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Abstract

In this paper we show that a (non-abelian) free pro-p group can-
not be obtained as a closed subgroup of GL,(F'), where F is a non-
archimedean local field and n is arbitrary. Using a theorem of Zel-
manov [Ze] it is a direct corollary that the Golod-Shafarevich inequal-
ity holds for every finitely generated pro-p subgroup of GL, (F). Our
main tool is a recent theorem by R. Pink characterizing compact sub-
groups of GL,(F).
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1 Introduction

Recently R. Pink [P] gave a qualitative characterization of compact sub-
groups of products of semisimple algebraic groups over arbitrary local fields.
In particular the following result (Corollary 0.5) is a consequence of his (much
more general) theory.

Theorem 1.1. Consider a local field F', a positive integer n, and a compact
subgroup I' C GL,(F). There always exist closed normal subgroups I's C
'y C T’y of I such that

1. T/T'y is finite.
2. T'1/Ty is abelian of finite exponent.

3. There exists a local field E of the same characteristic and the same
residue characteristic as F', a connected adjoint group H over E, with
universal covering = : H — H, and an open compact subgroup A C
H(E), such that T'y/Ts is isomorphic to w(A) as topological groups.

4. I's is a solvable subgroup of derived length no more then n.

We use this theorem to study the following conjecture of Lubotzky and
Shalev ([LSh], Conjecture 3.8).

Conjecture Let A be a complete commutative Noetherian local ring whose
residue field is finite.

(1) A (non-abelian) free pro-p group cannot be embedded as a closed subgroup
in GL,(A).

(2) Every pro-p subgroup of GL,(A) satisfies some non-trivial pro-p-identity.
That is, there exists a finitely generated free pro-p group ® and a non-trivial
quotient ¥ of ® such that every continuous homomorphism from ® to GL,(A)
factors through V.

It was proved by Zubkov [Zu] that (1) holds for all A if and only if the
same is true of (2). The conjecture extends the following theorem of Zubkov
([Zu], Theorem 4.2)

Theorem 1.2. Let p # 2 and G be a pro-p group in GLo(A), where A is a
commutative pro-finite ring. Then G admits a pro-p-identity, independent of
A as well as of G.



We should remark that E. Zelmanov told us that he has a proof of this
theorem also in the case p = 2.
We prove the following theorem:

Theorem 1.3. A (non-abelian) free pro-p group cannot be embedded as a
closed subgroup in GL,(F), where F is a local field.

For the purposes of this paper, a local field is the fraction field of a
complete discrete valuation ring with finite residue field, though the theorem
(and likewise Theorem 1.1) remain valid also for R and C. The theorem
was already known in the case where F' is of characteristic zero by the work
of Lazard [La] and Lubotzky and Mann [LM]. We should remark here that
this does not imply that every pro-p subgroup of GL, (F') satisfies some non-
trivial pro-p-identity.

A pro-p group G with minimal number of generators d = d(G) is said
to satisfy the Golod-Shafarevich inequality if for any presentation (in
the category of pro-p groups) of G with n generators and r relators r >
n+d*/4 - d.

Pro-p groups satisfying the Golod-Shafarevich inequality have been stud-
ied by many people. Golod and Shafarevich proved that finite p-groups
satisfy the inequality. Lubotzky [Lu| extended the result to p-adic analytic
pro-p groups. Wilson [W] proved it for large classes of pro-p groups such
as finitely generated soluble pro-p group, while Lubotzky and Shalev [LSh]
proved it for L-perfect pro-p groups.

The following is a theorem of E. Zelmanov [Ze]:

Theorem 1.4. A pro-p group presented by a small set of relators contains
a (non-abelian) free pro-p subgroup.

For the exact definition of a small set of relators see [Ze]. The best known
examples of pro-p groups G with small sets of relators are groups admitting
a presentation with d = d(G) generators and r relators where r < d?/4.

It is known that if a pro-p group G has a presentation with n generators
and r relators then G has presentation with d(G) generators and r—(n—d(QG))
relators (see [Lu] Lemma 1.1). Combining this fact and Theorems 1.3 and
1.4 we immediately deduce:

Corollary 1.5. Let G be a finitely generated pro-p subgroup of GL,(F),
where F is a local field, and d(G) = d > 1.. If G has presentation of n
generators and r relators, then r > n + d*/4 — d.
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Wilson’s proof of corollary A’ in [W] actually gives the following lemma:

Lemma 1.6. Let G be a finitely presented pro-p group. Assume that every
open subgroup of G satisfies the Golod-Shafarevich inequality. Then

(i) there is a constant k such that d(H) < k|G : H|'/? for each open subgroup
H of G, and

(it) if N is any (closed) normal subgroup of G such that G/N = Z,, then N
s finitely generated.

Thus we have the following corollary:

Corollary 1.7. Let G be a finitely presented pro-p subgroup of GL,(F).
Then

(i) there is a constant k such that d(H) < k|G : H|'/? for each open subgroup
H of G, and

(it) if N is any (closed) normal subgroup of G such that G/N = Z,, then N
15 finitely generated.

If G is a finitely generated pro-p group, denote by a,(G) the number of
subgroups of index n of G. Applying Lemma 4.1 from [LSh| and Corollary
1.7 (i) we get:

Corollary 1.8. Let G be a finitely presented pro-p subgroup of GL,(F).
Then for any n a,(G) < pcnl/2 for some constant ¢ depending on G.

2 On subgroups of GL,(F)

We begin with a lemma essentially asserting that morphisms between vari-
eties over local fields are Lipschitz.

Lemma 2.1. LetV be a discrete valuation ring with uniformizer m and frac-
tion field K. Let X andY be separated schemes locally of finite type and flat
over V, ¢: X xy K =Y xy K a morphism of generic fibers, and z € X (V)
such that ¢(x) € Y(V). Then there exists an integer N > 0 such that for
alln >0 and all 2’ € X(V), x = 2’ (mod 7V™™) implies ¢(z') € Y(V) and
¢(z) = ¢(z') (mod 7).



Proof. The question is local, so we may assume X = Spec A and
Y = Spec B, where A and B are flat finitely generated V-algebras and
¢*: Bxy K — Axy K is a K-algebra homomorphism. Let I and I’ denote
the ideals corresponding to x and z’ respectively and 1 the restriction of
p*to B=B®1 C B®YV. Let by,...,b; generate B as V-algebra and
C1,--- ,Cm generate the B-ideal 97! (I ® K), where 1 is the restriction of ¢
to B=B®1C B® K. We choose N large enough that

Y(b) EA+T NI =V +7 N, () en NI

for all 4, j. The condition ¢(z') € Y (V) means Y(B) CV+I'Q K. If x =2’
(mod 7#N+7), then I C 7NV + I’ so ¢(b;) € V + n~ NI’ for each b;, and
thus ¥(B) C V+a~NI' C V+I'® K. The condition ¢(z) = ¢(z') (mod 7")
means

v (I®K)Cn"V+y (I'® K).

Y(ej) e NI Ca"V+a NI
this condition is satisfied. O

Proposition 2.2. Let T be a torus of dimension r > 1 defined over a field
of Laurent series F' =TF((t)), where F is a finite field. Then for each d > 0,
T(F) contains a closed subgroup isomorphic to Zg.

Proof. By the structure theorem for tori over fields ([DG] X Prop. 1.4),
T is determined up to F-isomorphism by its character group X*(T') together
with the (locally constant) action of Gal(F*/F) on X*(T), where F* de-
notes a separable closure of F'. The action factors through a finite quotient
Gal(K/F), where K = k((u)) and T is split over K. If 7; denotes the split
torus over k[[u]] with generic fiber T' gy k[[u]], the valuation and reduction
maps give short exact sequences of Gal(K/F)-modules

0 — T1(k[[u]]) = T(K) — Hom(X*(T),Z) — 0,
0— Uy — T1(k[[u]]) = Ti(k) — 0.

Setting
Un = ker(T1(k[[u]])) — Ti(k[[u]]/u""),
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we obtain a Gal(K/F)-stable filtration
Uy DU DUy DU3 D ---

On the other hand, 7" has a Néron model (technically, an 1ft-Néron model)
7> on F[[t]] ([BLR] §10.2 Theorem 2). Setting

Vo, = ker(To(F[[t]]) — T2(F[[2]]/ (")),
we obtain the filtration
Voo VioVoD VaD---.

The tori 7; and 73 gy k[[u]] have isomorphic generic fibers, so by Lemma
2.1, the filtrations V; and

U,.N Ug}al(K/F) _ USaI(K/F)

are commensurable, where e is the ramification degree of K/F.
Now Uy /U, is killed by p®, where a,, has logarithmic growth. The same
is therefore true of U(?al(K/F)/UnGaI(K/F). As U, is a free Z,-module, the same

is true of US /) and if the latter has rank < d,

UG U < pene

By the smoothness of Néron models, |V,_1/V,| = [F|", so the logarithm of
[Vo/Va| grows linearly. The proposition follows. O

Corollary 2.3. If G is a semisimple algebraic group over F = F((t)), then
any open subgroup of G contains a commutative subgroup topologically iso-
morphic to 7.

Proof. By [DG] XIV Theorem 1.1, G contains a maximal torus 7’
defined over F', and by [DG| XII Lemma 1.2, the rank of T is positive. By
Prop. 2.2, any open subgroup of T(F') contains an open subgroup of Zz,
hence a subgroup isomorphic to Zg. O

Proof of Theorem 1.3: The case char(F) = 0 is known because p-adic
analytic pro-p groups have finite rank, and free pro-p groups have infinite
rank (see [DDMS] for background on p-adic analytic pro-p groups). Hence
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we may assume that F' = F((¢)). Let I' denote a closed subgroup of GL,,(F)
which is non-abelian free pro-p. It is well-known that every closed subgroup
of a free pro-p group is again free pro-p ([Shatz] Ch. 3 §3 Cor. 3). A non-
abelian free pro-p group is never solvable, so an element of [' that normalizes
a closed abelian subgroup must centralize that subgroup. Thus the only
closed normal solvable subgroup of I' is the trivial group.

Applying Theorem 1.1, we conclude first that ['; is non-abelian free pro-p.
Next, that 'y is non-abelian free pro-p, and finally, that I's = {1}. Thus,
['y/T'3 is a non-abelian free pro-p subgroup isomorphic to 7(A). By Corollary
2.3, A contains a subgroup isomorphic to Zf,, so the same is true of 7(A),
which is absurd since Zj is not free pro-p. a
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