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ABSTRACT. Iintroduce and study new derivative securities which I call game options
(or Israeli options to put them in line with American, European, Asian, Russian etc.
ones). These are contracts which enable both their buyer and seller to stop them at
any time and then the buyer can exercise the right to buy (call option) or to sell (put
option) a specified security for certain agreed price. If the contract is terminated
by the seller he must pay certain penalty to the buyer. A more general case of
game contingent claims is considered. The analysis is based on the theory of optimal
stopping games (Dynkin’s games). Game options can be sold cheaper than usual
American options and their introduction could diversify financial markets.

1. INTRODUCTION

A standard (B, S)-securities market consists of a nonrandom (riskless) compo-
nent By, which is described as a savings account (or price of a bond) at time ¢ with
an interest r, and of a random (risky) component S;, which can be described as the
price of a stock at time ¢. Both discrete time ¢t € Z = {0,1,2,...} and continuous

time t € Ry = {¢t > 0} models are considered. A standard American option is a
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contract which enables its buyer to exercise it, i.e. to sell (put option) or to buy
(call option) the stock for a specific price K, at any time ¢ which amounts to the
gain (K — S;)" in the put and (S; — K)™ in the call option cases. The problem of
fair pricing of American options leads to the optimal stopping of certain stochastic
processes (see [Be|, [Kal,2], [My], [SKKM1,2] and references there). In this paper I
introduce game options in which the seller of an option can cancel the contract at
any time ¢. In this case the buyer’s gain is the sum (K — S;)* + d; in the put and
(S¢ — K)* + 6, in the call option case where §; > 0 is certain penalty paid by the
seller. The pricing of these options leads to a game version of the optimal stopping
problem considered first in the discrete time case by Dynkin [Dy] (a continuous
time version was first treated in [Ki]) but for financial applications it is more ap-
propriate to employ another more general set up studied in [Ne], [El], and [Oh1]
in the discrete time case and developed in the continuous time case in [Kr], [Fr],
[BF1], [Bi] (Markov case) and in [LM] (general case).

The formal set up consists of a probability space (2, F, P) together with a sto-
chastic process S; > 0, t € Z,, or t € R, describing the price of a unit of stock,
of a family of g-algebras F; C F such that F; is generated by all S,, 0 < u < t,
and of two right continuous with left limits stochastic payoff processes X; > Y; > 0
adapted to the filtration {F;,t € Z, or t € R, }.

A game contingent claim (GCC) is a contract between a seller A and a buyer B
which enable A to cancel (terminate) it and B to exercise it at any time ¢ up to a
maturity date (horizon) 7" when the contract is terminated anyway. If B exercises
the contract at time ¢ then he gets from A the payment Y; but if A cancels before B
exercises then A should pay to B the sum X;. If A cancels and B exercises at the
same time ¢ then A pays to B the sum Y;. It turns out (see Remarks 2.2 and 3.2)
that if, instead A pays to B in the latter case the amount X; all results remain the
same provided there is no penalty at maturity date. Assuming that clairvoyance is
not possible A and B have to use only stopping times with respect to the filtration
{F:} as their cancellation and exercise times. The difference §; = X; — Y; > 0 is
interpreted as a penalty which A pays to B for cancellation of the contract.

What is the fair price V* that B should pay to A for such contract? In accordance
with the modern ideology of option pricing based on hedging it is natural to require

that V* should be the minimal capital which enables A to invest it into a skillfully
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managed self-financing portfolio which will cover his liability to pay to B up to a
cancellation stopping time ¢ no matter what exercise time B chooses. Namely, for
any initial capital Zy > V* the seller A should be able to choose a stopping time
o and to manage a self-financing portfolio having a wealth Z; at time ¢ and being
redistributed in discrete times or continuously between the savings account and the
stock shares so that Z; is sufficient for payment to B provided he exercises GCC
at the time t € [0, 0]. Thus hedging in GCC consists in a choice of both a hedging
investment policy and of a cancellation time of the contract. I shall show that this
leads to the zero sum optimal stopping game of two players with the payoffs e~ "* X,
and e "tY;.

If A is not allowed to terminate the contract before the maturity time 7' then
we arrive at an American Contingent Claim. The same can be achieved in the
framework of my model if the penalty is chosen large enough, for instance, if X; =
Y;+ 0 and 6 > sup FEY,. On the other hand, I could modify the above model so
that B is not a(ils():zvsqui to terminate the contract until the maturity date 7' in the
spirit of European (game) options. This also can be considered in the framework
of my model if I take Y; =0 fort < T and Y; = Y > 0 for t = T. Observe, that
if the penalty dg is zero then either A or B should terminate the contract at once
and the price V* equals Yy. It follows from Theorems 2.1 and 3.1 that the price
V* is a continuous increasing function of penalty which varies, thus, from Yj to
SUPo<,<T Yr-

In the next section I consider the discrete time case where the stock evolution is
described by the popular binomial CRR-model introduced in [CRR]. In Section 3 I
deal with the continuous time situation where the stock evolution is described by
the geometric Brownian motion. The payoff functions X; and Y; are supposed to be
right continuous and having left limits. In particular, one can take Y; = (K — S;)*
orY; = (S; — K)* and X; = Y; + 6;. These cases are naturally to call put or call
game options, respectively, with a penalty process d;, t > 0. Other payoff functions
leading to exotic game options can be considered, as well. In Section 4 I discuss
the case when Y; and X; have the form 3*Y (S;) and B X (S;), 3 < 1.

In this paper I consider only basic problems concerning extension of the option
pricing theory to game options and many problems still remain to deal with. First

one can consider a multidimensional case of several stocks which can be treated
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in the same way. Next, the model may include transaction costs and uncertainty
(random environments) which are important in real stock exchange trading but,
of course, complicate the study. Furthermore, it is important for applications to
find convenient formulas and algorithms for computation of prices of game options.
On the other hand, one can consider more general options based on nonzero sum
stopping games (see [BF2] and [Oh2]) and on stopping games with more than two
players (see [YNK]).

Game options are safer for an investment company which issues them, and so it
can sell them cheaper than usual American options. In addition, such options con-
tain some elements of games of chance which may be attractive for some investors
and could help to diversify financial markets. As a market name for such contracts
I suggest to call them Israeli contingent claims (Israeli options) to put them in
line with American, Asian, European, Russian etc. ones. All commercial rights on
game contingent claims and game options described in this paper are reserved with

the author.

2. DISCRETE TIME

Let Q = {1, —1}¥ be the space of finite sequences w = (wy,ws, ... ,wy); w; = 1

or = —1 with the product probability P = {p, ¢}V, ¢ = 1—p so that p(w) = pF¢¥ ¢
N

where k = 3 (N + > wi). In this section I consider the CRR-model of financial
=1

market which functions at times n = 0,1,... N < oo and consists of a savings

account B,, with an interest rate r, so that
(21) B, = (1 + ’I“)nB(), By >0, r>0,

and of a stock whose price at time n equals

n
(2.2) Sn=580 [[(1+px), So>0,
k=1
where pp(w) = 2(a+ b+ wi(b—a)), w = (w1,wa,... ,wN).
Thus the “random growth rates” pr, k = 1,..., N form a sequence of indepen-

dent identically distributed random variables on the probability space (€2, P) taking

values a and b with probabilities ¢ and p, respectively. As usual, I assume

(2.3) —-l<a<r<b 0<p<l.
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Introduce also the (finite) o-algebras F,,, n = 0,1,..., N where Fo = {0, Q} and
Fn,n=1,2,... N is generated by the random variables {px,k =1,... ,n}.
Recall, (see, for instance, [SKKM1]) that a portfolio strategy = with an initial
capital ZJ = z > 0 and a horizon N is a sequence m = (mq,...,mn) of pairs
T = (Bn,Yn) where (,, v, are F,_i-measurable random variables representing
the number of units on the savings account and of the stock, respectively, at time

n so that the price of the portfolio at time n is given by the formula
(2'4) Zg = BnBn + YnSn.

A portfolio strategy = is called self-financing if all changes in the portfolio value
are due to capital gains or losses but not to withdrawal or infusion of funds. This

means that (see [SKKM1]),

(25) Bn—l(/Bn - /Bn—l) + Sn—1(7n - ’Yn—l) =0.

Denote by J,n the finite set of stopping times £ with respect to the filtration
{Frnto<n<n (ie. {w:¢&(w) <k} € Fi,k=mn,...,N) with values in {n,n+1,n +
2,...,N}.

A Game Contingent Claim (GCC) is a contract between investors A and B
consisting of a maturity date N < oo, of selection of a cancellation time ¢ € Jyn by
A, of selection of an exercise time 7 € Jyn by B and of F,-adapted payoff processes
oo > X, >Y, >0, so that A pledges to pay to B at time o A 7 = min(o, 7) the

sum

(2.6) Ro,r) ¥ X, 1,0, + Vi1 <,

where Ig = 1 if an event () occurs and = 0 if not. It turns out (see Remark 2.2
below) that if I replace in (2.6) Io<, by Iy<; and I.<, by I, <, then the results
below remain the same provided Xy = Y.

A hedge against a GCC with a maturity date N is a pair (o, 7) of a stopping
time o € Jon and a self-financing portfolio strategy 7 such that Z7,,, > R(o,n)
foralln=20,1,... ,N.

The fair price V* of a GCC is the infimum of V' > 0 such that there exists a

hedge (o, 7) against this GCC with Z§ = V.
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2.1 Theorem. Let P* = {p*,1 — p*}¥ be the probability on the space Q with

p* = N < oo and E* denotes the corresponding expectation. Then the fair

ba’

price V* of the above GCC' equals Vi which can be obtained from the recursive

relations Vi = (1+7)"NYy and forn=0,1,... ,N — 1

(2.7) oy = min((147)"" X, max((14+7)""Y,, E*(Vy . 1n|Fn)))-

)
7).

Furthermore, for each n = 0,1,...,N the stopping times

Moreover, forn=0,1,... N,

2.8 V*y = mi E*( (1 —OANTR
(2.8) N = min max <( +7) (o,7)

= max min E* ((1 +7) " R(o, )
TEInN 0€EInN

(2.9) oy =min{k>n:(14+7)* Xy =V ork=N} and
iy =min{k >n: (14+7)7%Y, = Viy)
belong to Jnn (since Viiy = (1 +7)"NYy) and they satisfy

(2.10)
E*((l )TN R (o, )

.7-") <Viy<E* ((1-1—7‘) UAT”NR(O',TnN ‘.’F)

for any o,7 € Jn.n. Finally, there exists a self-financing portfolio strategy ™ such
that (0%, 7*) is a hedge against this GCC with the initial capital ZF = Vgy and

such strategy is unique up to the time ojy N Tin-

Proof. Let m = (71, ..., ™N )5 Try = (Bn,¥n) be a self-financing portfolio strategy with
ZF =2z >0 then M = (1+r)""Z] satisfies for n =1,..., N, (see [SKKM1])

(2.11) =2+ Y (1+7)F%Sk_1(pr — 7).
k=1

Since E*(pr —r) = 0 it follows that M7, n =0,..., N is a martingale with respect
to the filtration {F,}o<n<n and the probability P*. Observe that € is a finite
space with P* giving positive probability to any point so any “with probability

one” statement is true everywhere. Suppose that (o, 7) is a hedge then by the

Optional Sampling Theorem (see [Ne|, Theorem I1-2-13) for any 7 € Jyn,

(2.12) Zy = E* ((1 +7)” ”’\TZZ;,\T) > E* ((1 + 1) R(o, r)>.
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Since, by the definition, V* is the infimum of such initial capitals Z7 then

(2.13) V*> min max E* ((1 +7)""" R(a, 7'))
og€Jon TEJoN

In order to prove the inequality in the other direction, for any o € Jyn set

2.14 Ve = E*(U?|Fy
(2.14) n = max EX(U7|Fn)

where U = (1 + r)"""R(0,k), k = 0,1,...,N. Observe that U7 is Fni-
measurable (and so, Fx—measurable) since both o Ak and R(0, k) = Xoaklonk<k+
Yorklonw=k are Fyar-measurable. It is easy to check directly and follows from
general theorems (see [Ne|, Proposition VI-1-2) that {V,{}o<n<ny is a minimal

supermartingale with respect to the filtration {F,}o<n<n such that V7 > UZ,

n=20,1,...,N. Hence, in view of the Doob decomposition (see [Ne|, Proposition
VIIL1-1),
(2.15) Vo =MZ - A2, n=0,1,...,N, A=

where {M;{ }o<n<n is a martingale with respect to the filtration {F,}o<n<n and
{AZ}o<n<n is a nondecreasing process such that A is F,_j-measurable, n =

1,...,N. In fact, one can write explicitly
N n n
(2.16) Mg =Vg +> (W — E* (Vi |Fr—1)) and AG =Y E*(ViZ_y — V| Fro1)-
k=1 k=1

Each such martingale {MZ }o<,<n can be represented in the form (see [SKKM1],
§§2,3),

(2.17) Mg = Mg+ (1+7) "7 Sk-1(px — 1),
k=1

where 77 is Fjp_i1-measurable, and so

(2.18) Ve =Vo+) (L+r) g Skoa(or — 1) — A7
k=1
Construct a self-financing portfolio strategy % = (#{,...,7%), 75 = (87,73)
with the initial capital Vj setting Z 7= Vg and inductively forn =1,..., N,
Zﬂ-a - GSn_ o
(2.19) po = Znl " MmOnl o0 257 = 9B, + 2 S

n
Bn—l
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Since M = V& = z7° and Z%° = (1 +1)Z7 ; 4+ 42 Sn_1(pn — 1), it follows

inductively that
(2.20) (1+7)™"2" =MZ?, and soM? =M" , n=0,1,...,N.

For a stopping time n < N denote by [J,n the set of stopping times with values
from 7 to N. It is easy to check (see Lemma VI-1-5 in [Ne]) that (2.14) implies also
that

Vy = max E*(U7|F).

This together with (2.14), (2.15), and (2.20) yield that for n =0,1,... ,N,

(2.21) A

o/An

_ (1 + T)a/\nMa

o/An

= (L4 1)V + AZ)
> (140 Vipa = 140" max B (U7 | Fons)

> (1+7)ME*(US | Forn) = (1 +7)°"US = R(o,n),

i.e. (o,77) is a hedge. Therefore, I showed that for any o € Jyn there exists a
self-financing portfolio strategy 7% with the initial capital Vi{ given by (2.14) such
that (o, 77) is a hedge.

Since the results on optimal stopping games are usually formulated for infinite
horizon N, I define first the o-algebras F,, and the processes X,,, Y, for all n setting
Fn=Fn and X,, =Y, =0 provided n > N. Set Jpoo = G Jon which is the
set of all finite stopping times with respect to the filtration ?.7:-" 1}0§’n<00' Consider
a game between two players I and IT with the payoff processes (1 + r)~"X,, and
(1 4+ 7r)~™Y, so that if I chooses a stopping time ¢ and IT chooses a stopping time

7 then I pays to II the amount
(2..22) QI+7)""Xoloer +(1+7) Y <o = (1 + r)"° " R(o,T).

Of course, I tries to minimize his payment to IT and, on the other hand, IT tries to
maximize it.

It follows from [Ohl] that any such game starting at time n > 0 has a value

)
)

(2.23) v def sup E* ((1 +7) " R(o,T)
0€ETnoo TETnoo

= sup inf E* ((1 +7) """ R(o,T)
TETnoco 0€Tnco
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and the sequence V*, n = 0,1,... satisfies the recursive relations (2.7) (with V*

in place of V*y). Since I set X,, =Y, =0 foralln > N and Xy = Yy > 0
then V* = 0 for all n > N and Vi = (1 +7)"VYy. Hence, V;* = V*y for all
n = 0,1,...,N, and so (2.8) holds true. These together with [Ohl] yields also
that the stopping times o 5y and 7%, given by (2.9), which, clearly, belong to J,n,
satisfy (2.10).

Now take o* = o5y € Jon and construct the corresponding self-financing port-

folio strategy m* = w° , as above, which yields the hedge (¢*,7*) with the initial

capital

*

(2.24) V¢ = max E*((1+7)"" "R(o,7)) = Vgy
T€JoN

where the last equality in (2.24) follows from (2.10). Since the fair price V* of the
GCC is the minimal initial capital for which hedging is possible I conclude that
V* < Viy- On the other hand, by (2.8), which is proved already, the right hand
side of (2.13) is equal to V) which gives V* > V{y, and so, in fact, the equality
V* = Vi, holds true.

It remains to obtain the uniqueness. Set 7* = 7j. Then by (2.20), (2.21), and
(2.24),

o

(2.25) Mg =V = B (141" R(o*, %))

< E ((L+7)" 020 ) = E*M ™, . =M
since M;{H is a martingale. This together with (2.21) implies that Z7. ;\T* =
R(o*,7*). Let now m = (71, ..., ™N), Tn = (Bn,¥n) be another self-financing portfo-
lio strategy with Z§ = V* = VO"*. Then according to the first part of the proof of
Theorem 2.1 M7 = (1+r)~™ZT is a martingale and I again have (2.25) with M and

*
o

Z™ in place of M  and Z* | respectively. Hence Z™., . = R(c*,7*) = Z7. .,

and so My« = M;Tf;T*. Since both M7 and M,’{U* are martingales it follows that
(2.26) MT =M andZ" = Z" foralln < o* AT".

Since the representation (2.11) is unique, S, > 0 and p,, # 7 for all n then y,, = 72
for all n < o* A 7*. This together with (2.4), (2.19), and (2.26) yield that 8, = 87

for all n < ¢* A 7, completing the proof of Theorem 2.1. [
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2.2 Remark. Consider a bit more general set up where the payoff function R(o, 7)

given by (2.6) is replaced by
(2.27) R(0,7) = Xolygar + Vilrco + Wolyer

where W, is F,-measurable, ¥,, < W, < X,,, n = 0,1,...,N and Wny = Yn.
It follows from [Ohl] that if V*y, n = 0,1,...,N are given by (2.8) with R in
place of R then they will still satisfy the recursive relations (2.7) and since V3 =
(1 +r)~NYy I conclude that V*y = V*y for all n = 0,1,...,N. By [Ohl] the
stopping times %, = min{k > n : (1 +7)7%X;, = V¥ork = N} = 0¥y and
#*y = min{k > n: (1+7r)7"FY; = V;*} = 7%y satisfy (2.10) with R replaced by
R. Next, I define again (o, 7) to be a hedge if Z7,, > R(c,n). Now the same
proof as in Theorem 2.1 shows that the fair price V* of the GCC with the payofft
function (2.27) equals %*N, and so by above, V* = V*. This is rather interesting
since R(a, n) > R(o,n) and the strict inequality is also possible when o = n. So,
sometimes (take, for instance, N =1, 0 = 0, Xy > Yp) a hedging portfolio requires
less initial capital when the payoff function is R than when it is R. Still, the fair

prices of the corresponding GCC’s are the same is both cases.
2.3 Remark. Theorem 2.1 can be extended to the infinite horizon case N = oo with
the same proof relying on results from [Ohl] provided that with P*-probability one

(2.28) lim e”™X,, = lim e~ "™Y, =0.

n—0o0 n—o0

In this case 2 becomes the space of sequences and all statements above will be
true now with probability one with respect to the probability P* = {p*,1 — p*}*°.
Since P* is singular with respect to any other probability {p, 1 — p}°° with p # p*
and there is no reason why the stock fluctuations should be connected with this
particular probability p*, it seems that this extension of Theorem 2.1 to the case
N = oo may have financial applications only as an approximation of a very large
N case. Still, observe that (2.28) always holds true in the game put option case
Y, = (K — S,)*" provided the penalty 6, does not grow too fast so that with
probability one nli_)rglo e~ "6, = 0. Moreover, then (2.28) holds also true for the game
call option case Y,, = (S, — K)* since by Jensen’s inequality log(1+r) > p* log(1+
b) + (1 — p*)log(1 + a), and so by the law of large numbers with P*—probability
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one

. —1 —_n — 3 -1 —
nli)nolon log((1+7)""S,) = nli)ngon élog(l + px) — log(1+7) < 0.

2.4 Remark. Similarly to [SKKM1]| Theorem 2.1 can be generalized to the case
when consumption or infusion of capital is also possible. In this case the price
of a portfolio 7 = (m1,...,7N), ™n = (Bn,¥n) after new stock prices at time
n were announced is Z7 = (B, B, + v,S, but immediately before that Z7_; =
BnBn_1+ YnSn_1 + gn (see [SKKM1]) where g, is F,_i-measurable. An easy
modification of the above proof gives the following formula for the fair price V* of

the corresponding GCC

oNAT
2.29 V*= min max E*( (1+7) """ R(o,7) + 1+ )" k-1
(2:20) i, g (0077 Rm) + 3040y
and this minmax equals maxmin of the same expression. Other, correspondingly

modified, assertions of Theorem 2.1 remain true in this case, as well.

2.5 Remark. 1t is easy also to generalize the above set up allowing dependence
of r, a and b on time, i.e. assuming that pg(w) = 3(ax + b + wi (b — ax)) and
n

B, = By [[ (1 + r,) where 7, ar,bx; K = 1,...,N are nonrandom sequences
k=1

satisfying —1 < ap < 7 < bg. Setting pj = ﬁ and P* = klji[l{p,";, 1—p;}, an
easy modification of the proof leads to the corresponding statements of Theorem
2.1 with (14 7)~" replaced by k]n_[ (1+r,)~ L

=1
2.6. Remark. The formula (2.7) gives a recursive way of computation of the fair
price V* = Vjy of the GCC. Still, this requires to deal with conditional expectations
and functions V3 which needs a lot of computations and computer memory since

a JF,-measurable function can take on 2™ values.

3. CONTINUOUS TIME

I adopt here a popular model of a financial market consisting of a savings account

with the time evolution

(3.1) B, = Bpe™, By>0, r>0
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and of a stock whose price S; is the geometric Brownian motion
;2

(3.2) St = Sp exp ((/1, 5

)t )

where {W;}+>0 is the standard one dimensional Wiener process starting at zero and

k > 0, 4 are some numbers. In the differential form
(33) dBt = T'Btdt and dSt = St(/l:dt + Iﬂ?th),

where the second equation is the Ito stochastic differential equation. Again, r is
interpreted as the interest rate on the savings account and the term pdt + kdW; is
responsible for random “risky” fluctuations of the stock price where ¢ and pu are
called volatility and appreciation rate, respectively. Let (€2, F, P) be the probabil-
ity space corresponding to the Wiener process, i.e. €2 is the space of continuous
functions w = (wt)s>0, wo = 0, F is the Borel o-field generated by cylinder sets,
and P is the Wiener measure on (€2, F). Then Wy(w) = wq, t > 0. Denote by F;
the complete o-algebra generated by {W,,,u < t}. Then

(34) St = Soetht

where Q, = e"W¢—(r"/2)t

, t > 0 is a martingale with respect to the filtration {F; };>o.

Recall, (see, for instance, [SKKMZ2]) that a self-financing portfolio strategy =
with an initial capital Z§ = z > 0 and a horizon T < oo is a process ™ = (7¢)o<t<T
of pairs m; = (8¢, y:) with Fz-measurable 8, and ¢, t > 0 such that

T T

(3.5) /ert|ﬂt|dt < oo and /(’ytSt)Zdt < 00
0 0

and the portfolio price Z] at time ¢ € [0,T] is given by

t

¢
(3.6) Z = z—l—/,BudBu—}—/'yudSu
0

0

where B, and S, are the same as in (3.1)-(3.3). I call 7 {F;}o<i<7-progressively
measurable if the processes (3; and ~; are progressively measurable with respect to
this filtration (see [KS], Section 1.1).

Denote by Jir the set of stopping times J with respect to the filtration

{Fu}o<u<r with values in [t,T]. A game contingent claim (GCC) is a contract
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between investors A and B consisting of a maturity date " < oo, of selection of
a cancellation time o € Jyr by A, of selection of an exercise time 7 € Jyr by
B and of Fi-adapted right continuous with left limits (RCLL) payoff processes
oo > X; > Y > 0, so that A pledges to pay to B at time o A7 = min(o, 7) the sum

(3.7) R(0,7) = Xolyer + Y.L <,

As in the discrete time case, the exchange between < and < in (3.7) does not
influence the final result (see Remark 3.2) provided Xp = Yr.

A hedge against such GCC with a maturity date T is a pair (o, 7) of a stopping
time o € Jor and a {ft}OStST—progressively measurable self-financing portfolio
strategy m such that Z7,, > R(o,t) with probability one for each t € [0,T]. Again
the fair price V* of a GCC is the infimum of V' > 0 such that there exists a hedge
(o, ) against this GCC with ZJ = V.

Set

(3.8) WET =W, + £ - "

then the process {W} ™" };>¢ is the standard Wiener process with respect to the
probability P#~" whose restrictions P/*~" to F; are equivalent to restrictions P; of

P to F; and
dP!" w—r 1 =1\’
(3.9) aP, (w) =exp{ — - Wi(w) — 5 t

(see, for instance, [KS], Section 3.5).
By (3.3) and (3.8),

(3.10) dS; = Sy(rdt + kdW}™")
which together with (3.6) gives
(3.11) dZ = rZ[dt + kySpdW}l™"

for any self-financing portfolio strategy. It is important to observe that both sto-
chastic differential equations (3.10) and (3.11) do not depend explicitly on g which
is usually not known.

Assume that

(3.12) EF" sup (e7"X;) < oo,
0<t<T

where E#~" is the expectation corresponding to the probability P#~".
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3.1. Theorem. The fair price V* of the above GCC equals Vi where {Vji}o<i<t

18 the right continuous process such that with P*~" -probability one,

S
7).

Moreover, for each t € [0,T] and € > 0 the stopping times

(3.13) Vi = essinfesssup E#7" (e_””\TR(a, T)
o€TiT TE€TyT

= esssupessinf E¥ " [ e """ R(o, T)
oJir TEJtT

(3.14) ofp =inf{u>t:e™X, <Vir+eoru=T} and
Tip =inf{u>t:e7 ™Y, > Vyr — ¢}
belong to Jer (since Viiq = e "I Yr) and with P*~"-probability one they satisfy

(3.15)
E+T (e_TUtET’\TR(JfT, T)

.7-}) —e< Vg3 <EFTT (e_T”ATtETR(J, Ter)

.7-}) +e

for any o,7 € Jyr. Furthermore, for each ¢ > 0 there exists a self-financing
portfolio strategy ©¢ such that (oc§p, 7°) is a hedge against this GCC with the initial
capital de < Vgr + €. Suppose, in addition, that the processes Yy and —X; are
upper semicontinuous from the left, i.e. in our circumstances they may have only
positive jumps at points of discontinuity. Then the stopping times ojp = lslﬁ)l o

1 e . . c . . .
and T)p = lslﬂ)l Tir, which are well defined since oy and T, are monotone in €, with

)

for any o, 7 € Jy 7. Moreover, o}p ANTjp = 0op AT, where o0p and T are defined

by (3.14) with € = 0, and so with P*~" -probability one,
]-'t).

Furthermore, there exists a self-financing portfolio strategy ™ such that (o, 7*)

PHF=" -probability one satisfy

(3.16) E*7T (e_T”:TATR(ofT, T)

(3.17) Vip = BFT (e-wi’T“fTR(o?T, )

18 a hedge against this GCC with the initial capital Z{{* = Vyr and with P*~"—

probability one such strategy is unique in this case up to the time opp A T2p.

Proof. Let m be a self-financing portfolio strategy with Z§ = z > 0 then in view of
(3.11), MT = e~ " ZT satisfies

¢
(3.18) M = Mg + m/e_m'yuSudej_r, t<T < oo,
0
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and so {M{ }o<¢<7 is a martingale with respect to the filtration {F;}o<¢<7. Sup-
pose that (o, 7) is a hedge then by the Optimal Sampling Theorem (see [KS], Section
1.3) for any 7 € Jor,

(3.19) ZF = EF " (e7 "N ZT

oA\T

) > EF (e "N R(o, T)).
If follows that

(3.20) V*> inf sup E*"(e7""" R(o,T)).
o€Jor r€Jor

In order to prove the inequality in the other direction for any o € Jyr set

(3.21) Vy? = esssup E¥7"(U? | F)
TeJtT

where U? = e """ R(0,t) and I observe that Uf is F, ;—measurable. In the same
way as in Lemma from §6 of [SKKM2] I conclude that {V,? }o<¢<7 is a supermartin-
gale. Still, since U/ is not, in general, right continuous I cannot use this lemma
directly to conclude that {V,” }o<;<7 has a RCLL modification. It is known that,
in order to establish the latter assertion it suffices to show that the function

ot = E*¥"V7 = sup EFTTU?, t€[0,T]
TEJtT

in right continuous (see [KS], Section 1.3). Since V7 is a supermartingale it follows

that liﬂl s < @g. For the opposite inequality, I can still employ the argument from
S

the lemma cited above relying just on the right lower semicontinuity of U/,

liﬂl Ul = e "M Xolo<t + Yilico) > U7

which follows since X, > Y,,, u € [0, T] and both X, and Y, are right continuous.

Thus I can and do assume that {V,? }o<¢<7 is a RCLL supermartingale. More-
over, in view of (3.12) the family {V.?},¢c 7., is uniformly integrable with respect to
PF~" (see Lemma 5.5 in [Kal]). Hence by the Doob-Meyer decomposition theorem
(see [KS], Section 1.4) I can write

(3.22) Ve =M? — A7, t€[0,T]), A5 =0

where {Mt" }o<t<7 is a RCLL martingale with respect to the filtration {F;}o<i<r

and {A;}o<t<r is a RCLL nondecreasing process such that A; is F;-measurable. In
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view of the martingale representation theorem (see [KS], Section 3.4) there exists

a {F:}o<t<T pProgressively measurable process {v{ }o<¢<7 such that
t
(3.23) M{ = Mg + & / e Uy S dWHETT,
0
and so for all ¢ € [0,T],
t
(3.24) Ve=Vy + /ﬁ/e_T“'ygSudej_r — A7.
0

Set 37 = (M7 — e "ty S,)By !, t € [0, T] and
(3.25) 77" = e"M{ = B7 By +{ St,

where 77 = (7] )o<t<r and nf = (B7,77) is the {F;}o<t<r-progressively measur-
able portfolio strategy with the initial capital ZJ = V{7, then by (3.10), (3.23), and
(3.25),

(3.26) dZT = ZTdt + ky? Sl dWP " = B7dB, + 77 dS,,

i.e. (3.6) holds true, and so #7 is self-financing. Choose a sequence of stopping
times 7, | 0 as n 1 oo taking on only finitely many values then it is easy to check
as in Lemma VI-1-5 from [Ne] that (3.21) implies also

V7 \¢ = esssup EFTT(UZ|F,, at),

" TETnpAtT
where, again, for a stopping time 7 I denote by J,r the set of stopping times with
values between 7 and T. This together with (3.21) and (3.22) yield that for any
t € [0, T] with P#~"-probability one,
(3.27)
Z;yr:/\t = 6””“1\33”” = emn/\t(vni/\t + A7 AL) > em"/\tvn:/\t

— MM/t esssup E”_T(Ug|fnn/\t) > eTn"AtEH_T(Uf‘f n/\t)

TETnnAtT

= MNP = "N R (5 1) > R(o,t)

since U{ is Fya t—measurable and F,p ¢+ C Fy A ¢ The right continuity of Z;ra =
e’"sl\;.f;’ in s enables me to pass to the limit in (3.27) asn 1 oo yielding Z7 ., > R(o, ),

and so (o, 77) is a hedge.
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Next, I proceed similarly to the discrete time case. Extend the payoff processes
X; and Y; beyond T by X; = Xp and Y; = Yy for all £ > T so that the right conti-
nuity, existence of left limits, and upper simicontinuity from the left are preserved.
Denote by Jooo the set of stopping times with values in [0, co] with respect to the
Wiener process filtration {F;}+>o which is defined for all ¢ > 0 anyway. Consider a,
game between two players I and II with the payoff processes e™"*X; and e~ "Y; so
that if I chooses a stopping time o and II chooses a stopping time 7 then I pays

to IT the sum
(3.28) e " Xolpr + e Y, <o = e "V R(0, 7).

Next, I intend to apply to this game the results from [LM] which were stated there
for bounded payoff processes but they remain true for X; > Y; > 0 satisfying (3.12).
It follows from [LM] that

.7-})

)

(3.30) 6f =inf{u>t:e”™X, <V +e} and 7 = influ>t:e7™Y, > V) —¢}

(3.29) 174 dlef essinf esssup E#7" (e_r“ATR(o, T)
0€Jteo TETtoo

= esssup essinf E#~"( e """ R(o, T)
TETtoo 0€Jtoo

and for each € > 0 the stopping times

satisfy

(3.31) E+T (a‘””f R(65,T)

J—'t> —e<Vr<ErT (amﬂs R(0,7)

.7'—t>+€

for any 0,7 € Jioo-

;From the definition of X; and Y; beyond T it follows easily that V;* = Vi for
all ¢ € [0,T] since the player IT may only decrease his gain if he stops the game
later than 7. Then by (3.14) and (3.30), 75 = 7 € Jer for all t € [0,T]. But then
ofp = 05 AT also satisfies (3.31), and so (3.13) and (3.15) follow from (3.29) and
(3.31).

Now take 0¢ = o5 € Jor and construct the corresponding self-financing port-
folio strategy n° = 77", as above, which yields the hedge (0°, 7°) with the initial
capital

(3.32) Ve = sup EF (e N R(o,7)) < Vir 4 ¢
T€Jor
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where the last inequality in (3.32) follows from (3.15). Since the fair price V* of
the GCC is the infimum of initial capitals for which hedging is possible it follows
that V* < Vi + . This being true for any positive ¢ yields V* < V. On the
other hand, by (3.13) and (3.20), V* > Vi, i.e. in fact, V* = Vjr, as required.
Next, suppose that —X; and Y; are left upper semicontinuous. Since o7 and 77

may only grow when ¢ decreases then
f.. f.
oir de limogr € Jyr and 757 de lim 750 € Jir.
el0 el0

Letting € | 0 in (3.15) one arrives at (3.16) and oop A 70 = ofp A i follows easily
too (see Theorem 15 in [LM]).

Let now o* = oy and 7* = 7% so that (o*,7*) is the corresponding hedge.
Then by (3.16) it follows similarly to (3.31) that V'~ < V.. Since T already proved
that V* = Vg and by the definition V&~ > V*, it follows that Vi~ = V*.

Finally, I obtain the uniqueness assertion in the same way as in the discrete time
case. Namely, as in (2.25) I derive using (3.27) that if 7 = (7¢)o<e<T, ™ = (B, 72)
is another self-financing portfolio strategy with ZJ = V* = Vg then Zf = Z7 ”
for all t < oDy AT Now the pair 8; and v; is uniquely defined by (3.6) and (3.11),

completing the proof of Theorem 3.1. [

3.2 Remark. Suppose that the payoff function R(o, 7) given by (3.7) is replaced by

A

(3.33) R(o,7) = Xolyer + Y, I, <o

Assume also that X7 = Y. Then by Lemma 5 from [LM], (3.13) will remain true
when R is replaced by R with the same process V;%. Then (3.14) and (3.15) will
hold true, as well, with Rin place of R. As in the discrete time case, it follows that
the fair price V* of the GCC with the payoff function (3.33) equals V* = Vi with

- given by (3.13) if hedging pairs (o, ) are required to satisfy Z7,, > R(o,)
with P#~"-probability one for each ¢ € [0, T]. The proof is the same as in Theorem

3.1 (and even a bit easier since R(c, ) is right continuous).

3.3 Remark. Theorem 3.1 can be extend to the infinite horizon case T = oo (per-
petual claims) similarly to [Kal] but in order to apply [LM] to the corresponding

optimal stopping game one needs

(3.34) lim e " X; = lim e”"Y; = 0.

t—o0 t—o0
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If r > 0 then (3.34) always holds true in the game put option case ¥; = (K — S;)*
provided §; = X; — Y; satisfies tlim e "5, = 0 with P#~"-probability one. Since
—00

e S = So exp(—”;t + kW}™") then also in the game call option case Y; =
(S; — K)™ one has tlim e~ "Y; = 0 P*~"-almost surely.
— 00

3.4 Remark. Similarly to [SKKM2] and [Kal] Theorem 3.1 can be generalized to

the case when consumption is also possible. If {g;:}o<t<7T is a {F;}o<t<T adapted

T
consumption process with E#~"( [ |g;|dt) < oo then the fair price V* of the GCC
0

in this case will be given by

oAT
(3.35) V*= inf sup E* "(e""""R(o,T)+ / e " gudu).
o€JoT 1€ Jor
0

3.5. Remark. 1t is not difficult to generalize the set up considering r = r¢, p = py,
and kK = k; in (3.3) depending on ¢ (but deterministic). In the usual American
contingent claim case this was done in [Kal]. In fact, one can deal with r;, ps, and
o being stochastic processes independent of the driving Wiener process Wy, i.e. to

consider a (B, S)-market in a random dynamical environment.

3.6 Remark. In the general continuous time case effective computations of the fair
price V* are hardly possible. One possibility is to discretize time, i.e. consider only
stopping times ¢ and 7 taking on, say, only values k27 "7, k = 0,1,...,2" and to
obtain the corresponding values ,:2(3 ) of games starting at k27 "7. As in Theorem

2.1 this values satisfy the recursive relations

Vk*Q("?) = min(Xk2_nT, max(Ykz_nTE“_T (Wk+1)2n ‘fkﬁ—"T)))

Vz*n(;)b = Y7, and so, in principle, one can compute Vo*z(f ) which is the price of the

GCC when A and B can cancel and exercise only at times k2~"T, k = 0,1,...,2".

If X; and Y}, t € [0, T'] are continuous then one can see that V* = Vi, = lim 1/6*2(,? ).
n—o0

4. MARKOV CASE

Taking into account that the stock fluctuation processes {S,}n>0 and {S:}i>0
given by (2.2) and (3.2), respectively, are Markov processes one can employ other
methods of computations of the fair price V* of a GCC if X,, and Y,, or X; and Y;

depend only on S,, or S;, correspondingly.
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I start with the discrete time case. Let X,, = "X (S,) and Y,, = "Y (S,),
n=0,1,2,...,0 < B <1 for some Borel functions X and Y on (0, c0). Particular
cases of this situation are Y,, = (K — S,,)* and Y,, = 8"(S, — K)*, which are
discounted put and call game options, provided that the penalty process have the
form 6, = p"6(By) of just §, = "I for some constant 6 > 0. In this case it
follows from (2.7), (2.8), and the Markov property that there exist Borel functions
vg = vg(z), £ = 0,1,... on (0,00) such that V*y = (af) "vn_n(Sn), where

a=(1+r)"1 and for n =0,1,...

(4.1) VUnt1(x) = Uv,(z), wvo(z) =Y (),
where the operator U acts by the formula

(4.2) Ug(x) = min(X (z), max(¥ («), BE9(S1)))

and E is the expectation for P* provided Sy = z. This provides recursive formulas
for computation of the fair price V*(z) = vy (z) of the GCC with the horizon
N < oo given Sp.

By (4.1) and (4.2) the sequence v,, n = 0,1... is monotone nondecreasing,
Y <wv, < X and the limit

(4.3) v(z) = lim v,(z) = lim U"Y (z)

n—oo n—0o0

satisfies the equation Uv = v. Moreover, it follows from (2.8) and the equality
vn(z) = Vi, So = z that v equals the value of the infinite game between the
players I and IT described in Section 2 when only finite stopping times are allowed
(cf. [EL] and [Ohl1]), and so the fair price V* = V*(z) of the GCC with the infinite
horizon N = oo given Sy = z equals v(z). By (2.9) the corresponding optimal (or

rational) stopping times (saddle point) for the GCC with N < oo are given by

(4.4) ory =min{0 <n < N:X(S,) =vn_pn(Sp) or n =N} and

oy =min{0 <n <N :Y(S,) =vn_n(Sk)}
and for the N = oo case

(4.5) o* =min{n >0: X(S,) =v(S,)} and 7* = min{n > 0:Y(S,) = v(S,)}



GAME OPTIONS 21

provided that with P*-probability one ¢* and 7* are finite.
Consider, next, the case 8 =1 and Y(z) = (z — K)™. Since

(4.6) E*(Sps1|Fn) = Sn(1+pb+ (1 =p")a)=1+7)Sp =a 'S,

then a™S,, is a martingale, and so a"Y (S,) = (a™S,, — a™K)T is a submartingale
(with respect to the probability P*). Thus, in view of the Optional Sampling
Theorem, for the game call option case with a horizon N < oo the fair price is
given by

(@D V= min BY((07 (S, — K)* + 8o leen + ¥ (S — K) Mom)

This corresponds to the well known fact that American call options with an expi-
ration date N < co coincide with the corresponding European call options. In the
game call option case it follows that the buyer B should exercise as late as possible,
i.e. at the expiration date N if N < oo. On the other hand, the seller A should
choose an optimal cancellation stopping time which minimizes in (4.7) and it is
easy to give examples when this stopping time is nontrivial (i.e. nonconstant).

For each m =0,1... , set
(4.8) CA={z:vn(z) < X(x)}, CB={z:v,(z)>Y()}, Cn=C2AncCE
and

(4.9) DA ={z:vp(z)=X()}, DE={z:vn(z)=Y(z)}, Dn=DANDE

so that C,, UD,, = R since Y <wv,, < X.

Since the sequence v,, is nondecreasing then assuming that X (z) > Y () for all

x one has
(4.10) cicct c...cct=R, 0=Ccfc...ccB, cCB
(4.11) DAoDd  >...oDy =0, R=D{>...o0DF  >DB,

n=0,1,.... By (4.4),

(4.12) oy =min{f0<n<N:S,€Dxy_, orn=N}and

oy =min{0<n<N:S§, € Djl\gr—n}’
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so that A or B should stop when the stock price S,, gets to the domain Df\l,_n or
Dﬁ_n, respectively.

More specific results can be obtained for a particular case considered in [SKKM1]
where 1 +a=A"1 and 1+ b= X for some A > 1, and so S, (w) = SpA¥rTw2++wn
w = (wy,ws,... ,wN), w; = £1. Thus, in this case one has to study geometric
random walk on the set E = {A\* k = 0,41,+2,...}. Let Y(z) = (z — 1) and
X(z) = (x — 1)" + 6 for some 6 > 0. If 3 = 1 then, as explained above, B
should not exercise before the expiration time N and if N = oo he does not have a
finite optimal stopping time though by [Oh1] e-optimal stopping times exist for any
¢ > 0. The optimal cancellation time of A can be evaluated in this case explicitly.
An analysis of this and # < 1 cases can carried out in the same way as in §6 of

[SKKM1]. This analysis shows that
DB = {\*:k<Oand k> kB} and DA = D k2 <k < KA}uD?

where k,‘;‘, kB K ;f depend on parameters «, 3, \,d; DY is either empty or contains
one or both points 1 and A, and 1 < k2 < KA < kB. Now (DB = DB = [\*" o)
n
where kB = lim kB and (JDA = DA = [\ AK?| U Dy where k4 = lim k2,
n—00 n n—00

K4 = lim K%, and Dy may be either empty or may contain one or both points 1
n—oo

and A. On C = R\ (D4 U D?) the function v given by (4.3) satisfies the equation
(4.13) v(z) = afE;v(S1)

which can be solved similarly to [SKKM1] and the boundary points of the above
domains can be determined via the smooth fit principle.

In the continuous time case the stock price fluctuations S; form the Markov
diffusion process solving the stochastic differential equation (3.10). Suppose that
X; = e PX(Sy), V; = e PtY(S;), B > 0 and T = co. In particular one can
take Y; = e PH(K — S¢)T or YV; = e P*(S; — K)T which are discounted put or
call game options, respectively, with some penalty process §; = e P%6(S;) or even
6y = e~Pt§ for some constant 6 > 0. Though (3.10) is a degenerate at zero equa-
tion but considering instead the stochastic differential equation for L; = log S; one
can deal with nondegenerate diffusions. Then the fair price V* = V*(z) of the

GCC given Sy = z being the value of the optimal stopping game with the payoff
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processes e~ "tA X (S,) and e~ "tA)tY (S,) can be described via certain variational
inequalities (see [Fr] and [BF1]). Some computational algorithms for such varia-
tional inequalities were justified in [JLL]. Another characterization of the value of
this game was given in [Bi] so that V* = v — ¢ where v and ¢ are minimal (r + (3)-
excessive majorants of v +Y and v — X, respectively. A free boundary approach
to even a more general problem for nonzero sum games was given in [BF2].
Observe that discretizing time one obtains recursive relations of the form (2.7)
and the value of the corresponding game can be obtained similarly to (2.30). Then
letting the discretization step to zero one obtains the value of the continuous time

game, and so of the corresponding GCC. Namely, let
(4.14) Usg(«) = min(X (z), max(Y (), e " EL7 g(5,)))
then one can show that

(4.15) V*(z) = lim lim UF.,Y(z).

n—00 k—o0
Again Y < V* < X and there are 4 domains D4 = {z : X(z) = V*(x)}, D? =
{z :Y(x) = V*(x)}, CA ={z: X(z) > V*(x)}, and C* = {z : Y(z) < V*(z)}.
On C = CA N CP the function V*(z) satisfies the equation

1, ,d*V* av*
(4.16) L d$2(x) +rE d;x) = (r+BV*(z)

with the free boundary conditions
(417) V*|3DA = X and V*‘aDB =Y.

A more specific analysis of this problem for the case Y(z) = (z — K)* or Y(x) =
(K —z)* and X (z) = Y(x)+9 can be carried out, in principle, along the lines of §8
from [SKKM2] though it is more complicated here. Still, when 3 = 0 one conclusion
follows easily in the game call option case. Namely, (3.11) implies that e™"tS; is a
martingale, and so in the game call option case e™"Y; = (e™"tS; — e " K)*t is a
submartingale. Thus, by the Optional Sampling Theorem the fair price V* for the

game call option with a finite horizon T' < oo is given by

(4'18) V= g}f Eu—r((e—ro(sa - K)+ + 60’)]IO'<T + e_TT (ST - K)+]I0:T)

and the buyer should not exercise before the expiration date though the seller has

to find an optimal cancelation time.
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