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Abstract
Let G be a profinite group. We define the lower rank of G to be

liminf{d(H)|H <, G},

where H <, G means that H is an open subgroup of G and d(H)
denote the minimal number of generators of H as a topological group.

Let G be an Fp[[t]l-standard pro-p group, e.g. SLL(Fp[[t]]). We
can associate with G a graded Lie algebra L(G) = g ® tF)[t], where g
is a Lie algebra over F), e.g. L(SLL(F,[[t]])) = sla(Fp) ® tF,[t].

We prove that if g is a simple Lie algebra then the lower rank of
G is < d(g) + 1, where d(g) is the minimal number of generators of g.
We show that in many of these cases the lower rank is actually 2.
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1 Introduction

In the theory of pro-p groups the class of p-adic analytic groups is rather well
understood. Much less is known on other classes of pro-p groups. Lubotzky
and Mann proved in [LM] that the lower rank of a p-adic analytic pro-p group
coincides with the minimal number of generators of its p-adic Lie algebra.
They asked if a pro-p group with finite lower rank is it necessarily p-adic
analytic.

In [LSh] Lubotzky and Shalev initialized a systematic study of another
class of pro-p groups, the A-standard ones, where A is a complete commuta-
tive Noetherian local ring. In particular they gave a negative answer to the
question above. In this paper we will focus on the case where A = F,[[t]],
the ring of formal power series over a field of p elements, and study the lower
rank of such groups.

We say that G is an F}[[t]]-standard group, if for some fixed d, G equals
as a set to all the d-tuples over tF[[t]], the maximal ideal of F,[[t]], with a
group law arising from a formal group defined over F[[¢]]. This means that
the multiplication in the group is expressed by a fixed power series.

We recall some basic properties and definitions of F}[[t]]-standard groups.
For more detailed background we refer the reader to [LSh|. Let G be an
F,[[t]]-standard group, with d as above. The set of d-tuples over t" F,[[t]] has
a natural structure of a subgroup of GG, and we denote this subgroup G,,.
Recall Lemma 2.5 from [LSh]:

Lemma 1.1. For positive integers n,m we have:
(1) Gy, is a normal subgroup of G.
(2) G,/Grnyi1 is a finite elementary abelian p-group.
(3) (Gm Gm) c Gn+m-
(4) (Gu)? € Gy,
(5) G equals to the inverse limit of G/G,,.

Corollary 1.2. Every Fy[[t]]-standard group is a pro-p group.

It is worthwhile mentioning that F)[[t|]]-standard groups are not p-adic
analytic.

Denote L, = G, /Gpy1, and L(G) = ®,>1L,. L(G) has a natural struc-
ture of a Lie algebra over F},, where for homogeneous elements G, 11, YG 1| =
(,9)Grims1- It can be shown that L(G) = g ® tF,[t], where g is a finite
dimensional Lie algebra over F),.



We call G F,|[[t]]-simple (perfect) group if g is a simple (perfect) Lie
algebra. The basic example of F,[[t]]-perfect group is the first congruence
subgroup of SL4(F}[[t]]), where d # 2 or p # 2. There the nth congruence
subgroup is:

G = SLy(F[[t]]) = Ker(G — SLa(Fp[[t]]/t"E[[t]])) (n > 1).
It is not hard to see that
L(G1) = g @, tF[t] = sla(tF[t]), (1)

as Lie algebras, where g = sl;(F,). We should mention here that a definition
of A-simple (perfect) groups can actually be made over more general rings A
(see [LSh]).

Let G be an F,[[t]]-simple group. Suppose H < G is a closed subgroup
of G. Notice that we can view

(HNGR)Gni1/Gni1 CGh/Gri1 = g

as a subspace of g. We can associate with H a graded Fj,-subalgebra of L(G).
This is done in the following way:

®n>1(HNGr)Gny1/Grga,

by abuse of notation we denote this subalgebra by L(H). Notice that if
K C H are two closed subgroups then L(K) C L(H) and

log, |H : K| = dim, L(H)/L(K).

In particular |G : H| = oo if and only if L(H) has infinite codimension in

L(G).

Lubotzky and Shalev ([LSh], Theorem 4.6) gave a proof that A-perfect
pro-p groups have finite lower rank. Their proof actually shows that in the
case of Fy[[t]]-perfect groups the lower rank does not exceed 2 dim(g).

Denote by d(g) the minimal number of generators of g as a Lie algebra.
We show the following:

Theorem 1.3. Let G be an Fy[[t]]-simple group. If L(G) = g ® tF,[t], then
the lower rank of G is at most d(g) + 1.



We can use the same method to improve the bounds on the lower rank of
A-simple groups in general, but the improvement is not significant as in the
case of Fy[[t]]-simple groups, so we omit it.

Definition: Let g be a simple Lie algebra over a field F'. Let M be a graded
Lie F-subalgebra of infinite index of g ® tF[t]. We say that M is weakly
maximal if the only graded F-subalgebras that contain M are M itself and
F-subalgebras of g ® tFt] of finite codimension.

Remark: Note that since g®tF'[t] is finitely generated, every graded subalge-
bra of infinite codimension can be extended to a weakly maximal subalgebra.

The main tool in the proof of Theorem 1.3 is the classification of weakly
maximal subalgebras of g ® ¢F[t], which was obtained in a joint work with
Shalev and Zelmanov (see [BShZ]).

Kuranishi proved that for a simple Lie algebra g over C, d(g) = 2 (see
[Ku]). Classical simple Lie algebras in the modular case have the same struc-
ture theory as simple Lie algebras over C, see Seligman [Se] Chapter 2 for
more details. Using Kuranishi’s idea we prove the following theorem.

Theorem 1.4. Let g be a classical simple Lie algebra over F,, where p > 3.
Then d(g) < 4. In the cases where g = sly(F,) orp > r?+r(r —1)/2, where
r is the dimension of the Cartan subalgebra of g, d(g) = 2.

We remark here that except in the case where the Dynkin diagram of g
is of type G5 the theorem is also true for p = 3.

Corollary 1.5. Let G be an F,[[t]]-simple group such that L(G) = g&tF,[t].
If g is a classical simple Lie algebra, and p > 3 then the lower rank of G is
at most 5. In in the case where p > r*+r(r —1)/2, where r is the dimension
of the Cartan subalgebra of g the lower rank of G is at most 3.

In fact we can improve this as follows:

Theorem 1.6. Let G be an Fy[[t]]-simple group such that L(G) = gQtE,[t].
If g is a classical simple Lie algebra, and p > 7> +r(r —1)/2, where r is the
dimension of the Cartan subalgebra of g then the lower rank of G is 2.

The following corollary settles Lubotzky’s and Shalev’s question whether
the lower rank of SL1(F,[[t]]) is 2 or 3.



Corollary 1.7. If p > 2 then the lower rank of SLy(F,[[t]]) is 2.

We remark that the lower rank of another famous pro-p group, the Not-
tingham group, is known to be 2 when p > 3, see [Sh|. This can be proved
using very similar arguments as ours.

2 Weakly maximal subalgebras of g ® tF|t]

Let g be a finite dimensional simple Lie algebra over F. The centroid,
Cent(g), of g consists of all elements T" € Endr(g) satisfying:

[T(x),y] =T([z,y]) (z,y€g).

It is not hard to see that Cent(g) is a finite field extension of F'. In particular

€

in the case of F,, Cent(g) = F,, where ¢ = p°.

Definition. Let k£ be a positive integer, and let g = éBf;OI g; be a Zy-grading

of g (where Zy = Z/kZ). Let « be the k-tuple (go,. .. ,8k_1). Define

L(g, k, a) = @OneNbBnmodk & .

We allow the trivial Z;-grading o = (g,0,...,0). It is not hard to see
that L(g, k,«) is a graded F-subalgebra of g ® tF[t] which is of infinite
codimension.

Below is the classification of weakly maximal subalgebras of g ® tF[t]
which was obtained in a joint work with Shalev and Zelmanov (see [BShZ,

§4]).

Theorem 2.1. Let F' be any field and let g be a simple finite-dimensional
Lie algebra over F. Let M be a weakly mazimal subalgebra of g @ tF|[t].
Denote the centroid of g by K. Then one of the following holds:

(i) M = b @ tF[t], where b is a mazimal subalgebra of g.

(i1) For some X\ € K* and a mazimal subalgebra by of g satisfying K-h =g
we have M = @penA"h @ 1.

(iit) M = L(g, q, ) for some prime q and a Z,-grading o of g.

Definition. Let M = &,cnM,, ® t" be a graded subalgebra of g ® tF[t]. We
say that M is periodic if there is k£ such that for all n M,, = M, 4.



Lemma 2.2. Suppose g is defined over a finite field F,,. Then every weakly
mazimal subalgebra M = @nenM, @t" of g @ tF,[t] is periodic. Moreover in
the case where M is of type (ii) or (iii) the minimal period k exceeds 1. If
(n —m) # 0 mod k, then M, N M, = 0.

Proof.  Surely the argument holds for weakly maximal subalgebras of
type (i) and (iii). Suppose the subalgebra is of type (ii). Then there is
a minimal integer k such that A\¥ € F,, which implies that the subalgebra
has period k. Suppose M, N M,, # 0. Then there are z,y € g such that
A"z = A™y. Since g is simple the adjoint represention is faithful. Therefore
we can view g as a matrix algebra, and in particular we can assume x,y are
matrices. Either x = y = 0 or if we view x and y as matrices there are 7,
such that the 7, entry of A"z is not trivial and equals the 7, 7 entry of \™y.
But z;;,y;; € F,, which implies that A"~™ € F,. Since k is minimal we
deduce that k£ divides n — m. a

3 The lower rank of F,[[t]]-simple groups

Recall that the lower rank of a profinite group G is
liminf{d(H)|H <, G},

where H <, G means that H is an open subgroup of G and d(H) denote the
minimal number of generators of H as a topological group.

Proof of Theorem 1.3: Set d = d(g). Let z1,...,24 € g be a set of
generators of g. Given N > 0,set ny =--- =ng =N, 2411 = x1, and ngy; =
N + 1. First we show that 1 ® t™,..., 2441 ® t"4+1 generate a subalgebra
of finite index. Suppose they do not. Then they lie in a graded subalgebra
of infinite index. Therefore they lie in a weakly maximal subalgebra M =
GM, t". We now apply Theorem 2.1. Since x1, ..., x4 generate g M cannot
be of type (i). Therefore M has period & > 1. Since 0 # x; € My N My
by Lemma 2.2 k£ divide 1 = N + 1 — N, a contradiction.

Now for each i we can find ¢g; € G, such that ¢;G,,+1/Gp01 = x; @ .
Let H be the closed subgroup generated by the g;’s. Since z; ®t"!, ..., 2411 ®
t"a+1 € L(H), we see that L(H) is of finite codimension. This implies that
H is of finite index, i.e. open. Notice that H C Gy and H is generated by
k elements. Since G, form a base to the neighborhoods of the identity the
result follows.



O

Proof of Theorem 1.4: We start with case where p > r?+r(r—1)/2. Since
g is classical we can write g = H @ (Bocoda), Where H is a maximal toral
subalgebra of g, ® a root system, and g, is one dimensional. Let A C ® be
a base of the root system, notice |A| = r. For each o € ® set 0 # 2, € gq-

Let a be a positive root. Then there is a sequence of roots of the form
B = i, and for 1 < j < k B; = Bj_1 + o, where B = «, and oy; € A
[Se, Lemma I1.5,2]. If o, 8, @ + (8 are non-zero roots then [gq, §5] = ga+s [Se,
Lemma I1.4.1]. We conclude that the elements {z,}ac+a generate g.

We wish to find h € H such that if @ # § € £A then a(h) # B(h).
That is equivalent to (« + 8)(h) # 0, where o, 3 € A, and (« — 3)(h) # 0,
where a # 3 € A. The first condition means that A is not in the kernel of
r? functionals. The second means that h is not in the kernel of r(r — 1)/2
functionals (we divide by 2 because the kernel of o — (3 is the same as the
kernel of 3 — «). Since p > r? 4+ r(r — 1)/2 we can find such h € H.

Set £ =Y, i Ta- Notice that adj(z) =3, A a(h)fz,. Let us look at
a matrix 2r by 2r, where the rows are labeled by the roots in +=A. Suppose
we let the o, k entry to be equal to a(h)¥, we get a Vandermonde’s matrix.
We deduce that a subalgebra that contains x and h also contains {4 }ac+a-
Therefore x and h are generators of g.

We point out the fact that ad?~' (z) = =, since a(h)?~! = 1 for all a.

Now suppose g = sls(F,). We view g in the standard way as d by d
matrices with trace zero. Set e;; to be the d by d matrix such that the
(¢,7) entry of it is one and all other entries are zero. Set h = e;; — eqo and
T = Zf:_ll(ei,iﬂ + e;4+1,1). Notice that

[h, 61,2] = 261,2, [h, 62,1] = —262,1, [h, 62,3] = 6273, [h, 63,2] = —63,2,

and [h, ei,z’+1] = [h, €i+1,i] = (0 for 7 > 2.

Since p > 3 the elements 1,—1,2, —2 are distinct. Using again the ar-
gument with Vandermonde’s matrix we deduce that b the subalgebra of g
which is generated by x, h contains e; 5, €5 1, €2 3, €3 2, and Z?;; (€iit1+€it1,i)-
This implies that eoo — €33 = [e23,€32] € h. Continuing by induction with
€22 — €33 and Z;j:_?)l(ei,i_f_l + ei—l—l,i) we conclude that for all ¢ €ii+1,Cit14 € [),
hence h = g.

Finely we deal with the general case where g is classical with no restric-
tions. Let ® and A be as above. If the Dynkin diagram of ® is of type
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G the result follows since |A| = 2. Otherwise we view the possible Dynkin
diagrams. We see that in all cases there is one root @ € A such that by
removing « we get a root system isomorphic to A, for some n. Since A, is
the root system of sl,;(F),) we see that there is a subalgebra generated by
two elements that contains £A except +«a. Adding +« finishes the proof. O

Proof of Theorem 1.6: Suppose p > 12 +r(r — 1)/2. Let z,h be as in
the first part of the proof of Theorem 1.4. Given N > 0. As in the proof of
Theorem 1.3 it is enough to show that h ® t¥ and (h + z) @ t" ' are not
contained in a weakly maximal subalgebra. Since h and h + x are generators
of g we only have to deal with weakly maximal subalgebras of type type (ii)
or (iii).

Suppose h @ tV, (h + z) ® tV*! € M a weakly maximal subalgebra. We
see that

ad,(h + ) @ 2NV = ady,(z) @ 2V
lies in M. By induction for all £ > 1
adf(h+12) ® fHDNHL adt(z) ® 1N+

lies in M.
Recall that ad?~"(z) = z. Therefore

ad? Nz + h) @ "V = g @ PN T
and
ad? (z + h) ® tPTONHL = ad,, (z) @ tPHIN+
lie in M. Therefore
adnss(z) ® PVHHVH g, (1) @ (FHINA2

lies in M. From Lemma 2.2 we conclude that the period of M must divide
(p+1)N+2)—((p+1)N + 1) = 1. This is a contradiction because the
periods of subalgebras of type (ii) and (iii) are strictly greater than 1. O

Proof of Corollary 1.7: Recall that g the Lie algebra associated with
SL3(F,[[t]) is sla(F,). Notice that r the dimension of the Cartan subalgebra
of sly(F,) is one. The assertion follows from Theorem 1.6. !
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