^{\infty} E_{\varepsilon(i)}^*\left(T_i\left(z\right)\right).$$

Clearly $E_n(z)$ is a polynomial of degree n and $E_n^*(z) = O(z^{-n})$, $z \to \infty$. For example, $E_{pn}(z) = T_n(z) - c_1$.

Proposition 1.

$$\int E_n(z) E_m^*(z) d\mu(z) = \delta_{nm}$$

 $(\delta_{nm} \text{ is the Kronecker symbol}).$

Remark 1. If T'(z) = 0 at a point $z \in J$, then the integrand might not be summable, and the integral is understood as

$$\lim_{k\to\infty}\frac{1}{p^{k}}\sum_{T_{k}\left(z\right)=a}E_{n}\left(z\right)E_{m}^{*}\left(z\right)=\frac{1}{2\pi i}\int_{\Gamma}E_{n}\left(z\right)E_{m}^{*}\left(z\right)\sigma\left(z\right)dz,$$

where a is an arbitrary point of D \ C $_{\star}$, Γ is an arbitrary smooth contour which encloses F, and

$$\sigma(z) = \lim_{n \to \infty} T'_n(z)/(p^n T_n(z)), \quad z \in D.$$

2. Let G be the Green's function of the region D with a pole at ∞ , $G|_{F} \equiv 0$. We introduce the function spaces X and Y: $f \in X$ if f is holomorphic in the region $B_{\varepsilon}(f) = \{z \mid G(z) < \varepsilon\}$, where $\varepsilon > 0$ may be different for each f; $g \in Y$ if g is holomorphic in $(D \setminus C_{\pm}) \cup \{\infty\}$ and has poles of order not greater than 1 at points of C_{\pm} .

Rostov State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 23, No. 1, pp. 74-75, January-March, 1989. Original article submitted November 23, 1987.

THEOREM 1. The function f belongs to X (Y, respectively) if and only if there exists a unique sequence $(a_n)_{n\geqslant 0}, a_n \in \mathbb{C}$, such that $\lim_{n\to\infty} |a_n|^{1/n} > 1$ (≤ 1 , respectively) and $f(z) = \sum_{n=0}^{\infty} a_n \mathbb{E}_n(z)$ ($\mathbb{E}_n^*(z)$, respectively), where $z \in \mathbb{B}_{\varepsilon}(f)$ (D \ C_{*}, respectively).

Proof. The proof is based on the following expansion of the Cauchy kernel:

$$\frac{1}{\lambda - z} = \sigma(\lambda) \sum_{n=0}^{\infty} E_n(z) E_n^*(\lambda),$$

which holds for $G(z) < G(\lambda)$, $\lambda \in D \setminus C_*$, and the estimates

$$\lim_{n\to\infty}\frac{\ln|E_n(\lambda)|}{n}=-\lim_{n\to\infty}\frac{\ln|E_n^*(\lambda)|}{n}=G(\lambda), \quad \lambda\in D\setminus C_*.$$

Remark 2. The estimate for E_n can be strengthened on the set F: for some constant C = C(F)

$$|E_n(z)| \ll C^{S_p(n)}, z \in F, n \in \mathbb{N},$$

where $S_{D}(n)$ is the sum of the digits in the p-adic expansion for n.

Remark 3. From Proposition 1 and Theorem 1 there follow criteria for the expansion of functions in X into series in the iterations $(T_n)_{n\geq 0}$.

Remark 4. If $g \in Y$, then the function σg is holomorphic in D and equal to zero at infinity. We introduce the topology on Y induced by uniform convergence on compact sets in the space of functions $\{g_1 = \sigma g, g \in Y\}$, and on X the standard topology of functions which are locally analytic on F [2]. Then the conjugate of X is isomorphic to Y. The isomorphism is given by the relation:

$$g \in Y \mapsto \beta \in X^*, \quad \beta = \frac{1}{2\pi i} \int_{\Gamma} f(\lambda) g(\lambda) \sigma(\lambda) d\lambda.$$

3. We define the matrix $Z = (\alpha_{i,n})_{i,n \ge 0}$ by the expansion

$$zE_n(z) = \sum_{i=0}^{\infty} \alpha_{i,n} E_i(z), \quad n = 0, 1, \dots (\alpha_{i,n} = 0 \text{ for } i > n+1).$$

The transposed matrix corresponds to the identity

$$zE_n^* = \sum_{i=n-1}^{p^l-1} \alpha_{n,i} E_i^*(z), \quad l \geqslant 1, \quad 1 \leqslant n \leqslant p^l-1, \quad z \in D \setminus C_{\bullet^*}$$

Let A be the set of eigenvalues of Z.

THEOREM 2. The set A consists of those λ for which $\lambda \in J$ and

$$\exists m \geqslant 0 : \lim_{\substack{n \to \infty \\ n \to \infty}} \frac{T'_n(T_m(\lambda))}{p^n} = \infty.$$

Exactly one eigenvector $\bar{a}(\lambda) = (a_n(\lambda))_{n \ge 0}$ corresponds to each $\lambda \in A$.

Remark 5. If, for example, $\lambda \in A \setminus C_{\infty}$, then $a_n(\lambda) = E_n^*(\lambda)$.

<u>Proposition 2</u>. Either A is dense in J or A is empty; J is a circle and T(z) is linearly conjugate to z^p .

Remark 6, From the ergodic theorem it follows that $\mu(A) = 1$ if J is not connected. If J is connected, then we apply the iterated logarithm law [3], from which $\mu(A) = 0$.

4. In the case $T(z) = z^2 - t$, the matrix Z is given by

$$zE_{n}(z) = E_{n+1}(z) + t \sum_{k=1}^{\text{ord } (n+1)} E_{n+1-2k}(z),$$

where ord (m) is the number of zeros up to the first unity in the binary expansion of m (the binary order of m). A knowledge of Z gives a linear algorithm for the calculation of the moments of μ .

- 1. H. Brolin, Arkiv. Math., 6, No. 2, 103-144 (1965).
- 2. S. G. Krein (ed.), Functional Analysis [in Russian], Nauka, Moscow (1972).
- 3. F. Przytycki, M. Urbanski, and A. Zdunik, "Harmonic, Gibbs, and Hausdorff measures on repellers for holomorphic maps," Preprint, Warwick Univ. (1986).

SPECIAL VECTORS IN VERMA MODULES OVER AFFINE ALGEBRAS

F. G. Malikov UDC 519.46

1. Let $\hat{\mathfrak{g}}$ be an affine Lie algebra, $\hat{\mathfrak{g}}$ its Cartan subalgebra, Δ_+ the set of positive roots, $\Delta_+^{\rm re}$ ($\Delta_+^{\rm im}$) the set of positive real (imaginary) roots, $\hat{\mathfrak{g}}_{\alpha}$ the root subspace correspondto the root α . Consider the Verma module $M(\lambda)$, $\lambda \in (\hat{\mathfrak{g}})^*$.

A vector $\mathbf{w} \in M(\lambda)$ is called special if for each $\alpha \in \Delta_+$ $\hat{\mathfrak{g}}_{\alpha} \cdot \mathbf{w} = 0$.

A family of hyperplanes $H_{n,\alpha}\subset (\hat{\mathfrak{p}})^*$ indexed by pairs (n,α) , where $n\in\mathbb{N}$, $\alpha\in\Delta_+$, has been constructed in [1]; it has been shown there that $M(\lambda)$ is reducible if and only if $\lambda\in\bigcup_{n\in\mathbb{N},\,\alpha\in\Delta_+}H_{n,\alpha}$. If $\alpha\in\Delta_+^{\mathrm{re}}$ and λ is a common position point of the hyperplane $H_{n,\alpha}$, then $M(\lambda)$ has a unique special vector. The formula for it has been found in [2].

If $\alpha \in \Delta_+^{im}$, then the hyperplane $H_{n,\alpha}$ does not depend on n and α , this fact allows us to abbreviate the notation to H_{im} ; it is defined by the equation

$$\lambda (c) + g = 0, \tag{1}$$

where c is a generator of the center of $\hat{\mathfrak{g}}$ and g is a number (if $\hat{\mathfrak{g}}$ is an extended algebra of currents and c a standard generator of the center, then g is Coxeter's dual number of the corresponding finite-dimensional algebra). In this note we exhibit a construction of a family of special vectors in $M(\lambda)$ for $\lambda \in H_{im}$ whose existence was conjectured in [2]. As a corollary, we obtain a formula for the character of the irreducible module $L(\lambda)$ if λ is a common position point of the hyperplane H_{im} . This formula was conjectured in [1].

Let g be a simple finite-dimensional Lie algebra, σ an automorphism of order d of the algebra g induced by an automorphism of its Dynkin diagram. Each affine algebra has the form $\bigoplus_{i\in \mathbb{Z}} (g^{(res}d^i)\otimes t^i) \oplus \mathbb{C} \cdot \mathbb{C}$ for some g and σ , where resdi is the residue of the number i modulo d, $g^{(resd^i)}$ is the eigensubspace relative to σ corresponding to the eigenvalue $\exp(2\pi\sqrt{-1}i/d)$. For all n, $k \in \mathbb{N}$ consider series of the form

$$\sum_{x_1+\ldots+x_k=n,\ x_1\leqslant\ldots\leqslant x_k}e_{x,\ 1}\otimes t^{x_1}\cdot\ldots\cdot e_{x,\ k}\otimes t^{x_k},$$

where $x = (x_1, \ldots, x_k)$, $e_{x, i} \in \mathfrak{g}^{(res_{\hat{g}^{x_i}})}$. Such series define operators in $M(\lambda)$ and generate the completion $\hat{U}(\hat{\mathfrak{g}})$ of the universal enveloping algebra $U(\hat{\mathfrak{g}})$.

We denote $e_1 \otimes t^{x_1} \cdot \ldots \cdot e_k \otimes t^{x_k} := e_{\tau(1)} \otimes t^{x_{\tau(1)}} \cdot \ldots \cdot e_{\tau(k)} \otimes t^{x_{\tau(k)}}$, where τ is a permutation of minimal length satisfying the condition $\mathbf{x}_{\tau(\mathbf{i})} \leq \mathbf{x}_{\tau(\mathbf{j})}$, if $\mathbf{i} < \mathbf{j}$. Let $T(\mathfrak{g}) = \bigoplus_{0 \leq k \leq d-1} T(\mathfrak{g})^{(k)}$ be the tensor algebra of the space \mathfrak{g} written as a sum of eigensubspaces relative to σ . For each $n \in \mathbb{N}$ we will define a linear map $\Psi_n \colon T(\mathfrak{g})^{(\mathrm{res}d^n)} \to \mathcal{O}(\widehat{\mathfrak{g}})$. To this end, we choose in $T(\mathfrak{g})^{(\mathrm{res}d^n)}$ a basis consisting of tensors of the form $\mathbf{e}_1 \otimes \ldots \otimes \mathbf{e}_k$, where $\mathbf{e}_{\mathbf{i}} \in \mathfrak{g}^{(i_{\mathbf{i}})}$ and $\mathbf{j}_1 + \ldots + \mathbf{j}_k \equiv n$. Put

$$\Psi_n\left(e_1\otimes\ldots\otimes e_k\right)=\sum_{x_1+\ldots+x_k=n,\ x_i=j_i}(k!)^{-1}:e_1\otimes t^{x_1}\cdot\ldots\cdot e_k\otimes t^{x_k}:$$

M. V. Lomonosov Moscow State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 23, No. 1, pp. 76-77, January-March, 1989. Original article submitted December 22, 1987.