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Introduction

The aim of this paper is to establish arithmetic properties of the funda-
mental group of a space on which a non-compact simple Lie group acts. In
addition, we establish arithmetic properties of the actions themselves.

More precisely, let G be a connected simple Lie group with R-rank(G) >
2. Let M be a compact space for which covering space theory holds. We
assume that we have a continuous action of G on M. Then G acts on any
covering space M' — M. We further suppose that there is a finite G-invariant
ergodic measure 4 on M. The action of G on M is called (u—)engaging if
for every finite covering M’ — M, the action of G on M’ is ergodic (with
respect to the natural lift of p to M'.) The action is called totally engaging if
there is no G equivariant measurable section of M’ — M for any non-trivial
covering space of M. In general, totally engaging implies engaging. As we
shall see, one or both of these conditions holds for the natural actions of G on
homogeneous spaces of the form M = H/I" where G acts via an embedding
in H, where H is a Lie group and I' is a lattice in H. Our main results on
fundamental groups are the following.

Let (M) — GL(V) be any finite dimensional linear representation over
C. Let I' be the image, and assume I is infinite.

Theorem A Suppose the action of G on M is totally engaging. Then T is an
arithmetic group. In fact, I is commensurable to Hy, where H is a Q-group
with g — b.

Theorem B Suppose the action of G on M is engaging. Then T is s-
arithmetic. In fact, U is s-arithmetic in a Q-group H with g — b.

In fact, we show that for engaging actions of G, I is arithmetic (not merely
s-arithmetic) if an only if the action is totally engaging. (See Theorem 6.1.)

Here “s-arithmetic” is a generalization of the standard notion of S-arithmetic
group where S is a finite set of primes. In the semi-simple case, such a group
is virtually a product of S-arithmetic groups. In general, they will be lattices



in a product of real and totally disconnected locally compact groups. These
groups are discussed in detail in section 3.

We remark that Theorem A can be viewed as a generalization of Margulis’
arithmeticity theorem. The latter is essentially equivalent to Theorem A
when the action of G on M is transitive. In our case, we also need to
construct the group H, and an embedding of I" in H as an arithmetic group.
In general, H can be much larger than G, and need not be semi-simple. A
more precise and fuller statement of Theorems A and B appear below as
Theorems 5.1 and 5.2.

We present in section 1 below examples showing the necessity of the
hypotheses of Theorem A and B.

In addition to these arithmeticity theorems for the fundamental group,
we establish arithmetic structure of the action itself. By an arithmetic action
of a group G, we mean an action on a space N = K\H/I", where H is a real
algebraic Q-group, I' C H is an arithmetic subgroup, K C H is a compact
(perhaps trivial) subgroup, and the G action is defined by a homomorphism
o : G — H so that K centralizes ¢(G). In [LZ], we studied arithmetic
quotients of a given action. In particular, we showed that a finite entropy
action of a non-compact simple Lie group G on a space M has a canonical
maximal arithmetic (virtual) quotient action, say A(M). Here, we show that
for engaging actions, any linear representation of 71 (M) yields an arithmetic
quotient of M (and hence of A(M).)

Theorem C Let G,M and I' be as in Theorem B. Let I',, be the arith-
metic subgroup of the s-arithmetic group I'. Then M has a virtual arithmetic
quotient of the form K\H /T .

This theorem also appears in sharper form in Theorem 5.1 below.

Some of the conclusions of Theorem B and Theorem C were obtained
under stronger assumptions in [Z8]. In fact, our proof of these results incor-
porate ideas of [Z8]. One of the basic assumptions in [Z8] is, in the context
of Theorems B and C, that T is either discrete or has matrix entries in Q.
This assumption is eliminated in the present work. This is of particular
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importance for potential applications where one may have a geometrically
constructed representation, e.g. a holonomy representation, that is a priori
neither discrete nor algebraic. We also observe that our conclusions of The-
orems B and C in the sharp form of Theorems 5.1 and 5.2, are stronger than
those of [Z8], even for representations that satisfy the assumptions in [Z8].

The authors would like to thank Moshe Jarden, Shahar Mozes, and T. N.
Venkataramana for very helpful conversations on this work. This work was
carried out while A.L. was a visitor at the University of Chicago and while
R.Z. was a visitor at Hebrew University. It was also supported by a grant
from the Binational Science Foundation of Israel and the United States. We
wish to thank both universities and the BSF for their hospitality and support.

1 Engaging and totally engaging actions.

In this section we discuss the notions of engaging and totally engaging
actions. The former was introduced in [Z5]. It will be useful to consider
these notions for actions on general principal bundles with discrete fiber, not
only on the coverings of M.

Let P — M be a principal I'-bundle where I' is a discrete group. We
assume G is a group that acts by principal [-bundle automorphisms such
that the action of G on M is ergodic with respect to some G' quasi-invariant
measure. We remark that if V is a ['-space with quasi-invariant measure,
then the associated bundle Ey = (P x V) /T is acted upon naturally by G
with a natural measure class left invariant. In particular, for V' =T'/T'y where
'y is a subgroup, one has a natural measure class on Er/r, = P/T.

Definition 1.1. The G-action on P is engaging if the action on P/Tq is
ergodic for every finite index subgroup I'y C I.

We shall be concerned with G-invariant reductions to subgroups of I'.

Definition 1.2. If A C T', then the G-action on P s called A-reducible
if there is a measurable G-invariant reduction of P to A; i.e., there is a



measurable G- invariant section of P/A — M. (Here “invariant” is taken to
mean invariant modulo null sets.)

This can be reformulated in terms of cocycles. (See [Z3], [Z4] for general
background.) Namely, a measurable trivialization of P, P = M x T', defines
a cocycle a: G x M — I' by the equation

g-(m, ) = (gm, a(g, m)y).

It is then easy to verify (see [Z4], e.g.) that:

Lemma 1.3. P is A-reducible if and only if « is equivalent to a cocycle 3 such
that B(G x M) C A. (Here a ~ (3 means 3(g,m) = ¢(gm)~*a(g, m)p(m)
for some ¢: M —T'.)

From Lemma 1.3, we now have the following consequence.

Proposition 1.4. If the G-action on P is engaging and is also A-reducible,
then A is profinitely dense in I'. Hence, under any finite dimensional linear
representation o,0(A) is Zariski dense in o(T).

Proof. We recall that profinite density is equivalent to the assertion that for
any subgroup N C I of finite index that A surjects onto I'/N. If the action
on P is A-reducible, choose the cocycle 3 such that §(G x M) C A. Then
the action of G on M xT'/N = P/N is given by g(m, [y]) = (gm, B(g, m)[7])-
Since M x {[e]} is of positive measure, ergodicity of G on P/N clearly implies
AN =T, verifying profinite density. That profinite density implies Zariski
density is a result of Margulis and Soifer [MS].

In fact, further similar argument shows:

Proposition 1.5. The action of G on P is engaging if and only if every
A C T for which the G action is A-reducible is profinitely dense.

We shall most often apply Definition 1.1 to the case of P = M and
['=m (M), or to a quotient of this bundle by a normal subgroup of T'.



Definition 1.6. [Z5] We say the action of G on M is engaging if the action
of G on the principal m (M)-bundle M — M is engaging.

Example 1.7. Let H be a connected Lie group, A C H a lattice, and suppose
G is a semisimple Lie group without compact factors that acts ergodically on
H/A. Then the G action on H/A is engaging. This follows as a consequence
of the more general Proposition 1.10 below.

Definition 1.8.

i) Suppose G acts on the principal I'-bundle P — M, acting ergodically on
M. We say the action is totally engaging if there is no proper subgroup
A CT for which the action is A-reducible.

it) If G acts on a manzfold M, we say the action is totally engaging if the
action ofG on M — M is totally engaging.

Proposition 1.9. Any totally engaging action is engaging.
This follows from Proposition 1.5.

Proposition 1.10. Let H be a connected Lie group, A C H a lattice, and
G C H a semisimple Lie group with no compact factors. Then the G action
on H/A is totally engaging.

Proof. We can write H/A = H/A where A i \ is a lattice in H and is the pull

back of A to H. Thus, we can identify H/A with H and m (H/A) with
A. Suppose the G action is [-reducible for some I' C A. Then the section

: H/A — H/T defines a finite G-invariant ergodic measure s, on H/T
that projects to the standard measure u on H/A. By Ratner’s theorem, s,u
is the measure defined by volume on an L-orbit in H /T for some Lie group
G C L C H. Since the projection of s,u to H/A is the volume on the latter,
we must have dimL =dimH; it follows that L = H. From the fact that s is
a section, it then follows easily that [' = A.



Remark. There are smooth volume preserving actions of non-compact
simple Lie groups on compact manifolds that are ergodic but not engaging.
These are discussed in detail by Benveniste in [Be]. These examples, among
a number of illuminating properties, have fundamental groups that are not
s-arithmetic. In particular, this demonstrates the need for some hypotheses
such as engaging in Theorem B. It is a natural question as to what geometric
conditions on an action would imply engaging. In particular, the results of
[Be] raise the question as to whether connection-preserving actions must be
engaging.

Example 1.11. We present an example which is engaging but not totally
engaging. The fundamental group will be S-arithmetic but not arithmetic.

Let G be a connected simply connected semisimple Q-group with Q-rank
= 0, and each simple factor of G with R-rank > 2. Suppose p is a prime with
each simple factor of Gg non-compact. Let K be a maximal compact open
subgroup of Gg, X the building associated to Gg,. Thus, we can identify
V = Gq/K C X with a set of vertices. Let I' = G/ Then G acts on
the compact spaces

(GRXV)/F C (GRXX)/F = M.

Endow (Gg x V)/I" with the measure defined by Haar measure on Gg x G, -
We can view this as a finite Gg-invariant ergodic measure on M. We remark
that the action of Gg on (Gr x Gg,)/T is ergodic if and only if I is dense in
Gq - Since G is simply connected, G, has no non-trivial subgroups of finite
index. Thus, if I’y C T is of finite index, the action of Gg on (Gr x X) /Ty is
also ergodic. These are the finite covers of M, so the action of Gg on M is
engaging. (With a little more work, one can easily dispense with the simple
connectivity assumption.) On the other hand, let I'y, C I' be the arithmetic
group Gz. Then the embedding

Gr — GRX{[e]} C GpxV
induces an equivariant bijection

GR/Foo = (GR X V)/F C M.



Consider the covering space of M defined by the subgroup I'y,. This is simply
(Gr X X)/Tse D Gr/T.

.,From this we see that there is a measurable Gg-equivariant lift of M to
(Gg x X)/T's, showing that the action is not totally engaging.

We do not know an example of an engaging but not totally engaging
action on a manifold.

We shall discuss these conditions further in section 6, showing the inti-
mate connection between arithmeticity and the totally engaging condition.

We conclude this section with a general result that is very useful when
dealing with engaging conditions.

There are numerous general results (some of which we discuss below)
on G-invariant reductions of bundles with an algebraic structure group to a
subgroup. By considering homomorphisms of I' into various algebraic sub-
groups, one would like to translate this into information about reductions
of I'-bundles and hence to the engaging conditions. The basic technique for
doing this is the following.

Proposition 1.12. Suppose L is a locally compact group and H,, Hy C L are
closed subgroups. Let a locally compact G act ergodically on a space (M, ).
Let a : G x M — H;y be a cocycle and suppose that i o o is equivalent to a
cocycle into Hy, where v : Hy — L is the inclusion. Then:

i. If HI\L/H, is tame [Z4] (i.e. the Hy orbits on L/Hy are locally closed),
then « is equivalent to a cocycle into Hy N IHyl™! for some | € L.

1. More generally, suppose ¢ : M — L 1is such that
¢(gm)~ (i 0 @) (g, m)¢(m) € Ho.
If im(9) lies (a.e.) in a single Hy : Hy double coset in L, then « is

equivalent to a cocycle into Hy N IHyl™! for some l € L.

Remarks.



i. Proposition 1.12(i) follows from the cocycle reduction lemma [Z3, Lemma
5.2.11]. Proposition 1.12(ii) follows from its proof, as the first step of
the proof of [Z3, Lemma 5.2.11] is to use tameness to show that ¢(M)
lies (a.e.) in a singe H; : H, double coset.

ii. Proposition 1.12 is the basis of the definition of algebraic hull of a
cocycle (or action on a principal bundle) [Z3], [Z4].

iii. Suppose H; = I' is a discrete subgroup of L. If H, is compact, and
1o is equivalent to a cocycle into H,, then « is equivalent to a cocycle
into a finite subgroup.

iv. If H, is open, then Proposition 1.12(i) always applies.

v. Proposition 1.12(ii) is the basis of the cohomological application of
Ratner’s theorem in [Z1, Proposition 3.6].

2 s-arithmetic groups

In section 1, we have seen how S-arithmetic groups give rise to examples
of engaging actions of semi-simple real Lie groups. Actually, there are more
general examples. In order to present them, let us start with some notations
and a definition.

Let £ be a number field, S a finite set of primes in k£ including all the
archimedean ones and O the ring of algebraic integers in k. Denote

Os = {z€k|v(x)>0for every v ¢ S}.

(Here, as usual, we think of the primes as the valuations of £.) An arithmetic
group I' is a group commensurable to G(O) when G is a k-algebraic group.
An S-arithmetic group is one commensurable to G(Og). Every arithmetic
group can be defined by using Q alone; replace G by H = Res$)(G) which is
a group defined over Q and for which H(Z) = G(O). This is not the case for
S-arithmetic groups: If the set S consists, for some rational prime p, of only
a proper subset of the set of primes {m;};c;r of O lying above p, then G(Os)



is usually not isomorphic to an S’-arithmetic group for any set S’ of rational
primes.

To be able to work over Q and to have the most general notion of S-
arithmetic groups we use:

Definition 2.1 A finitely generated group I is called an s-arithmetic group
if there exists a Q-algebraic group H, with H(Z) infinite, a finite set S of
primes of Q and a subgroup Ty of H(Zs), such that

(i) Ty virtually contains H(Z); i.e., To N H(Z) is of finite index in H(Z).

(i1) T is isomorphic to a finite index subgroup of T.

Remark 2.2 In Definition 2.1, s is just a name which has nothing to do with
the finite set of primes S.

We learned the following result from T. N. Venkataramana. It shows that
for H semisimple, s-arithmetic groups are, up to finite index subgroups, finite
products of S-arithmetic groups over number fields.

Proposition 2.3 If H in Definition 2.1 is semi-simple, then there exists
finitely many number fields k1, ..., k; and for each i =1,...,1 an absolutely
almost simple k;-algebraic group G; and a finite set S; of primes of k; such
that, up to a finite index subgroup, I is isomorphic to Hézl Gi(Og,), where
S; s the ring of S;-integers in k;.

We postpone the proof of (2.3) to the end of the section. We remark
however, that (2.3) implies that if H is a semi-simple group then the s-
arithmetic group I' is a lattice in a group

M = [T IIGi(*)

i=1 wv€S;

which is a product of a real and p-adic Lie groups.
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This corollary holds in a more general context. Before showing this, let
us see an example which is not semi-simple.

Example 2.4 Let U = U, be the unipotent group of 4 X 4 upper unipotent
matrices. So a typical element of U is of the type

1 aq bl C

0 1 [45)) bg
g =

0 0 1 as

0 0 1

Let p and ! be two primes and I' the subgroup of U(Q) defined by the
conditions:

a; € 7, fori=1,2,3,

gel iff b; € Z¥ /], fori=1,2
c € LW/, K/<]

So I' contains U(Z) and it is contained in U(ZW /), /<]). Moreover, T is
a discrete subgroup when it is embedded diagonally in the group U(R) x
U(Q) x U(Q«). However, it is not a lattice there. The projection of T to
U(Q) is not dense in U(Q). In fact its closure is equal to UT(Q) where
Ut (Q) is defined by the conditions

+ . aiEZ|
gevu (Qw) iff {bi,CEQ

Similarly the closure of I" in U(Q) is UTT(Q«) given by:

44+ . ai,bj€Z<
ge U (Qe) iff {C€Q< :

Moreover, it is not difficult to verify that I' is dense in the product 2 =
UT(Q) x U (Q«). One can also easily check that the discrete subgroup I'
is a lattice in

U(R) x & = UR) x U (Q) x U (Qe).

Once can easily now imagine more examples of the kind when the unipotent
group U is replaced by a general algebraic group.
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Theorem 5.4 below states that if a higher rank real Lie group G acts on
a ['-bundle, then, under suitable assumptions I is s-arithmetic. Moreover,
there exists a Q-algebraic group H, with a R-embedding of G into H such
that [H, H] = H (and so H = U x L, where U is unipotent, L is semi-simple)
and L(Z) is infinite such that I" virtually contains the group H(Z) and is
contained in H(Z..) for some set of primes. We will now show that indeed
every such s-arithmetic group I' gives rise to a ['-bundle with a G-action,
and a finite measure on the base preserved by G.

Lemma 2.5 Let H = U X L be a connected Q-algebraic group, such that U is
unipotent and L is semi-simple with L(Z) an infinite group. Let S be a finite
set of primes and I a subgroup of H(Zs) which virtually contains H(Z). Let
M = [[H(Q) where p runs over the finite primes in S, and let ) be the
closure of the projection of T' into M. Then T is a lattice in H(R) X &.

Proof: As H(Zs) is a discrete subgroup of H(R) x M, I is clearly a discrete
subgroup of H(R) x £. We need to show that I is of finite covolume there.
Note that

(i) By strong approximation (see [PR, p.427]), it follows that € contains
a finite index open subgroup K of [[ ¢ H(Z).

(ii) H(Z) is a lattice in H(R) and so is every finite index subgroup of it.
In particular, for I'y = T'N H(Z) N K, there exists a subset V' of finite
covolume in H(R) such that I'y - V = H(R).

We claim now that I' - (V x K) = H(R) x £. This shows that I" is a lattice
in H(R) x £. Indeed, let (g1, 92) € H(R) x £. By the density of I" in Q one
can find v € T" such that

7(91,92) = (’Yglafng) S H(R) x K.

Now, we can choose 79 € I'y C I such that yo(yg1) € V. Since 7 is by the
definition of 'y also in K, we have that (vo-7)(g1,92) € V x K and the proof
is complete.

Corollary 2.6 With the notation of (2.5), assume further that G is a semi-
stmple real Lie group with a Q-embedding into H. Then the embedding of
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G in H(R) defines an action of G on (H(R) x £)/<, which is the base of
a I'-bundle and of finite measure. This action will be engaging if and only
if for every finite index subgroup I'y of I', the closure of 'y in Q is 2. This
happens, for example, if H is semi-simple.

We are not sure what is the most general context in which this density
property (and hence engaging) holds.

Remark 2.7 As mentioned above, our main theorem is a converse of Corol-
lary 2.6. It says that if G is of higher rank and acts in an engaging way
on a A-bundle with a compact base, where A is a linear group, then A is
s-arithmetic with H as in (2.5). Note however, that it does not give the com-
plete converse. We assume that the base is compact, but prove only that A
is a lattice in H(R) x £ which might be of finite covolume but not necessarily
cocompact.

We will return now to the proof of Proposition 2.3 and we start with a
Lemma:

Lemma 2.8 Let G be a simply connected absolutely almost simple group
defined over a number field k. Let A = G(O) where O is the set of integers
in k, S a finite set of primes of O and T' a subgroup of G(Os) such that
['N A is of finite index in A. Assume further that G(O) is infinite. Then
there exists a subset S’ of S such that T' is commensurable with G(Og').

Proof For v € S, denote by k, the completion of & with respect to v. Let S’
be the subset of S consisting of all the archimedean ones together with those
v € S for which T is dense in G(k,). If v ¢ S’ then the closure of T in G(k,)
is an open compact subgroup of G(k,). Indeed, by strong approximation
[PR, p.247] and the fact that T virtually contains the infinite group G(0O),
the closure of I in G(k,) is always open. In the simply connected case, every
open subgroup is either compact or else is all of G(k,) [PR]. This proves
that after replacing I' by a finite index subgroup, we may assume that [" is
contained in G(Oy).

We will now prove that I' is of finite index in G(Os). Let S} be the

13



set of finite primes in S” and € the closure of T" in [], . s G(ky). Clearly Q

contains the closure of A’ =T'N G(O), which is of finite index in G(O). By
strong approximation, the closure of A" contains a product [],. s, M, where

each M, is a compact open subgroup of G(k,). In particular, for each v the
subgroup generated by M, and its ['-conjugates lies in 2. The conjugation
action of I' on M,(C G(k,)) factors through the projection of I' in G(k,).
Therefore, since it is dense in G(k,) and G(k,) has no open normal proper
subgroups, it follows that Q contains G(k,) for each v € S}. So 2 is just the
product ], . s, G(k,). For the same reason, this product is also the closure

of G(OS!)

Let U be the closure of G(O) in HvES} G(k,) and U’ be the closure of

A =T NG(0). By our assumptions [U : U'] < oo and in fact there is r € N
and 6y, ...,d, € G(O) such that

G(O) = U€:1A5i and U = U:ZlUléi.

Now, U is open in Hves} G(ky,). By virtue of the density of I" in the

above product, for every g € G(Ogs) there exists v € T such that v g € U.
Now, 7 lg € G(Og) as well and U N G(Og) = G(O). Thus v 'g € G(O)
and so there exists 6 € A and 1 < 4 < r such that vy 'g = § - §;. Hence
g=r-0d-0;. Since 7,0 € I' we deduce that G(Og) = U[_,I'6;, which shows
that [G(Og) : I'| < co. This proves the Lemma.

Now, once Lemma 2.8 is proven for simply connected groups one can
deduce a similar result for the non-simply connected case, provided I' is
finitely generated. Indeed, if 7 : G — G is the simply connected cover of
G, then 7(G(k)) is normal in G(k) and G(k)/n(G(k)) is a torsion abelian
group (cf. [LM]). If T is a finitely generated subgroup of G(k), then a finite
index subgroup of it is contained in m(G(k)). So replacing I' by a finite
index subgroup we can assume that I' < 7(G(k)). Look now at I' = 7~ '(T).
f, being a subgroup of é(k), is a linear group and hence residually finite.
K =ker(r) is a finite subgroup of f, and so I has a finite index subgroup I
intersecting K trivially. I'" is isomorphic, therefore, to a finite index subgroup
of I'. We can therefore now appeal to (2.8).
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Let now H be a Q-algebraic semi-simple group. Then up to a finite kernel
(which can be dealt with as in the previous paragraph), we can assume H is
a product of Q-simple groups, H = Hézl H;. Each H; is equal to Res%’ (Gy)
where k; is a number field and G; is an absolutely almost simple group
defined over k;. So we can assume [' < Hézl G;i(k;) and T virtually contains
H(Z) = [[5_ Ga(Oa) where O; is the ring of algebraic integers of k;. For
every i, the set S, of finite primes of k; for which I' is dense in G;(k;) (or
in a finite index subgroup, when G; is not simply connected) is finite. Let
Q2 be the closure of I" in Hé:l [I,cs Gi(kip). Then in a way similar to the
proof of (2.8), 2 can be shown to be of finite index in the product. (It is
not necessarily the whole product since if the G;’s are not simply connected
they have finite index open subgroups). Then one can continue to argue as

in (2.8) to deduce that I' is commensurable with a finite index subgroup of
Hé:l Gi(Os;). This finishes the proof of (2.3).

3 Superrigidity

In this section we summarize superrigidity for actions on principal bundles,
i.e. superrigidity for cocycles, and extend this to a formulation we will need.
We refer to reader to [Z3] for background on cocycles.

If P — M is a principal H-bundle on which G acts, then with respect to
the trivialization of the bundle defined by a measurable section, the G action
will be described by a cocycle G x M — H. For any cocyclec: Gx M — H,
we call ¢ tempered if it is equivalent to a cocycle §: G x M — H such that
for each g € G, (g, M) (up to null sets) is a compact subset of H. This will
be the case, for example, for a cocycle coming from a continuous action of GG
on P — M in which M is compact. We shall call a cocycle §: G x M — H
superrigid if there is a homomorphism ¢ : G — H, a compact subgroup
C C Zg(o(G)), and a cocycle ¢ : G x M — C such that § is equivalent
to the cocycle (g, m) — o(g)c(g, m). We call § totally superrigid if we can
take ¢ to be trivial. If G is a connected simple real algebraic group with
R-rank at least 2, and H is algebraic over a local field, then (perhaps by
passing to a finite extension of M) any tempered [ is superrigid. This is
proven in [Z3], [Z6] when H is defined over a local field of characteristic 0.
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However, combining these arguments with [M] or [V], one can also prove this
in positive characteristic, which we shall need. More precisely:

Theorem 3.1 (Cocycle superrigidity in positive characteristic). Let
G be a connected simple Lie group with finite center and R-rank(G) > 2.
Let k be a local field with char(k) > 0. Let H be a group defined over k and
a:GXM — Hy be a cocycle. Then a is equivalent to cocycle into a compact
subgroup of Hy.

For technical reasons, it will be useful for us to reduce to the case where
superrigidity is replaced by total superrigidity.

Given a cocycle ¢ : G x M — C where C' is compact, one can always pass
to an ergodic extension, say M’ — M, such that the lift of ¢ to a cocycle
' : GxM' — C is trivial in cohomology. Namely, ¢ is equivalent to a minimal
cocycle A : G x M — D C C where D is a closed subgroup, which means the
skew product action of G on M x, D, given by g.(m,d) = (gm, A\(g, m)d) is
ergodic. (See [Z2] for a full discussion.) The lift of ¢ to M x D is easily seen
to be trivial. As discussed in [Z2], the group D is unique up to conjugacy
(and in the case of real Lie groups, coincides with the algebraic hull of ¢ [Z3],
[Z4].) However, if P — M is a I'-bundle on which the G action is engaging, it
is not immediate that the action on the pullback to M’, say P’ — M’, is still
engaging. We shall need to trivialize the cocycle ¢ arising in superrigidity
while at the same time maintaining the engaging property. The following
accomplishes this when C is a compact Lie group (which is the only case we
shall require.)

Lemma 3.2. Suppose G s a locally compact group with an engaging action
on a principal T'-bundle P — M (where T is discrete). Suppose c: G x M —
C 1s a cocycle into a compact Lie group. Then there is:

i. a finite index subgroup I C T', with associated finite cover M' — M
and principal I'-bundle P — M', and

i1. an ergodic skew product extension X of M' by a compact subgroup of
C [Z2], such that

a. the action of G on the principal I'-bundle Px — X that is the
pullback to X of P — M' is engaging, and
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b. the pullback cx : G x X — C of « is trivial in cohomology.

Proof. For each finite index subgroup A C T, let Cy C C be the algebraic
hull of the cocycle ¢y : G x P/A — C defined by lifting c. The engaging
hypothesis ensures that G is ergodic on P/A. If A C A, then Ca C Cy up to
conjugacy. By the descending chain condition on closed subgroups of C', we
can choose a finite index I" C I" such that for all A C I” we have C\ = Cp
up to conjugacy. Set D = Cp, M' = P/T", and A : G x M" — D a cocycle
equivalent to cr. Let X = M' x, D. Then cyx is trivial in cohomology. To
prove the lemma, it suffices to see that the action of G on the I''-bundle Px
is engaging. However, if A C I" is of finite index then Px/A = P/A x, D
which is ergodic under G since D = Cy for any such A.

Corollary 3.3. Let G be a connected simple Lie group with R-rank(G) > 2.
Suppose G acts on a space M with a finite invariant measure, and that P —
M is a principal I'-bundle with an engaging G-action. Let o : G x M — H
be a tempered cocycle into a real algebraic group. Then there is a finite index
subgroup I'" C T' and an ergodic G-space X with finite invariant measure that
is an extension X — M' of M' = P/T" (and hence M ) such that

1. ax : G x X — H is totally superrigid, and

i1. the G-action on the principal I''-bundle Px — X, the pullback to X of
P — P/T", is engaging.

Proof. We apply Lemma 3.2 twice. First, we can replace H by the algebraic
hull of o [Z3]. Let ¢; = poa where p: H — H/H® where H° is the connected
component of the identity. Applying Lemma 3.2 allows us to assume c; is
trivial; i.e., by passing to a finite ergodic extension of M and a finite index
subgroup of I, we can assume the algebraic hull is connected. We can then
apply superrigidity in characteristic 0 [Z3], [Z6] to deduce that our cocycle
on this extension is superrigid. Second, we apply Lemma 3.2 again to pass to
a further extension and a possibly smaller subgroup of finite index to obtain
total superrigidity and engaging.

4 Specializations
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In this section we develop some specialization theorems for finitely gen-
erated groups that we will use to reduce the proofs of our main results to
the case of linear groups over Q. More precisely, suppose I' C GL(n,C) is
a finitely generated linear group. Then there is a ring A which is a finitely
generated Q-algebra such that v € GL(n, A) forally € I'. If ) : A - Qs a
Q-algebra homomorphism then it induces a homomorphism ¢ : GL(n, A) —
GL(n,Q) and in particular a homomorphism ¢ : I' — GL(n, Q). Then ¢ (or
(1(I")) is called a specialization of T'.

Definition 4.1. Suppose H; are algebraic k-groups, i = 1,2, and H; = L;xU;
are Levi decompositions defined over k. We call Hy and H, k-isotopic if
there is a k-isomorphism Ly — Lo, such that under this isomorphism w(=
Lie algebra of U;) are k-isomorphic L; modules.

Our main result about specializations is the following.

Theorem 4.2. Let I' C GL(R*) be a finitely generated group. Suppose
that for each irreducible component 7 of the semisimplification of this linear
realization we have tr(m(y)) € Q for all v € T'. Let I denote the Zariski

closure. Then (after a suitable choice of basis in R ) there is a specialization
Y of I such that:

i) $(I') C GL(n,QNR);
i) 1 is faithful on T';

i) (') and T are R-isotopic.

Furthermore if T is defined over Q, then we have

iw) () =T.

We begin the proof of Theorem 4.2 by recalling the following result, which
is well-known. (cf. [B, Section2] for example.)

Lemma 4.3. If A C GL(n,R) is finitely generated and irreducible, and
tr(A) € Q, then A is conjugate over R to a subgroup of GL(n,QNR).
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iJFrom this lemma and the hypotheses of Theorem 4.2 we deduce the
following. Let T = L x U be a Levi decomposition over R. (More precisely,
we are taking L and U to be real algebraic groups.) We can find a flag
0C Vi C...CV,=R"subspaces W; such that V; & W;,; = V;;; and a
basis for R* which is a union of bases for W;,7 = 1,...,r, such that: each
V; is T invariant; U acts by the identity on V44 /Vi; each W; is L-invariant;
the action of I on each W; (via projection to L) is irreducible; and finally,
writing v € T’ as ¥,7,, where v, € L and vy, € U, we have v, € GL(n, QN R)
with respect to the above basis.

Let N =T nNU. (This may be trivial.) Then N is a group of unipotent
matrices, but is itself not a priori finitely generated. We establish the next
lemma to be able to apply results and techniques of Grunewald-Segal [GS].
We thank Shahar Mozes for his contribution to the proof of this lemma.

Lemma 4.4. Let Z(N) be the center of N. Then Z(N) is an abelian group
of finite rank; i.e. Z(N)®zQ is finite dimensional over Q.

Proof. Since I' is finitely generated, we can find a number field F' such
that v, € GL(n, F) for all 7. Let {y',...,7"} be a generating set for I". Let
{z1,...,2;} C R be the set of real numbers appearing as entries in the matri-
ces for {72}. A straightforward induction (and some matrix multiplication)
establishes the following. Consider for any matrix with respect to the above
basis the set of matrix entries corresponding to Hom(W;, W;),j > 4. Then
for any word (of any length) in {7}, such a matrix entry is a polynomial of

degree at most j — 7 in {z1,...,x;} with coefficients in F'. (The induction
is done on j — i.) This implies that each matrix entry for all v, is a poly-
nomial in {z1, ..., 2, Y1,---,Ym} over Q of degree at most max{n, m} where

{¥1,---,Ym} is a basis for F' over Q. This implies that any abelian subgroup
of N is of finite rank, and in particular proves the lemma.

Now let V' be the unipotent group of all matrices with respect to the basis
of R* chosen above so that 7" € V if and only if T'|W; =Id, and T;; = 0 if
1> 7. Thus, U C V and L normalizes V. Let u C v be the corresponding
Lie algebras, which are both L-modules. The map exp : v — U is a bijection
which is a Q-regular map, as is the inverse which we denote by log. We have
exp [u: u — 4 is also a bijection, although we recall that u itself may or may
not be defined over Q with respect to the standard Q-structure on v. The
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matrix entries for the action of I'; on v lie in Q N R. The maps exp and log
commute with the actions of L on v and V.

Recall that for each v € T, we write v = 747,. Choose {v'}i1,.., C T
such that X; = log~, is a basis for u. Extend this to a larger set {v'}i—1..n,...m
that generates I'. Let cfj be the structural constants for the Lie algebra u
with respect to the basis {X;;i = 1,...n}; ie. write [X;, Xj] = 3 ¢ X,
where cfj €R Forn < j<m,write X; =Y "  a;;X;. Let X; = Zbngjk
be the expression for X; in terms of the standard Q-basis for v. Finally,
let A be the (finitely generated) Q-algebra generated by {aij,cfj,b{k}. Let
¥ : A — Q be a specialization. Let Y; = (X;) = Y. 9(b)*)Ej;. Assume for
the moment that {Y;,7s = 1,...,n} are linearly independent. Let u' be the
subspace spanned by Y;. Since cf; € A, and [Y;, V)] = D" () Yk, o' is a Lie
algebra defined over Q. Denote the natural action of £ on v by Ad. Then if
g € Lg, we have Ad(g)X; has entries in A, and ¥(Ad(g)X;) = Ad(g)(¥(X5))-
Thus, u and u' are isomorphic L-modules. Letting U’ = exp(u'), we thus
have L x U and L x U’ are R-isotopic Lie groups. We now claim that the
specialization (') C L x U'. We have ¥(X;) = Y7 ¥(a;;)Yi, so ¥(X;) € v
for j = 1,...,m. Thus, exp(¢(X;)) = ¥(exp(X;)) = (7)) € U'. Since
¥(7y) = (), it follows that +(y7) € L x U’ for 47 in a generating set, and
hence ¢(I') C L x U'. Tt is then also clear that (') = Lx U'. If T = Lx U
is itself defined over Q, then so is any specialization of u over Q, and hence
we would have U’ = U.

Turning to the injectivity of ¢ on I', we observe that ¥ (y) = ¥(vs7u) =
s (7y). Evidently, this can vanish only if +; is trivial. Le., it suffices to see
that ¢|N (where N = I' N U) is injective. In sum, we have shown that to
prove Theorem 4.2, it suffices to prove the following lemma.

Lemma 4.5. We can choose a specialization 1 : A — QN R such that:
i) ¥(X;) are linearly independent (over R).
it) Y|N is injective.

Proof. Let F be quotient field of A, so F = Q(vxn) where z = (z1,..., %)
R<. Then z generates an absolutely irreducible affine variety V' = spec(4
over k = F'N Q. Noether’s normalization theorem supplies t1,...,t, €

m

N

20



which are algebraically independent over k£ such that A is an integral exten-
sion of B = k[t,...,t,]. There is a natural map 7 : spec(A) — spec(B)
which induces a surjective map from V onto C>, since A is integral over B.
The map 7 : V(C) — C> is continuous in the Zariski and complex topologies.
As k C R n(V(R)) CR>.

The proof of Theorem 3.1 (and Theorem 2.8) in [GS] implies that for
every number field K D k, there exists an Hilbert set H C K" such that if
1 € spec(A) and n(vp) € H, then 1 induces an injective map on N. (We
apply this with £ = K.) Moreover, the condition that {¢(X;)} are linearly
independent is an open condition. It is well known that the intersection of
a Hilbert set with a Zariski-open set is still an Hilbert set (cf. [GS] and the
references therein) so we can assume that both conditions (i) and (4i) are
satisfied for every ¢ such that n(¢) € H. To finish the proof we still need to
ensure that the image of ¥ is in R. (Note that even if (1) € k* C R™, this
does not ensure that the image of ¢ is in R, but merely says that ¢(B) C R).

To this end we prove part (c) of the following Lemma which was provided
to us by Moshe Jarden:

Lemma 4.6. Suppose k C A C Q((vn)) C R as before, and K a number
field with k C K C R.

(a) There is a real-open neighborhood uy of x in V(R) and a real-open ball
ug around t = (t1,...,t,) € R> such that n maps uy homeomorphically
onto us.

(b) us NH # O for every Hilbert subset H of K.

(c) For each Hilbert subset H of K" there exists ' € V(R) such that n(z') €
H.

Proof.

(a) From [GPR, Cor. 9.5] it follows that n : V(R) — R™ is a local
homeomorphism in the neighborhood of z. This is just a reformulation of
(a). (Actually, [GPR, Cor. 9.5] deals with a Henselian field rather than with
R, but one can carry out an analogous proof for R.)

(b) This follows from Lemma 4.1 of [J]. (That lemma deals with valu-
ation, but again an analogous proof works for R. One can also deduce (b)
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from a more general and more difficult theorem of Geyer |G, Lemma 3.4] in
which this density result is proved simultaneously for several valuations and
orderings.)

(c) is a consequence of (a) and (b).

5 Statements and proofs of the main results.

In this section, we state and prove sharper versions of Theorems A, B, C
of the introduction.

Theorem 5.1. Let G be a connected simple Lie group with R-rank (G) >
2, and suppose G acts on a compact M, preserving a finite measure and
engaging. Let o : m (M) — GL(n,R) be any linear representation, with
image T' = o(m (M)) an infinite group, and Zariski closure T C GL(n,R).
Then T is s-arithmetic. More precisely, there is a real algebraic Q-group H,
an embedding T' — Hg (and hence necessarily in Hy, for some finite set of
primes S) and subgroups I C Ty C T' such that:

(i) H contains a group R-isotopic to T (see Definition 4.1)
(i) [b,b] =b.
(ii) [T : Ty] < o0
(iv) T is profinitely dense in Ty

(v) T is commensurable with Hyz and is a lattice in H.

Furthermore, (perhaps by passing to a finite cover of G), there is a local
embedding G — H such that C \ H/T« is a virtual arithmetic quotient of
M. In particular, C\ H/T» < A(M), where A(M) is the canonical mazimal
arithmetic quotient [LZ)].

Theorem 5.2. With the hypotheses of Theorem 5.1, and the additional

hypothesis that the action is totally engaging, we may take I'y = T'g. In
particular, " is arithmetic.
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In particular, we obtain

Corollary 5.3. If G is a connected Lie group with R-rank (G) > 2, and
G has a totally engaging action on a compact manifold M, then for any
representation o : (M) — GL(n,R) with infinite image, o(w(M)) has a
subgroup of finite index that is an arithmetic subgroup of a Q-group H such
that g <— b. Thus, if m1 (M) is a linear group, it has a subgroup of finite
index that is arithmetic in a group H with g — §.

In fact, our proof will work for any principal bundle with discrete fiber,
not just M. More precisely, we have:

Theorem 5.4. Let m be a discrete group and P — M a principal m-bundle
on which G acts preserving a finite ergodic measure on the compact space M.
Let T be the image of m under any finite dimensional linear representation
over C. Assume T is infinite. If the action of G on P — M 1is engaging, the
conclusions of Theorem 5.1 hold. If the action is totally engaging, those of
5.2 hold.

We now turn to the proof of these theorems.

Our general approach to the proofs of these results will be to reduce
to the case in which I' has algebraic entries, and then to further develop
the arguments of [Z8] using [Z1, Proposition 3.6] and the results in earlier
sections. Rather than reproduce the arguments of [Z8] in full detail, we shall
freely refer to that paper when it is convenient to do so. We now assume all
hypotheses of Theorem 5.1.

Lemma 5.5. Let k be a local field of positive characteristic. Let A : ' —
GL(n, k) be a representation with discrete image. Then \(T') is finite.

Proof. Let « : GxM — I" be defined by the action of G on the principal
[-bundle P, where P = M /ker(o). By 3.1 and 1.12(i), A o « is equivalent
to a cocycle into a finite subgroup of A(I"), which must be profinitely dense
in A(T"). Being linear, A(I") is residually finite, and since it has a profinitely
dense finite subgroup, A(T") is itself finite.
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Lemma 5.6. Any representation of I' over a local field with positive charac-
teristic has finite image.

Lemma 5.6 follows from Lemma 5.5 and

Lemma 5.7. Let A be a finitely generated infinite linear group over a local
field F with char(F) > 0. Then A has a linear representation over F with
infinite discrete image.

Remark. Lemma 5.7 is not true in the case of characteristic 0. For example,
SL,(Z[¥/1]) has no infinite discrete representation over C.

We need a sublemma.

Sublemma 5.8. If A is an infinite finitely generated linear group in char
p > 0, then it has a representation with an infinite image over a global field
of char p > 0 (i.e. of transcendence degree = 1.)

Proof. Let H be the Zariski closure of A. If the unipotent radical is of
finite index then A is virtually nilpotent, hence torsion, hence finite since
it is finitely generated. So A has an infinite image in a reductive group.
If the reductive group has a finite index infinite central torus, then A has a
finite index central subgroup with an infinite abelian quotient. So A certainly
would have an infinite representation over a global field. Thus we may assume
A has an infinite representation into a semisimple group M. Let ¢ be a
faithful irreducible representation of M, so it is also irreducible with respect
to A. Let D be the ring generated by the traces of ¢(A), and Q(D) be the
quotient field. If the transcendence degree of Q(D) is 0, then by [B, Corollary
2.5], #(A) is conjugate to a group with entries in a finite extension of Q(D).
This is impossible since ¢(A) is infinite and we are in positive characteristic.

So for some vy € A, tr(yy) is not algebraic. Take now a specialization
of D into a global field such that this element of D, (i.e. tr(yp)) is not
algebraic. This ensures a representation with infinite image of A, and proves
the sublemma.

Proof of Lemma 5.7. We can, by the sublemma, assume that A has an infinite
representation into a global field. So assume A C GL,(K), K a global field.
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By choosing a finite set of primes Sy, A is discrete in [[,.q GLn(K;). But
each one of the K,’s is a finite extension of F ((=)). So altogether we get
a faithful discrete representation over F ((=¢)), and hence over F' which is
F,((=)) for ¢ equal some power of p.

Lemma 5.9. For any linear representation m of T, tr(m(v)) € Q for all
vel.

Proof. Since I' is finitely generated, there is a finitely generated ring A with
(') € GL(n,A). For any transcendental a € A, there is a ring homomor-
phism 1) : A — F where F is a local field of positive characteristic with 1 (a)
still transcendental. If some v € T' had tr(w (7)) € Q, then ¢ would define
a representation m, over F' with tr(m, (7)) transcendental. This implies that
my(I') is infinite, contradicting Lemma 5.6.

Now apply Theorem 4.2 to I'. We identify " with ¢(T), but still denote
by T the Zariski closure in the original representation. We can use restriction
of scalars to find an algebraic -group H in which I'" is embedded as a Zariski
dense subgroup with I' C Hg. Furthermore, it is easy to check that H must
contain a subgroup R-isotopic to .

By applying Corollary 3.3 we can pass to a finite index subgroup Iy
and an ergodic G-space X with finite invariant measure such that, letting
a: G x X — I'y be the cocycle defined by the engaging action of Px and
ag the composition of o with the embedding of I'y C Hg, we have that ag is
totally superrigid, defining a homomorphism o : G — Hg. We also note that
we may assume, perhaps by passing to a further subgroup of finite index, that
[y C HY C Hg is Zariski dense in Hg, (replacing the latter by the Zariski
closure of T’y if necessary.) Now choose a finite set of primes S such that
'y C Hzg. Then Iy is discrete in its diagonal embedding d : I'y — Hgr x Hy
where H; = Il,cgHg, . By p-adic superrigidity for cocycles, o, the projection
of doa onto Hy, is equivalent to a cocycle into a compact subgroup K C Hy,
which we can assume is open. This implies d o « is equivalent to a cocycle
taking values in Hg x K which is open in Hg x Hy. By Proposition 1.12(i),
this implies that d o v is equivalent to a cocycle into d(I'y) N (Hg x K') for
some conjugate K’ of K. Let Iy, be the projection of d(I'y) N (Hg x K') into
Hk. We then have 'y, C Ty C HY with 'y, discrete, and « is equivalent
to a cocycle into I',. By Proposition 1.4, ['y, is profinitely dense in Iy,
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hence Zariski dense in Hg. As in the argument of [Z8], the fact that ar
is totally superrigid shows that there is a G-equivariant measurable map
¢ : X — HY}/T and, applying Ratner’s theorem exactly as in [Z8], almost
all ¢(X) lie in a L-orbit where L is a connected Lie group, say with stabilizer
L N hCwh™! that is a lattice in L. The argument of [Z1, Proposition 3.6]
now implies that o is equivalent to a cocycle 3 into A = I'oo N h~'Lh. By
Proposition 3.4 again, A is Zariski dense in Hg.

Let J = h™'Lh. Let A be the image of A in J/[J, J]. The projection of 3
must be equivalent to a cocycle into a finite subgroup since A is abelian and
G has Kazhdan’s property [Z3, Proposition 9.11]. Therefore (3 is equivalent
to a cocycle into a subgroup A C A such that Ay = AN[J, J] is of finite index
in A. Since the Lie subalgebra [j, ] is algebraic, [/, J] is of finite index in its
Zariski closure. However, the Zariski closure of A is Hg and since Ay C A is
of finite index and Hy is algebraically connected, it follows that [J, J] = HJ.
(Recall J is connected.) Therefore, we deduce L = HY.

We now have A = T'y, C H and 'y, is a lattice in HY. Since 'y, C Hy,g
and its projection to H; has compact closure, it follows that I',, N Hy is
of finite index in I'y,. Since it is a lattice, we deduce that 'y, and Hy are
commensurable. This completes the proof of those parts of Theorem 5.1 that
are not explicity stated in [Z8]. For the remainder of the conclusion, one can
see [Z8] or easily deduce them from the structure described above.

Proof of Theorem 5.2. We need the following two general lemmas concerning
totally engaging actions.

Lemma 5.10. Suppose the G-action on a ['-bundle P — M 1is totally en-
gaging, where G acts on M ergodically with finite invariant measure. (We
assume T is infinite.) Let Ty be a finite index subgroup. Then the G action
on the Ty bundle P — P/Ty is totally engaging.

Lemma 5.11. Let P,M,I',G as in Lemma 5.10. Let X — M be an ergodic
extension with finite invariant measure. Let Pxy — X be the pull-back of P
to X. Assume the G action on Px — X 1is engaging. Then it is totally
engaging.
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Proof of Lemmas. We first prove 5.11.

Suppose there is a subgroup A C I such that there is a G-invariant
section s : X — Px/A. Decompose the G— invariant measure y on X over
M, say = f® mdm, where pi,, is supported on the fiber in X over m € M.
Then for each m, s, (i) is a finite measure on the discrete set P, /A. For
some € > 0, the set

An = {x € Pp | su(pm)({z}) > €}

will be non-empty (and obviously finite) for a set of m of positive measure,
and by invariance of p and ergodicity of G on M, this will be non-empty
for a.e. m. Thus, m — A,, defines a G-invariant section of the bundle
(P/A)* — M whose fiber consists of finite subsets of P,,/A. Since I is
discrete, the cocycle reduction lemma [9] implies that there is a G-invariant
reduction of P to a group A’ C I where A’ stabilizes a finite subset of I'/A.
Since the G-action of P — M is totally engaging, A’ = T", and hence A C I'is
of finite index. Since the action on Py — X is engaging, A = I, completing
the proof of Lemma 5.11.

The proof of Lemma 5.10 is similar. A section of P/A — P/I'y for some
A C T'y in a manner similar to proof of 5.11 yields a reduction of P — M to
a subgroup A’ C I' that leaves a finite subset in I'/A invariant. As above,
this implies that A C T is of finite index, and since totally engaging implies
engaging, this is impossible.

To complete the proof of Theorem 5.2, we need now only observe that in
the proof of Theorem 5.1, we showed that « is equivalent to a cocycle into

' C T'y. This, with the hypotheses of Theorem 5.2, Lemmas 5.10, 5.11
imply that ', = I'y, verifying the theorem.

6 On the relationship of arithmeticity and to-
tally engaging actions.

In the section we further clarify the relationship of arithmeticity to the
engaging conditions.
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Theorem 6.1 Let G be as in Theorem 5.1, and suppose G acts on P — M,
a principal I'-bundle, with M compact and a finite invariant ergodic measure
on M. Suppose I' is arithmetic. If the G action is engaging, it is totally
engaging.

Proof: Let a: G x M — T be the cocycle defined by the action on
P. If the action is not totally engaging, there is some A C I' of infinite index
such that a ~ @ with (G x M) C A. Since A is a discrete linear group, we
can apply the argument of [Z8] and deduce that A D A, where A is a lattice
in some algebraic group and § ~ § with §(G x M) C A. Since the action is
engaging, A must be profinitely dense in I', and hence Zariski dense. Since
A is a lattice, this implies A is of finite index in I', which is a contradiction.
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