The lower rank of some pro-p groups and the number of generators of simple Lie algebras

Yiftach Barnea*
Institute of Mathematics, The Hebrew University
Jerusalem 91904, Israel
e-mail: yiftach@math.huji.ac.il

January 27, 1998

Preprint No. 9 1997/98

Abstract

Let G be a profinite group. We define the lower rank of G to be $\liminf\{d(H)|H\leq_o G\},$

where $H \leq_o G$ means that H is an open subgroup of G and d(H) denote the minimal number of generators of H as a topological group.

Let G be an $F_p[[t]]$ -standard pro-p group, e.g. $SL_d^1(F_p[[t]])$. We can associate with G a graded Lie algebra $L(G) = \mathfrak{g} \otimes tF_p[t]$, where \mathfrak{g} is a Lie algebra over F_p , e.g. $L(SL_d^1(F_p[[t]])) = \mathfrak{sl}_d(F_p) \otimes tF_p[t]$.

We prove that if \mathfrak{g} is a simple Lie algebra then the lower rank of G is $\leq d(\mathfrak{g}) + 1$, where $d(\mathfrak{g})$ is the minimal number of generators of \mathfrak{g} . We show that in many of these cases the lower rank is actually 2.

^{*}Partially supported by the Edmund Landau Center for Research in Mathematical Analysis and Related Areas, sponsored by the Minerva Foundation (Germany).

¹⁹⁹¹ Mathematics Subject Classification: Primary 20E18, 17B50; Secondary 20F40, 17B67.

1 Introduction

In the theory of pro-p groups the class of p-adic analytic groups is rather well understood. Much less is known on other classes of pro-p groups. Lubotzky and Mann proved in [LM] that the lower rank of a p-adic analytic pro-p group coincides with the minimal number of generators of its p-adic Lie algebra. They asked if a pro-p group with finite lower rank is it necessarily p-adic analytic.

In [LSh] Lubotzky and Shalev initialized a systematic study of another class of pro-p groups, the Λ -standard ones, where Λ is a complete commutative Noetherian local ring. In particular they gave a negative answer to the question above. In this paper we will focus on the case where $\Lambda = F_p[[t]]$, the ring of formal power series over a field of p elements, and study the lower rank of such groups.

We say that G is an $F_p[[t]]$ -standard group, if for some fixed d, G equals as a set to all the d-tuples over $tF_p[[t]]$, the maximal ideal of $F_p[[t]]$, with a group law arising from a formal group defined over $F_p[[t]]$. This means that the multiplication in the group is expressed by a fixed power series.

We recall some basic properties and definitions of $F_p[[t]]$ -standard groups. For more detailed background we refer the reader to [LSh]. Let G be an $F_p[[t]]$ -standard group, with d as above. The set of d-tuples over $t^nF_p[[t]]$ has a natural structure of a subgroup of G, and we denote this subgroup G_n . Recall Lemma 2.5 from [LSh]:

Lemma 1.1. For positive integers n, m we have:

- (1) G_n is a normal subgroup of G.
- (2) G_n/G_{n+1} is a finite elementary abelian p-group.
- (3) $(G_n, G_m) \subseteq G_{n+m}$.
- $(4) (G_n)^p \subseteq G_{pn}.$
- (5) G equals to the inverse limit of G/G_n .

Corollary 1.2. Every $F_p[[t]]$ -standard group is a pro-p group.

It is worthwhile mentioning that $F_p[[t]]$ -standard groups are not p-adic analytic.

Denote $L_n = G_n/G_{n+1}$, and $L(G) = \bigoplus_{n \geq 1} L_n$. L(G) has a natural structure of a Lie algebra over F_p , where for homogeneous elements $[xG_{n+1}, yG_{m+1}] = (x,y)G_{n+m+1}$. It can be shown that $L(G) = \mathfrak{g} \otimes tF_p[t]$, where \mathfrak{g} is a finite dimensional Lie algebra over F_p .

We call G $F_p[[t]]$ -simple (perfect) group if \mathfrak{g} is a simple (perfect) Lie algebra. The basic example of $F_p[[t]]$ -perfect group is the first congruence subgroup of $SL_d(F_p[[t]])$, where $d \neq 2$ or $p \neq 2$. There the nth congruence subgroup is:

$$G_n = SL_d^n(F_p[[t]]) = Ker(G \to SL_d(F_p[[t]]/t^nF_p[[t]])) \quad (n \ge 1).$$

It is not hard to see that

$$L(G_1) \cong \mathfrak{g} \otimes_{F_n} tF_p[t] \cong \mathfrak{sl}_d(tF_p[t]), \tag{1}$$

as Lie algebras, where $\mathfrak{g} = \mathfrak{sl}_d(F_p)$. We should mention here that a definition of Λ -simple (perfect) groups can actually be made over more general rings Λ (see [LSh]).

Let G be an $F_p[[t]]$ -simple group. Suppose $H \leq G$ is a closed subgroup of G. Notice that we can view

$$(H \cap G_n)G_{n+1}/G_{n+1} \subseteq G_n/G_{n+1} \cong \mathfrak{g}$$

as a subspace of \mathfrak{g} . We can associate with H a graded F_p -subalgebra of L(G). This is done in the following way:

$$\bigoplus_{n>1} (H\cap G_n)G_{n+1}/G_{n+1}$$

by abuse of notation we denote this subalgebra by L(H). Notice that if $K \subset H$ are two closed subgroups then $L(K) \subset L(H)$ and

$$\log_p|H:K|=\dim_{F_p}L(H)/L(K).$$

In particular $|G:H|=\infty$ if and only if L(H) has infinite codimension in L(G).

Lubotzky and Shalev ([LSh], Theorem 4.6) gave a proof that Λ -perfect pro-p groups have finite lower rank. Their proof actually shows that in the case of $F_p[[t]]$ -perfect groups the lower rank does not exceed $2\dim(\mathfrak{g})$.

Denote by $d(\mathfrak{g})$ the minimal number of generators of \mathfrak{g} as a Lie algebra. We show the following:

Theorem 1.3. Let G be an $F_p[[t]]$ -simple group. If $L(G) = \mathfrak{g} \otimes tF_p[t]$, then the lower rank of G is at most $d(\mathfrak{g}) + 1$.

We can use the same method to improve the bounds on the lower rank of Λ -simple groups in general, but the improvement is not significant as in the case of $F_p[[t]]$ -simple groups, so we omit it.

Definition: Let \mathfrak{g} be a simple Lie algebra over a field F. Let M be a graded Lie F-subalgebra of infinite index of $\mathfrak{g} \otimes tF[t]$. We say that M is **weakly maximal** if the only graded F-subalgebras that contain M are M itself and F-subalgebras of $\mathfrak{g} \otimes tF[t]$ of finite codimension.

Remark: Note that since $\mathfrak{g} \otimes tF[t]$ is finitely generated, every graded subalgebra of infinite codimension can be extended to a weakly maximal subalgebra.

The main tool in the proof of Theorem 1.3 is the classification of weakly maximal subalgebras of $\mathfrak{g} \otimes tF[t]$, which was obtained in a joint work with Shalev and Zelmanov (see [BShZ]).

Kuranishi proved that for a simple Lie algebra \mathfrak{g} over \mathbb{C} , $d(\mathfrak{g})=2$ (see [Ku]). Classical simple Lie algebras in the modular case have the same structure theory as simple Lie algebras over \mathbb{C} , see Seligman [Se] Chapter 2 for more details. Using Kuranishi's idea we prove the following theorem.

Theorem 1.4. Let \mathfrak{g} be a classical simple Lie algebra over F_p , where p > 3. Then $d(\mathfrak{g}) \leq 4$. In the cases where $\mathfrak{g} = \mathfrak{sl}_d(F_p)$ or $p > r^2 + r(r-1)/2$, where r is the dimension of the Cartan subalgebra of \mathfrak{g} , $d(\mathfrak{g}) = 2$.

We remark here that except in the case where the Dynkin diagram of \mathfrak{g} is of type G_2 the theorem is also true for p=3.

Corollary 1.5. Let G be an $F_p[[t]]$ -simple group such that $L(G) = \mathfrak{g} \otimes t F_p[t]$. If \mathfrak{g} is a classical simple Lie algebra, and p > 3 then the lower rank of G is at most 5. In in the case where $p > r^2 + r(r-1)/2$, where r is the dimension of the Cartan subalgebra of \mathfrak{g} the lower rank of G is at most 3.

In fact we can improve this as follows:

Theorem 1.6. Let G be an $F_p[[t]]$ -simple group such that $L(G) = \mathfrak{g} \otimes t F_p[t]$. If \mathfrak{g} is a classical simple Lie algebra, and $p > r^2 + r(r-1)/2$, where r is the dimension of the Cartan subalgebra of \mathfrak{g} then the lower rank of G is 2.

The following corollary settles Lubotzky's and Shalev's question whether the lower rank of $SL_2^1(F_p[[t]])$ is 2 or 3.

Corollary 1.7. If p > 2 then the lower rank of $SL_2^1(F_p[[t]])$ is 2.

We remark that the lower rank of another famous pro-p group, the Nottingham group, is known to be 2 when p > 3, see [Sh]. This can be proved using very similar arguments as ours.

2 Weakly maximal subalgebras of $\mathfrak{g} \otimes tF[t]$

Let \mathfrak{g} be a finite dimensional simple Lie algebra over F. The centroid, $\operatorname{Cent}(\mathfrak{g})$, of \mathfrak{g} consists of all elements $T \in \operatorname{End}_F(\mathfrak{g})$ satisfying:

$$[T(x), y] = T([x, y]) \qquad (x, y \in \mathfrak{g}).$$

It is not hard to see that $Cent(\mathfrak{g})$ is a finite field extension of F. In particular in the case of F_p , $Cent(\mathfrak{g}) = F_q$, where $q = p^e$.

Definition. Let k be a positive integer, and let $\mathfrak{g} = \bigoplus_{i=0}^{k-1} \mathfrak{g}_i$ be a \mathbb{Z}_k -grading of \mathfrak{g} (where $\mathbb{Z}_k = \mathbb{Z}/k\mathbb{Z}$). Let α be the k-tuple $(\mathfrak{g}_0, \ldots, \mathfrak{g}_{k-1})$. Define

$$L(\mathfrak{g}, k, \alpha) = \bigoplus_{n \in \mathbb{N}} \mathfrak{g}_{n \bmod k} \otimes t^n.$$

We allow the trivial \mathbb{Z}_k -grading $\alpha = (\mathfrak{g}, 0, \dots, 0)$. It is not hard to see that $L(\mathfrak{g}, k, \alpha)$ is a graded F-subalgebra of $\mathfrak{g} \otimes tF[t]$ which is of infinite codimension.

Below is the classification of weakly maximal subalgebras of $\mathfrak{g} \otimes tF[t]$ which was obtained in a joint work with Shalev and Zelmanov (see [BShZ, §4]).

Theorem 2.1. Let F be any field and let \mathfrak{g} be a simple finite-dimensional Lie algebra over F. Let M be a weakly maximal subalgebra of $\mathfrak{g} \otimes tF[t]$. Denote the centroid of \mathfrak{g} by K. Then one of the following holds:

- (i) $M = \mathfrak{h} \otimes tF[t]$, where \mathfrak{h} is a maximal subalgebra of \mathfrak{g} .
- (ii) For some $\lambda \in K^*$ and a maximal subalgebra \mathfrak{h} of \mathfrak{g} satisfying $K \cdot \mathfrak{h} = \mathfrak{g}$ we have $M = \bigoplus_{n \in \mathbb{N}} \lambda^n \mathfrak{h} \otimes t^n$.
 - (iii) $M = L(\mathfrak{g}, q, \alpha)$ for some prime q and a \mathbb{Z}_q -grading α of \mathfrak{g} .

Definition. Let $M = \bigoplus_{n \in \mathbb{N}} M_n \otimes t^n$ be a graded subalgebra of $\mathfrak{g} \otimes tF[t]$. We say that M is **periodic** if there is k such that for all n $M_n = M_{n+k}$.

Lemma 2.2. Suppose \mathfrak{g} is defined over a finite field F_p . Then every weakly maximal subalgebra $M = \bigoplus_{n \in \mathbb{N}} M_n \otimes t^n$ of $\mathfrak{g} \otimes tF_p[t]$ is periodic. Moreover in the case where M is of type (ii) or (iii) the minimal period k exceeds 1. If $(n-m) \neq 0 \mod k$, then $M_n \cap M_m = 0$.

Proof. Surely the argument holds for weakly maximal subalgebras of type (i) and (iii). Suppose the subalgebra is of type (ii). Then there is a minimal integer k such that $\lambda^k \in F_p$, which implies that the subalgebra has period k. Suppose $M_n \cap M_m \neq 0$. Then there are $x, y \in \mathfrak{g}$ such that $\lambda^n x = \lambda^m y$. Since \mathfrak{g} is simple the adjoint represention is faithful. Therefore we can view \mathfrak{g} as a matrix algebra, and in particular we can assume x, y are matrices. Either x = y = 0 or if we view x and y as matrices there are i, j such that the i, j entry of $\lambda^n x$ is not trivial and equals the i, j entry of $\lambda^m y$. But $x_{i,j}, y_{i,j} \in F_p$, which implies that $\lambda^{n-m} \in F_p$. Since k is minimal we deduce that k divides n - m.

3 The lower rank of $F_p[[t]]$ -simple groups

Recall that the lower rank of a profinite group G is

$$\lim\inf\{d(H)|H\leq_o G\},\$$

where $H \leq_o G$ means that H is an open subgroup of G and d(H) denote the minimal number of generators of H as a topological group.

Proof of Theorem 1.3: Set $d=d(\mathfrak{g})$. Let $x_1,\ldots,x_d\in\mathfrak{g}$ be a set of generators of \mathfrak{g} . Given N>0, set $n_1=\cdots=n_d=N$, $x_{d+1}=x_1$, and $n_{d+1}=N+1$. First we show that $x_1\otimes t^{n_1},\ldots,x_{d+1}\otimes t^{n_{d+1}}$ generate a subalgebra of finite index. Suppose they do not. Then they lie in a graded subalgebra of infinite index. Therefore they lie in a weakly maximal subalgebra $M=\oplus M_n\otimes t^n$. We now apply Theorem 2.1. Since x_1,\ldots,x_d generate \mathfrak{g} M cannot be of type (i). Therefore M has period k>1. Since $0\neq x_1\in M_N\cap M_{N+1}$ by Lemma 2.2 k divide 1=N+1-N, a contradiction.

Now for each i we can find $g_i \in G_{n_i}$ such that $g_i G_{n_i+1}/G_{n_i+1} = x_i \otimes t^{n_i}$. Let H be the closed subgroup generated by the g_i 's. Since $x_1 \otimes t^{n_1}, \ldots, x_{d+1} \otimes t^{n_{d+1}} \in L(H)$, we see that L(H) is of finite codimension. This implies that H is of finite index, i.e. open. Notice that $H \subset G_N$ and H is generated by k elements. Since G_n form a base to the neighborhoods of the identity the result follows.

Proof of Theorem 1.4: We start with case where $p > r^2 + r(r-1)/2$. Since \mathfrak{g} is classical we can write $\mathfrak{g} = H \oplus (\bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha})$, where H is a maximal toral subalgebra of \mathfrak{g} , Φ a root system, and \mathfrak{g}_{α} is one dimensional. Let $\Delta \subset \Phi$ be a base of the root system, notice $|\Delta| = r$. For each $\alpha \in \Phi$ set $0 \neq x_{\alpha} \in \mathfrak{g}_{\alpha}$.

Let α be a positive root. Then there is a sequence of roots of the form $\beta_1 = \alpha_{i_1}$, and for $1 < j \le k$ $\beta_j = \beta_{j-1} + \alpha_{i_j}$, where $\beta_k = \alpha$, and $\alpha_{i_j} \in \Delta$ [Se, Lemma II.5,2]. If $\alpha, \beta, \alpha + \beta$ are non-zero roots then $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta}$ [Se, Lemma II.4.1]. We conclude that the elements $\{x_{\alpha}\}_{\alpha \in \pm \Delta}$ generate \mathfrak{g} .

We wish to find $h \in H$ such that if $\alpha \neq \beta \in \pm \Delta$ then $\alpha(h) \neq \beta(h)$. That is equivalent to $(\alpha + \beta)(h) \neq 0$, where $\alpha, \beta \in \Delta$, and $(\alpha - \beta)(h) \neq 0$, where $\alpha \neq \beta \in \Delta$. The first condition means that h is not in the kernel of r^2 functionals. The second means that h is not in the kernel of r(r-1)/2 functionals (we divide by 2 because the kernel of $\alpha - \beta$ is the same as the kernel of $\beta - \alpha$). Since $p > r^2 + r(r-1)/2$ we can find such $h \in H$.

Set $x = \sum_{\alpha \in \pm \Delta} x_{\alpha}$. Notice that $\operatorname{ad}_{h}^{k}(x) = \sum_{\alpha \in \pm \Delta} \alpha(h)^{k} x_{\alpha}$. Let us look at a matrix 2r by 2r, where the rows are labeled by the roots in $\pm \Delta$. Suppose we let the α, k entry to be equal to $\alpha(h)^{k}$, we get a Vandermonde's matrix. We deduce that a subalgebra that contains x and x also contains x and x are generators of x. Therefore x and x are generators of x.

We point out the fact that $ad_h^{p-1}(x) = x$, since $\alpha(h)^{p-1} = 1$ for all α .

Now suppose $\mathfrak{g}=\mathfrak{sl}_d(F_p)$. We view \mathfrak{g} in the standard way as d by d matrices with trace zero. Set $e_{i,j}$ to be the d by d matrix such that the (i,j) entry of it is one and all other entries are zero. Set $h=e_{1,1}-e_{2,2}$ and $x=\sum_{i=1}^{d-1}(e_{i,i+1}+e_{i+1,i})$. Notice that

$$[h,e_{1,2}]=2e_{1,2},\quad [h,e_{2,1}]=-2e_{2,1},\quad [h,e_{2,3}]=e_{2,3},\quad [h,e_{3,2}]=-e_{3,2},$$

and $[h, e_{i,i+1}] = [h, e_{i+1,i}] = 0$ for i > 2.

Since p > 3 the elements 1, -1, 2, -2 are distinct. Using again the argument with Vandermonde's matrix we deduce that \mathfrak{h} the subalgebra of \mathfrak{g} which is generated by x, h contains $e_{1,2}, e_{2,1}, e_{2,3}, e_{3,2}$, and $\sum_{i=3}^{d-1} (e_{i,i+1} + e_{i+1,i})$. This implies that $e_{2,2} - e_{3,3} = [e_{2,3}, e_{3,2}] \in \mathfrak{h}$. Continuing by induction with $e_{2,2} - e_{3,3}$ and $\sum_{i=3}^{d-1} (e_{i,i+1} + e_{i+1,i})$ we conclude that for all $i e_{i,i+1}, e_{i+1,i} \in \mathfrak{h}$, hence $\mathfrak{h} = \mathfrak{g}$.

Finely we deal with the general case where \mathfrak{g} is classical with no restrictions. Let Φ and Δ be as above. If the Dynkin diagram of Φ is of type

 G_2 the result follows since $|\Delta| = 2$. Otherwise we view the possible Dynkin diagrams. We see that in all cases there is one root $\alpha \in \Delta$ such that by removing α we get a root system isomorphic to A_n for some n. Since A_n is the root system of $\mathfrak{sl}_{n+1}(F_p)$ we see that there is a subalgebra generated by two elements that contains $\pm \Delta$ except $\pm \alpha$. Adding $\pm \alpha$ finishes the proof. \Box

Proof of Theorem 1.6: Suppose $p > r^2 + r(r-1)/2$. Let x, h be as in the first part of the proof of Theorem 1.4. Given N > 0. As in the proof of Theorem 1.3 it is enough to show that $h \otimes t^N$ and $(h+x) \otimes t^{N+1}$ are not contained in a weakly maximal subalgebra. Since h and h+x are generators of \mathfrak{g} we only have to deal with weakly maximal subalgebras of type type (ii) or (iii).

Suppose $h \otimes t^N$, $(h + x) \otimes t^{N+1} \in M$ a weakly maximal subalgebra. We see that

$$ad_h(h+x) \otimes t^{2N+1} = ad_h(x) \otimes t^{2N+1}$$

lies in M. By induction for all $k \geq 1$

$$ad_h^k(h+x) \otimes t^{(k+1)N+1} = ad_h^k(x) \otimes t^{(k+1)N+1}$$

lies in M.

Recall that $ad_h^{p-1}(x) = x$. Therefore

$$\mathrm{ad}_h^{p-1}(x+h) \otimes t^{pN+1} = x \otimes t^{pN+1}$$

and

$$ad_h^p(x+h) \otimes t^{(p+1)N+1} = ad_h(x) \otimes t^{(p+1)N+1}$$

lie in M. Therefore

$$ad_{h+x}(x) \otimes t^{pN+1+N+1} = ad_h(x) \otimes t^{(p+1)N+2}$$

lies in M. From Lemma 2.2 we conclude that the period of M must divide ((p+1)N+2)-((p+1)N+1)=1. This is a contradiction because the periods of subalgebras of type (ii) and (iii) are strictly greater than 1.

Proof of Corollary 1.7: Recall that \mathfrak{g} the Lie algebra associated with $SL_2^1(F_p[[t]])$ is $\mathfrak{sl}_2(F_p)$. Notice that r the dimension of the Cartan subalgebra of $\mathfrak{sl}_2(F_p)$ is one. The assertion follows from Theorem 1.6.

Acknowledgment. I wish to thank Aner Shalev for his helpful comments on earlier drafts of this paper.

References

- [BShZ] Y. Barnea, A. Shalev and E.I. Zelmanov, Graded subalgebras of affine Kac-Moody algebras, to appear in *Israel J. Math.*
- [Ku] M. Kuranishi, On everywhere dense imbedding of free groups in Lie groups, Nagoya Math. J. 2 (1951), 63–71.
- [LM] A. Lubotzky and A. Mann, Powerful *p*-groups. I, II. *J. Algebra* **105** (1987), 484–515.
- [LSh] A. Lubotzky and A. Shalev, On some Λ -analytic pro-p groups, Israel J. Math. 85 (1994), 307–337.
- [Se] G.B. Seligman, Modular Lie Algebras, Springer, Berlin, 1967.
- [Sh] A. Shalev, Some problems and results in the theory of pro-p groups, in *Groups '93 Galway/St. Andrews*, Vol 2 (London Math. Soc. Lecture note Series **212**, Cambridge University Press, Cambridge, 1995) 528–542.